
J.W. Connor, C.J. Ham and R.J. Hastie

CCFE-PR(17)19

The Effect of Plasma Beta on 
High-n Ballooning Stability 

at Low Magnetic Shear



Enquiries about copyright and reproduction should in the first instance be addressed to the Culham 
Publications Officer, Culham Centre for Fusion Energy (CCFE), K1/0/83, Culham Science Centre, Abingdon, 
Oxfordshire, OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.



The Effect of Plasma Beta on High-n 
Ballooning Stability at Low 

Magnetic Shear

J W Connor1, 2, C J Ham1 and R J Hastie1

1CCFE, Culham Science Centre, Abingdon, Oxon, UK, OX14 3DB
2Imperial College of Science and Technology and Medicine, London SW7 2BZ

Further reproduction distribution of this paper is subject to the journal publication rules.



.



1 

 

             The Effect of Plasma Beta on High-n Ballooning Stability 

                                    at Low Magnetic Shear 

  

J W Connor
1, 2 

, C J Ham
1
 and R J Hastie

1 

                   
1

 CCFE, Culham Science Centre, Abingdon, Oxon, UK, OX14 3DB 

2
Imperial College of Science and Technology and Medicine, London SW7 2BZ 

 

Abstract 

An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma 

pressure or poloidal beta, pol  , as observed in MAST and JET, is sought in terms of the impact of the 

Shafranov shift,   , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment 

of the low magnetic shear region of the  '' s  stability diagram is presented using the large aspect ratio 

Shafranov equilibrium, but enhancing  both   and    so that they compete with each other. The method of 

averaging, valid at low s, is used to simplify the calculation and demonstrates how  ,   , plasma shaping and 

‘average favourable curvature’ all contribute to stability. 

 

1. Introduction 

Tokamak performance in H-mode is strongly dependent on the characteristics of the edge pedestal 

namely its steepness and width, since these determine the effective edge temperature which provides 

the boundary condition for core transport models [1]. The EPED model [2], which is based on the 

stability of the edge plasma to ideal MHD peeling-ballooning modes [3, 4], can be used to determine 

these quantities. There is experimental evidence, e.g. from {DIII-D [5], JT-60U [6], ASDEX Upgrade 

[7], JET [8] and  MAST [9] and, that the pedestal characteristics improve as the core plasma pressure, 

or poloidal beta, pol , increases. This appears to be related to improvements in the ideal MHD 

stability [10, 11]. The purpose of this note is to explain the origin of this in terms of basic tokamak 

equilibrium concepts, namely the effects on the familiar  '' s  stability diagram of the Shafranov 

shift, )(r , plasma shaping and ‘favourable average curvature’. 

The stability against high-n ballooning modes is usually investigated in full toroidal geometry, but 

with the stability boundaries being described in terms of a normalised pressure gradient parameter, 

'' , and plasma current density, j , or equivalently the magnetic shear, s  , local to the magnetic 

surface being analysed. However this description hides other potential equilibrium dependencies such 

as on the Shafranov shift, )(r , which is a consequence of the global pressure profile, i.e. the 

plasma  beta,  , and the surface shape (e.g. ellipticity,  ).  A role for the Shafranov shift has been 

proposed [11, 121], but it is not readily separable from other potential causes. In order to understand 

these aspects it is useful to develop a model ballooning equation that explicitly contains such 
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parameters, so we need to consider an analytic, tokamak equilibrium. We take the large aspect ratio

1/  Rr , Shafranov tokamak equilibrium with 
2~   and approximately circular magnetic 

surfaces, constantr , albeit displaced by the Shafranov shift, )(r  with some weak shaping, in 

particular ellipticity, parameterised by a quantity  rE , where the ellipticity 

       rrErrEr  /  [13]. The familiar s  ballooning equation [14] corresponds to 

taking the limit 0,0   , i.e. 0)(  r  of this equilibrium, while assuming a steep pressure 

gradient with  
1~)/( drnprd   exists in a narrow region, of width r , in the vicinity of the 

surface under consideration, so that the parameter   )1(0~//2 22 BdrdpRq  , where q is the 

safety factor. Since the pressure gradient is only large in a narrow radial region, rr  , one can 

consistently assume concentric circular magnetic surfaces [15]. 

In order to investigate the effect of    on ballooning stability we consider a somewhat different 

modification of the Shafranov equilibrium in which the pressure gradient is enhanced globally, rather 

than locally. We also consider the limit of small magnetic shear, which simplifies the analysis by 

allowing a two-scale approach [16], but clearly shows the impact of the effects of finite   on 

ballooning stability. An optimal ordering is adopted that allows competition between and  and 

also with the effects of mild plasma shaping and favourable average curvature due to retaining terms 

of  0/0 Rr : 

3

0

2 ~/;~~~;~~  RrEEs  ,      (1) 

This allows the surfaces to remain circular in leading order, but to be self-consistent they must have 

some ellipticity at a level that is driven by  .  We also allow for the possibility of an imposed 

ellipticity at the plasma boundary, parameterised by E(a), at a comparable magnitude.  Higher 

harmonic shaping such as triangularity is found not to contribute at low magnetic shear. The modified 

ballooning equation contains the parameters ,and,/ 0 ERa   andtoadditionin s , with 

   and  E involving the effects of   so that we can explicitly examine the effect of  on ballooning 

stability. 

 

2. MHD Ballooning Stability at Low Shear 

The high-n, ideal MHD ballooning equation in general geometry is [17, 18] 
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is the curvature,    the poloidal flux and S is the eikonal,   kdrqS  , with k a radial wave-

number [19].   We use non-orthogonal straight field line co-ordinates   ,,r  with Jacobian  
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0

2 / RrRJ   [8] and express the equilibrium magnetic field as     rrfrgBR  00B , 

so that fRrgq 0/ , with r the magnetic surface label.  In this co-ordinate system eqn. (2) becomes 
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Here  
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with   drdqqrs // the magnetic shear and where we have introduced the ballooning angle, 

0qk  , in place of the radial wave-number k.  We can express 
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where 
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With the aid of eqns. (4)-(6), eqn. (3) can be written in the form 

    0













G

d

d
F

d

d
        (7) 

where  
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At this point we introduce the ordering (1), the two scales,  su , [16], so that 
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In )0(λ0
 we find  
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so that )(00 u  . In next order 
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while in )0(λ2
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In next order 
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Finally, in the )0(λ4
equation, we annihilate the term in 4 by the operation    2/...... d , to 

obtain 
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Since we shall see that )(00 uFF  , the first term on the left hand side vanishes and we only require 

 F  to order 
2 ; furthermore, although we need to expand  G  to  30  , we only need retain 

that part of 3G  that is independent of periodic terms in  . Similarly, since we shall find that 1  

contains only the  sinandcos  harmonics, we only need retain the same harmonics when 

calculating 2G . 

 

3. Equilibrium Quantities for the Ballooning Equation 

It remains to evaluate the geometrical quantities in eqn. (7). To do this we use the Shafranov 

equilibrium, expressed in co-ordinates ,,r  through the representation [13] 
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We note that we have measured the angle  from the inboard side of the tokamak. Although the 

surfaces are taken to be circular one finds that the equilibrium pressure forces a small amount of 
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ellipticity, parameterised by )(rE  , and triangularity,  rT  , which can be removed at a given surface 

by applying  external shaping but necessitates a local gradient and curvature of )(rE   and  rT  . 

The function )(rP   merely allows one to re-label surfaces; for the moment we have differentiated 

between the radial co-ordinates rr and  but we shall choose the function )(rP   later such that they 

can be identified and will from now on ignore the distinction.  
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of expansion (15) into the Grad-Shafranov equation yields equations for )(and)(),(4 rErrp   [13]: 
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where we ignore terms small in  . We can integrate eqn. (17) to obtain )(r . Since our ballooning 

analysis is applied near the plasma edge we effectively require )(a  which is given by  
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where pol  is the poloidal  of the plasma and il is the internal inductance per unit length of the 

plasma column. Thus we see that   is a parameter representing the global plasma   and is distinct 

from the parameter  , which only represents the local pressure gradient. For more precise 

calculations we should use 
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but il is smaller than pol with our ordering (1). From eqn. (15) we can compute the Jacobian for this 

co-ordinate system:  
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                        The straight field line angle   is then obtained from [19] 
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Similarly, with the aid of eqn. (22), we can calculate   from eqns. (15), (21) and (22) and, on 

inverting the expression, we obtain 
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To compute 222
and.,   rrrr  we substitute the expansion (25) into eqn. (15) and form 
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to )(0 3 , where we have substituted for 4g  in favour of 4p  from eqn. (16) and expressed 4p  in 

terms of  . Thus   .and22 rrr  are modified and when substituted in eqn. (4) we obtain 
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          (30)     

We now evaluate  andr as defined in eqn. (6). Thus 

                               

























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
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




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0
0
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B
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R

R

R

B
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rR

R
R r ,                   (31) 

on using eqns. (16) and (26), so that  

 
2

0

2

0
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0
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0
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2 qR

r

R
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r

R
R

R

R
r 
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
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













      (32) 

as required for forming  G . Likewise 

            














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
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
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0
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R

r

R
R
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R




     (33) 

Expressing 
2R  as a function of andr  using eqns. (15) and (25), we obtain 

                 

.......
2
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3

2
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2
2cos

2
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2
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2
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
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
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
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
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r
E

r

E

R

r

R

r

R

r

RR

r

R

R
  (34)  

where, as mentioned earlier, we only retain  sinandcos  harmonics in  50   and constant terms 

in  60   as these produce the required contributions to 32 and GG . It is interesting to note that neither 

TP nor  (i.e. triangularity) contribute to 3G . Calculating    G  using eqns. (32), (33) and (34) and 

recalling eqn. (29) for     and   E  , we obtain 
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4. The ‘Averaged’ Ballooning Equation 

We are now in a position to develop eqn. (14) for 0   which determines ideal MHD ballooning stability 

at low magnetic shear. With the substitution   us  0  in eqns. (30) and (35) we can identify the 

quantities 321210 and,,,, GGGFFF . In particular, )1( 2

0 uF  , which is indeed independent of  . It 

is also convenient to introduce the notation 

                                                             

   

    ..........sincos2sin2cos
2

sincos)(

...2sin2cossincos)(

3

3
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2

11

222

2
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






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






          (36) 

We can readily evaluate )(03 uG  :   

 303 )( guG                                                                                 (37)              

Equation (11) then yields 

                                             


 sincos
)(

0

0
1 u

F

u
  ,    (38) 

from which we can evaluate   /11Fs and 12G  

                        )(
2

011

0

1
1 uffu

F

s
Fs cs 











,          )(

2
02

2

2

0

12 ugug
F

G sc 


    (39) 

 From eqn. (12) we learn 

   )(2cos2sin2cos22sin1
22
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0

1
1

2
0 uCugguu

F
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sFFF sc 


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


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





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



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







 

          (40) 

Periodicity of 2  
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    

  





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
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
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11

2

0

0
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2

1

0

02
0

sc

scsc
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ffufuf
F

u
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    (42) 

By integrating by parts we can then evaluate 21G : 

                          

            )(21
28

0

2

1

2

101

2

1

2

111

2

1

2

112

0

2

21 uuggFguguffgufufg
F
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







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

                       (43) 

Finally, we can evaluate 30G by integrating twice by parts and using eqn. (13): this generates a 

plethora of terms: 

  (44)021120

0

0

0110101221
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0
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

 

These are evaluated in the appendix and given in eqn. (A.9).  

The results (37), (39), (43) and (A.9) provide all the information needed to complete eqn. (14) for 

)(0 u  . The development of this equation is also described in more detail in the appendix. The result is  
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   where                          
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
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The form of this equation has been confirmed by using computer algebra [20]. 

It is interesting to consider the large u limit:  
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yielding the Mercier criterion [21]: 
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which we can write in the standard form: 

                        

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
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
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




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2
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5. Ideal MHD Ballooning Stability  

We now investigate the marginal stability curves corresponding to solutions of eqn. (45) that vanish 

as u , determining the impact of   (through its impact on   and E) and 0/ Ra on the s  

diagram at low magnetic shear.  Several influences can affect the stability with respect to the s  

diagram: the role of finite aspect ratio (the first term in 0A  ,  2

0 1)/(  qRrd ); the role of the 

Shafranov shift  as   increases; and finally the effect of ellipticity through E , which has a direct 

effect through the shaping but also through Ewhich 

itself responds to  . A fully self-consistent treatment 

requires all these effects to be included, but it is 

instructive to consider their effects sequentially. 

 

Fig. 1: The effect of finite aspect ratio on the 

s  stability diagram. The solid line 

shows 0/ 0 Ra  , the dash-dot line 

025.0/ 0 Ra , the dotted line 05.0/ 0 Ra , 

and the dashed line 1.0/ 0 Ra when q = 3. 
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In Fig. 1 we show the effect of 0/ Ra through d  in 

isolation, for several values of 0/ Ra  with a typical 

value for q  3i.e. q ; thus stability is seen to 

increase rapidly with increasing 0/ Ra  , relative to the 

standard s diagram.  Note that, strictly, the 

analysis is only valid for the region s << 1. Having 

established the effect of d , we can effectively remove 

it as a parameter by scaling eqn. (45) so that it involves 

just four independent parameters, namely:  

./and/,/,/ 3/23/23/13/1 dsdEdd   The 

corresponding scaled quantity for   is 
3/4

0 /ˆ d  , 

where   2

00 /02 Bp  , which we need when we 

calculate Eand . We can thus plot stability curves 

parameterised by ̂  through its impact on E and  

(for given values of )(aE ) in a ‘normalised s diagram’ labelled by axes  

3/23/1 /ˆand,/ˆ dssd  . However, before considering the complete problem we examine the 

effect of increasing the parameter  
3/1/ˆ d  alone (one of the two outcomes of increasing ̂ ), 

the results being shown in Fig. 2: again we observe a stabilising effect. 

To address the complete problem we must first determine EE and , which involves a global 

solution  for these quantities. In this ordering these are obtained from solutions of the equation  

(a)                                                                           (b) 

                         

Fig. 3: The scaled ellipticity parameter, Ê , as a function of normalised radius, r/a,  calculated using Eq. (52) 

with 0ˆ   (solid line), 1.0ˆ   (dash-dot line), 2.0ˆ   (dotted line), and 3.0ˆ   (dashed line). (a) is 

the circular boundary case; (b) )3/1,3/1(69.0ˆ  dEE . 

 

Fig. 2: The effect of increasing   on the 

scaled s  stability diagram. The solid 

line shows 0ˆ  , the dash-dot line shows 

3.0ˆ  , the dotted line shows 6.0ˆ  , and 

the dashed line shows 9.0ˆ  . 
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
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

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

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


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


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


                    (52) 

satisfying a boundary condition on )(aE , where 

               .
2

0

2

2

0

3

2

0


r

dr

dp
rdr

Br

qR
r                                               (53)          

               

In our illustrative calculations we take simple global pressure and safety factor profiles of the form 

     
 

42

2

3

1
1

0
;10












































a

r

a

r

q
rq

a

r
prp    

                                                 (54) 

with   10 q , so that   3aq . In Fig.3 we show radial profiles of 
3/2/ˆ dEE   for several values 

of  ̂  : in Fig. 3(a) we choose   0ˆ aE , the  circular boundary case as a reference, while in Fig. 3(b) 

we set   69.0ˆ aE , corresponding to a JET-like situation with    .3/1 and3/1  d aE  The 

magnitude, and even the sign, of  aEˆ  is seen to vary with ̂ . While we observe that Eˆ  is negative 

near the edge, we note that the ellipticity,  , is nevertheless an increasing function. 

Using this information on  aÊ  and  aEˆ  and calculating  aˆ  from eqn. (53) as input, we solve 

the averaged ballooning equation (45). We must emphasize that we can treat ̂andŝ  as free, 

independent parameters on a given flux surface as the global equilibrium changes with increasing ̂ , 

(a)                                                                                 (b) 

                    

Fig. 4 :  Stability in the scaled s  diagram as global pressure is increased; in each plot ̂ = 0 (solid 

line), ̂ = 0.1 (dash-dot line), ̂ = 0.2 (dotted line), and ̂ = 0.3 (dashed line). (a) is the case with a 

circular plasma boundary.  (b) the case with a shaped plasma boundary: 69.0ˆ E . 
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since the necessary sharp gradients in these quantities can 

be considered to exist only over a localised region, 

without affecting the magnetic geometry of the underlying 

equilibrium [14, 15]. The curves of marginal stability in 

the ̂ˆ s  diagram corresponding to ar   are shown in 

Fig. 4: Fig. 4(a) shows the impact of increasing ̂  for the 

‘cylindrical’ case   0ˆ aE  , while Fig. 4(b) repeats this 

for the finite ellipticity case   69.0ˆ aE . We see that the 

stable regions increase as ̂  increases for both cases and 

that a finite value of   aÊ  provides further stabilisation.  

Finally, in Fig. 5 we show the dependence of MD , related 

to Mercier stability, as a function of ̂ . Clearly it 

becomes yet more positive, precluding any question of Mercier instability. 

 

6. Conclusions  

The confinement properties of tokamaks depend on the H-mode pedestal characteristics and 

there is experimental evidence that these improve with plasma pressure. High-n ideal MHD 

ballooning modes, which may serve as an indicator for the effect of the more relevant kinetic 

ballooning modes,  are believed to play a role in defining the pedestal properties. However, 

simple analysis based on the s  stability diagram assumes that only the local pressure 

gradient, not the global pressure, or  , matters. 

 In this paper we have explored the impact of plasma  , as mediated through the Shafranov 

shift,  , for example, on stability. We employ a Shafranov equilibrium, but one in which the 

pressure is enhanced globally to allow   to compete with  , whereas in the  s  

equilibrium calculation one only enhances     locally. This means that we also have to consider 

the effect of plasma ellipticity, parameterised by E, since it too responds to  . We also include the 

stabilising effects of favourable average curvature, proportional to   2

0 1/  qRad . In order to 

extract the essence of such effects we have considered the limit of low magnetic shear, s, (the region 

of the s diagram where the relative impact of  and d  is greatest), allowing access to the 

second stability region for example. Furthermore the presence of the bootstrap current in the pedestal 

region tends to produce low s, making the calculation even more relevant. An added advantage of this 

region of parameter space is that a two-scale averaging process can be invoked to reduce the ideal 

MHD ballooning equation to a simpler form devoid of the usual poloidally periodic terms.  An 

optimal ordering scheme )~/;~~;~~( 3

0

2  RrEs for the quantities

ERas and/,,, 0  has been introduced which ensures that all these effects on stability 

compete equally. This equilibrium information has been fed into the general high-n MHD ballooning 

 

Fig. 5: Plot of the Mercier index, 
MD , 

against ̂ , solid line shows the circular 

plasma boundary case and the dash-dot 

line shows the shaped plasma boundary. 
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equation, which has then been processed order by order to generate the averaged equation (eqn.(45)), 

which appears in  40  . The equilibrium information required is reduced as a result of the averaging 

process: had we attempted to calculate the complete modified s diagram we would have needed 

to account for more poloidal harmonic structure in the higher orders of  , including the presence of 

triangularity driven by  . 

The averaged marginal MHD ballooning equation has been solved and the effects of E, and d  on 

the s diagram explored. There are thus six parameters to set: Eds ,,,,  and E . Since E  

plays a role we have to solve the global equilibrium equation for  rE  to calculate this quantity. 

Examples of these solutions for given values of the imposed edge ellipticity parameter,  aE = 0 (the 

circular boundary case) and  aE =1/3 (a JET-like case) for several values of   are shown in Fig. 4. 

Figure 1 demonstrates the effect of just including the effect of d , setting ;0 EE  clearly 

second stability access is  rapidly opened up with increasing 0/ Ra  . In order to explore the effects of 

  through its impact on  and E  it is convenient to reduce the number of independent parameters 

by a suitable scaling, introducing 
3/23/23/13/1 /ˆand/ˆ,/ˆ,/ˆ dssdEEdd   (we also 

define 
3/4/ˆ d   , needed when calculating the radial profiles of )(ˆ r  and E(r)). In Fig.2 we 

examine the effect of just including the normalized Shafranov shift parameter, ˆ ,  alone, although 

this is not a consistent procedure; increasing ˆ is seen to have a stabilizing effect. Finally we 

examine the full effect of   through its self-consistent impact on E,̂  and E . Figure 4 shows this 

to be stabilizing for the two cases considered:   3/1,0aE  . Finally, we note that increasing   

leads to increasingly Mercier stability, as shown in Fig. 5. 

In summary we find that increasing   has a stabilising effect on the s diagram through its 

impact on the Shafranov shift,  , and ellipticity parameter, E, providing a potential explanation for 

the experimental observations that the pedestal characteristics pertaining to tokamak confinement 

improve with increasing plasma pressure, even if the local pressure gradient is unaffected, and 

complementing studies with full MHD stability codes. 
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Appendix: Details of the Derivation of the Averaged Ballooning Equation. (45). 

In this appendix we provide more detail on the derivation of eqn. (45). First we evaluate the quantity 

30G , given by eqn. (44): 
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term by term.  For the first term on the right hand side, we obtain 
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The second results in 
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The third and fourth are equal: 
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while for the fifth, 
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Turning to the terms involving G , we have 
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Assembling these results, we  finally have  
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Now we turn to the derivation of eqn. (45). The results (37), (39), (43) and (A.9) provide all the 

information needed to complete eqn. (14) for )(0 u : 
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It is convenient to isolate the u dependence of the coefficients above by substituting: 
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Then eqn. (A.10) can be rewritten as 
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Recalling the definitions 
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we finally obtain 
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Equation (A.12), now with the coefficients (A.17) – (A.19), is the required equation for  u0 , given 

as eqn. (45) - (49) in the main text. 
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