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ABSTRACT
Conventional linear elasticity theory predicts the strain fields of a dislocation core to
diverge, whereas it is known from atomistic simulations that strains at dislocation
cores remain finite. We present an analytical solution to a generalised, variational
Peierls-Nabarro model of edge dislocation displacement fields that features a finite
core width, as well as the correct isotropic elastic behaviour at large distances away
from the core. The strain fields are in qualitative agreement with atomistic simu-
lations of 1

2 [111](121) edge dislocations in bcc tungsten and iron. The treatment is
based on the Multi-String Frenkel-Kontorova model that we reformulate as a gener-
alization of the Peierls-Nabarro model using the principle of least action.

KEYWORDS
Edge dislocation; dislocation core; isotropic linear elasticity; Frenkel-Kontorova;
Peierls-Nabarro; tungsten; iron

1. Introduction

The assessment of accuracy of the line-tension model for modelling dislocations is es-
sential for deriving physical models for dislocation energetics in dislocation dynamics
simulations. Linear elasticity predicts that straight dislocations have negative line ten-
sion with respect to small fluctuations[1][2, ch. 6], suggesting that the energy of a dislo-
cation would decrease as a result of it bowing out. This is in stark contrast to atomistic
simulations that consistently predict positive line tension. The central problem of lin-
ear elasticity theory in this context is its inability to describe the displacement field
of the dislocation core: the strain field of the dislocation is found to diverge in the
glide-plane, leading to infinite energy density unless the divergence is cut out or other-
wise regularised. A physically consistent treatment of the dislocation core is therefore a
prerequisite for correctly describing dislocation line tension in a continuum model.

It was shown by Peierls[3] that the divergence can be resolved by the inclusion of a
periodic misfit potential, representing the forces of the periodic arrangement of atoms in
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Figure 1. The Multi-String Frenkel-Kontorova model pictured in the xy-plane. Atoms in the lattice are
classified by dividing the lattice into atomic strings lying parallel to the Burgers vector b. Neighbouring atoms
in a string interact harmonically. Each atom xn,j interacts with the surrounding strings via a sinusoidal
potential shifted by the displacement of a reference atom xn,j+h.

the crystal lattice. The misfit potential energetically penalises concentrations of strain,
causing the dislocation core to spread out and attain a finite size. Models developed
later[4, ch.8][5,6] offer a connection between the generalised stacking fault energy and
various phenomena involving dislocation cores. Yet a common drawback of these models
is either an incomplete description of elasticity away from the core, or the lack of
tractable analytical solutions.

We present a continuum theory of edge dislocation that features a finite core size, as
in the Peierls-Nabarro[7] model, as well as displacements fields that are consistent with
linear isotropic elasticity theory away from the core. The displacement fields are found
to be in agreement with the atomistic displacements derived from molecular dynamics
simulations of bcc iron and tungsten, provided that the dislocation core is wide enough
to agree with the underlying continuum approximation. The model is derived from
the discrete Multi-String Frenkel-Kontorova[8] (MSFK) model, which in the continuum
limit unifies linear elasticity and the Peierls-Nabarro model in a consistent manner.

The derivation of the continuum equations from the MSFK model is outlined in
section 2. The continuum model compatible with both the Peierls-Nabarro model and
isotropic linear elasticity theory is presented and solved analytically in section 3 for a
straight edge dislocation.

2. Analytical solution for the strain field of a straight edge dislocation

Atoms in the Multi-String Frenkel-Kontorova model are considered to interact har-
monically with their nearest neighbours in the direction parallel to the Burgers vector,
forming linear elastic strings. Each atom also feels the effect of sinusoidal potentials
from the neighbouring strings, which may be locally shifted with respect to a reference
string. To make an analytical solution possible, atoms are constrained to only move
along the direction of the Burgers vector. Consequently the model only delivers the
displacement field parallel to the Burgers vector of the dislocation.

Let the atomic positions xn,j be indexed by their position n within a string, and by
the vector-valued index j representing the string location in a plane orthogonal to the
Burgers vector, as illustrated in Fig. 1. As the strings are parallel to the Burgers vector,
in a monoatomic lattice the equilibrium atomic spacing along the string is the Burgers
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vector length b. The discrete Lagrangian is expressed in terms of atomic displacements
un,j = xn,j − nb as

L =
∑

j

∞∑
n=−∞

(
mu̇2

n,j

2 − α

2 (un+1,j − un,j)2
)
−mω

2b2

2π2

∑
j,h

∞∑
n=−∞

sin2
(
π

b
(un,j − un,j+h)

)
,

(1)
where m is the atomic mass. For the edge-dislocation geometry considered here, the
frequency ω characterizes the strength of interaction between the strings, and α char-
acterizes the stiffness of harmonic interaction between neighbouring atoms in a string.
Vector summation runs over the string positions j and the displacement vector h of
their respective nearest neighbours.

We shall next introduce a dislocation into the material. For this purpose we divide R3

into two volumes, Ω+ and Ω−, separated by the dividing surface, ∂Ω, as illustrated in
Fig. 2. Note that the dividing surface must not cut through atomic strings; the surface
normal is perpendicular to the string direction at any point in space, hence nx = 0.
The edge-dislocation is introduced as a discontinuity in the displacement boundary
conditions as the dividing surface is crossed:

lim
n→−∞

un,j = b/2 and lim
n→∞

un,j = 0, j ∈ Ω+,

lim
n→−∞

un,j = −b/2 and lim
n→∞

un,j = 0, j ∈ Ω−,
(2)

The dividing surface ∂Ω is therefore equivalent to the dislocation glide plane.
The Lagrangian (1) only depends on the difference between atomic displacements

that are generally considered to vary slowly in space. An exception occurs when two
neighbouring strings lie on opposite sides of the dividing surface due to the discontinuity
introduced through the boundary conditions. The displacement field difference between
strings within the same domain Ω+ or Ω− however is considered small, and the potential
can therefore be linearised. The Lagrangian is split into three parts: two for the Ω+ and
Ω− domains, and one for the dividing surface ∂Ω, namely

L = LΩ+ + LΩ− + L∂Ω, (3)

where:

LΩ± =
∑

j∈Ω±

∞∑
n=−∞

(
mu̇2

n,j

2 − α

2

(
∂un,j
∂n

)2
)
− mω2

2
∑

j∈Ω±
j+h∈Ω±

∞∑
n=−∞

(
∂un,j
∂h

)2
(4)

L∂Ω = −mω
2b2

π2

∑
j∈Ω+

j+h∈Ω−

∞∑
n=−∞

sin2
(
π

a
(un,j − un,j+h)

)
. (5)

The summation in the surface term L∂Ω runs over all the neighbouring string pairs on
the opposing sides of the dividing surface. The factor of 2 compared to the original
Lagrangian (1) is accounting for double-counting in the string summation.

In the continuum limit, the atomic displacements defined in Ω±, respectively, become
continuous scalar fields u± = u±(r, t). The Lagrangian of the discrete system hence
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Figure 2. Continuum representation of the string summation terms for the example of a bcc 1
2 [111](121)

edge dislocation, where b ‖ êx. The black dots represent MSFK strings as seen in the direction parallel to
the Burgers vector. Vectors shown in green illustrate summation over string-neighbour vectors h. Note that
summation is not performed across the glide plane ∂Ω (dashed line), leading to the structure constant G to
adopt different values at the surface and in the bulk. The effective number of strings interacting across the
plane in this example is Z = 2.

becomes a volume integral over the Lagrange density:

L = LΩ+ + LΩ− + L∂Ω,

LΩ± = η

∫
Ω±

dV

m(u̇±)2

2 − αb2

2

(
∂u±

∂x

)2

− mω2l2

2
∑′

h

(
êyh
∂u±

∂y
+ êzh

∂u±

∂z

)2


L∂Ω =
∫
∂Ω

dS
(
−Zmω

2b

π2l

)
sin2

(
π

b
(u+ − u−)

)
,

(6)

where η is the atom number density, l is the perpendicular distance between neighbour-
ing strings, êyh = êy.h/‖h‖, and Z refers to the effective number of neighbouring strings
that lie across the dividing surface. The displacement fields on the dividing surface are
defined in terms of the limit approaching the surface, namely

u±(r) = lim
γ→0±

u±(r − γn±(r)), r ∈ ∂Ω (7)

where n±(r) are the outwards-facing surface normals of the domains Ω±, hence n+(r) =
−n−(r).

Some subtleties are involved in taking the continuum limit. Consider the second
term in equation (4). The string summation is performed in such a way that only
strings within the same domain Ω+ or Ω− interact; the interaction does not cross the
glide plane ∂Ω. Summation over the neighbouring strings h in equation (6) therefore
leaves out the strings lying across the glide plane ∂Ω if integration is performed over
the surface, which is indicated by the primed summation symbol. We refer to figure 2
for a visual guide.

We proceed by minimising the action associated with the Lagrangian with respect to
variation in displacement fields and their derivatives, arriving at the MSFK equations
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of motion:

0 = −ü+ + c2u+
xx + ω2l2G(u+

yy + u+
zz), r ∈ Ω+

0 = −ü− + c2u−xx + ω2l2G(u−yy + u−zz), r ∈ Ω−

0 = Gs
yyu

+
y n

+
y +Gs

zzu
+
z n

+
z + 2Gs

yz(n+
y u

+
z + n+

z u
+
y ) + Z

πηl3
sin
(2π
b

(u+ − u−)
)
, r ∈ ∂Ω

0 = Gs
yyu
−
y n
−
y +Gs

zzu
−
z n
−
z + 2Gs

yz(n−y u−z + n−z u
−
y )− Z

πηl3
sin
(2π
b

(u+ − u−)
)
, r ∈ ∂Ω,

(8)
where αb2/m = c2, and ui = ∂u/∂i. The structure constant Gij is defined as Gij =∑′

h ê
i
hê

j
h, and equals Gij = Gδij in the bulk, where G = 2 for the square lattice and

G = 3 for the hexagonal lattice. The value of constant Gs
ij in the glide plane depends

on the geometry of the dislocation cut, as lattice vectors h crossing the glide plane are
left out of the summation. Note that we have used condition n±x = 0.

We shall next restrict ourselves to the treatment of a straight edge dislocation, by
aligning the dividing surface with the xz-plane. Domains Ω± now become the upper
and lower open half-planes in R2, respectively

Ω+ = {(x, y) ∈ R2 | y > 0}
Ω− = {(x, y) ∈ R2 | y < 0}
∂Ω = {(x, y) ∈ R2 | y = 0},

(9)

with the normal vector components of n±y = ∓1 and n±z = 0. The z-coordinate can
be left out as the edge-dislocation strain fields are translationally invariant along the
line-direction êz, hence u±z = u±zz = 0. We further consider the dislocation to be static,
ü± = 0, to arrive at the elastostatic equations. Equations of motion now reduce to a
boundary value problem:

u+
xx + ω2l2G

c2 u+
yy = 0, y > 0 (10)

u−xx + ω2l2G

c2 u−yy = 0, y < 0 (11)

πηl3Gs

Z
u+
y = πηl3Gs

Z
u−y = sin

(2π
b

(u+ − u−)
)
, y = 0, (12)

where Gs = Gs
yy. This boundary value problem is reminiscent of Peierls’ formalism[3],

although the MSFK equations of motion have a more general range of validity and span
the entire space R2.

At this point we can also establish a connection between the non-singular MSFK
model and the isotropic elastostatic equations. The elastostatic equations follow from
Hooke’s law, σij =

∑
kl cijkl(uk,l + ul,k)/2, the stationary stress condition,

∑
j σij,j = 0,

and plane-strain conditions, uz = 0:

ux,xx + 1− 2ν
2(1− ν)ux,yy = − 1

2(1− ν)uy,xy

uy,yy + 1− 2ν
2(1− ν)uy,xx = − 1

2(1− ν)ux,yx
(13)
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The elastostatic equations can be matched to MSFK by restricting the displacements
to only occur in the ux direction:

ux,xx + 1− 2ν
2(1− ν)ux,yy = 0 (14)

From this comparison we identify the MSFK constants ω2l2G
c2 as 1−2ν

2(1−ν) , leading to the
MSFK definition of Poisson’s ratio:

ν = αb2 − 2Gl2mω2

2(αb2 −Gl2mω2) . (15)

This result has a clear meaning. We see that the ratio of deformations along x and y
is intrinsically related to the interatomic interaction strengths along those directions,
respectively proportional to α and mω2, and the interatomic spacing, respectively given
by b and l.

We now need to solve the problem posed by equations (10)-(12). The solution is easily
found if we know that the displacement field is mirrored with respect to the x = 0 axis:
u+(x, y) = −u−(x,−y). While this can be motivated by our knowledge of the analytical
displacement field of a Volterra edge-dislocation, the proof involving equations (10)-
(12) is more elaborate. Assuming u+(x, y) = −u−(x,−y), we only need to consider the
boundary value problem in the upper half-plane:

u+
xx + 1− 2ν

2(1− ν)u
+
yy = 0, y > 0

4π
p
u+
y = sin

(4π
b
u+
)
, y = 0,

(16)

where p = Z/(ηl3Gs) is the dimensionless surface structure constant. The solution
to the problem above, after some minor substitutions, has been found by Dudarev[8],
namely

u+(x, y) = b

2π

(
π

2 − arctan
(

px

b+ py

√
1− 2ν

2(1− ν)

))
, y > 0

u−(x, y) = b

2π

(
π

2 + arctan
(

px

b− py

√
1− 2ν

2(1− ν)

))
, y < 0,

(17)

or

u(x, y) = b

2π

(
π

2 − sgn(y) arctan
(

px

b+ p|y|

√
1− 2ν

2(1− ν)

))
, y ∈ R\{0}, (18)

where sgn is the sign-function: sgn(x) = 1 if x > 0, otherwise −1.
A useful measure for the dislocation core width w is the full-width at half-maximum

of the ∂u(x, y)/∂x strain-field in the glide plane, that is for y → 0:

w = b

p

√
2(1− ν)
1− 2ν (19)
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The key feature of this solution is that the core width w remains finite as predicted by
atomistic simulations; the strain-field ∂u(x, y)/∂x does not diverge on the glide-plane.
Another interesting finding is that the dimensionless surface-structure constant p =
Z/(ηl3Gs) controlling the core width is solely determined by the crystal structure and
the geometry of the edge-dislocation cut. This suggests that the width of the dislocation
core does not depend on the details of the chosen interatomic potential.

We have so far neglected the displacement field perpendicular to the Burgers vector.
This is evident in the simplification of the elastostatic equation (13) to (14).

3. Analytical solution for the full strain field of an edge dislocation

It appears possible to extend the MSFK model into two dimensions by including the
appropriate interactions between the atomic strings in the directions perpendicular to
the Burgers vector. The detailed nature of such interactions is not of major interest
as there is in principle an endless variety of interatomic potentials that all reproduce
the elastostatic equations. We present one such example of a minimal two-dimensional
discrete MSFK model in the appendix.

The two-dimensional MSKF model offers a physically motivated extension of the
Peierls original description of the edge dislocation core, valid in the entire space and
consistent with isotropic linear elasticity. The surface boundary value problem is un-
changed by the presence of the transverse field uy. We are hence justified in using a
generalized elastostatic boundary value problem in two dimensions:

u+
x,xx + 1− 2ν

2(1− ν)u
+
x,yy = − 1

2(1− ν)u
+
y,xy y > 0

u+
y,yy + 1− 2ν

2(1− ν)u
+
y,xx = − 1

2(1− ν)u
+
x,yx y > 0

2(1− ν)
3− 2ν lim

y→0+

4π
p
u+
x,y = lim

y→0+
sin
(4π
b
u+
x

)
,

(20)

where we have re-scaled the surface-structure constant p to make the solution more
readable:

p ≡ Z
ηl3Gs

· 3− 2ν
2(1− ν) . (21)

The boundary value problem (20) can be solved by making an educated guess. We have
found the following solution:

ux = b sgn(y)
2π

(
π

2 + 1
2(1− ν)

p2x|y|
(px)2 + (p|y|+b)2 − arctan

(
px

p|y|+b

))

uy = b

8π(1− ν)

(
2p|y|(b+ p|y|)

(px)2 + (p|y|+b)2 − (1− 2ν) ln
(

(px)2 + (p|y|+b)2

p2

)
− 1

) (22)

Substituting the above equations into the boundary value problem (20) confirms the
validity of this solution. It is evident that the solution reduces to the analytical form of
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Figure 3. Atomistic strain fields ux,x for the tungsten 1
2 [111](121) edge dislocation core. Two repeating

configurations are found along the dislocation line direction: a symmetric (a) and an asymmetric (b). Blue
colour corresponds to the compressive strain and red colour to the tensile strain. The first few atomic rows
above and below the glide-plane (black, dashed line) are indexed as shown in the figure.

the Volterra edge dislocation[2] in the p→∞ limit:

lim
p→∞

ux = uVolterra
x = b

2π

(
sgn(y)π2 + 1

2(1− ν)
xy

x2 + y2 − arctan
(
x

y

))
lim
p→∞

uy = uVolterra
y = b

8π(1− ν)

(
y2 − x2

x2 + y2 − (1− 2ν) ln
(
x2 + y2

))
.

(23)

We now benchmark the model with the reference data derived from atomistic simula-
tions.

4. Atomistic setup

Atomistic simulations were performed using LAMMPS[9] for iron and tungsten, for two
different interatomic potentials for each material. The simulation cell was initialised as
a pristine bcc lattice with the coordinate system aligned along x = [111], z = [121],
and y = [101]. The crystal lattice fills a volume of 120 × 120 × 6 lattice units with
periodic boundary conditions applied to the line-direction z = [121]. A dislocation was
introduced by applying anisotropic linear-elastic displacement field of the 1

2 [111](121)
edge-dislocation at the box centre, using elastic constants appropriate for the chosen
interatomic potential. Atomic coordinates were relaxed while keeping atoms beyond a
distance of 100 lattice units from the dislocation line fixed at positions corresponding to
a solution in an infinite elastic medium. Atomistic strain and displacement fields were
computed in reference to the perfect bcc structure.

Two alternating atomic configurations are found along the [121] line direction, see
figure 3. The ux,x strain field in one of the configurations is strongly asymmetric at the
core, as the apparent height of the glide plane is not centred between the atomic rows.
Our comparison of atomistic and continuum strain fields is therefore solely focused on
the symmetric configuration.

The surface structure constant p for each case is found by fitting the ux,x component
of the continuum strain field to the atomistic strain fields at the position of two atomic
rows above and below the glide plane. We refer to table 1 for a comparison of the fitted
constants to their MSFK value as determined by the crystal structure (21). The fitted
values for p are found to vary little between the various potentials. The value of the
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constant does not depend on the details of the interatomic potentials, though that is
only true within the approximations inherent to MSFK. It is therefore not surprising
that atomistic simulations show small variation of the surface structure constant even
for the same dislocation geometry.

Table 1. Surface-structure constant p as fitted
for tungsten and iron and as computed from
MSFK (21). The dislocation width w(p) is com-
puted in the glide plane according to the MSFK
model.

material model p w(p)/b

W Marinica et al.[10] 0.81 2.48
Mason et al.[11] 1.00 2.00

Fe Ackland et al.[12] 0.83 2.41
Gordon et al.[13] 0.98 2.04

- MSFKa 1.11 1.79
afor Poisson’s ratio ν = 0.28, Gs = 3/2 (see fig. 2)

A comparison of the continuum and atomistic strain fields for tungsten computed
using the Marinica et al.[10] EAM4 potential is shown in figure 4. The MSFK and
atomistic strain fields for tungsten are in good agreement everywhere in space. The
strain fields for iron, see the supplemental material, deviate slightly for larger distances
from the core. Iron exhibits considerable elastic anisotropy and therefore requires an
anisotropic linearly elastic model.

The magnitude of the atomistic tensile strain is generally higher than the atomistic
compressive strain. Several phenomena can affect the symmetry of the strain fields. For
instance, the glide-plane may not be evenly centred between the atomic rows, which is
the case for configuration (b) in figure 3. Another explanation is that in many empirical
potentials it takes more energy to compress atoms than to stretch them, hence tensile
strains will be larger than compressive strains under equal stress.

We have also repeated the same procedure for the [100](010) edge dislocation that
has a comparatively narrow core width. This is reflected in the MSFK surface structure
constant p acquiring the value of 4.72. The MSFK model is unable to match the atomistic
strain fields, as these are more localized than what is permitted by the Volterra solution
in the limit p → ∞. The atomistic strain fields for the [100](010) configuration vary
strongly on the scale of interatomic lattice spacing, hence it can be reasoned that the
continuum approximation inherent to the MSFK model becomes invalid.

5. Peierls migration barrier

There is no energy barrier associated with dislocation glide in the continuum model,
as the displacement fields are translationally invariant in the direction of the Burgers
vector. In an atomic lattice however, the displacement fields are resolved discretely
on lattice sites, consequently the total elastic energy per dislocation length L varies
periodically as a function of the displacement field centre (x0, y0). The exact analytical
solution of the displacement fields in the 2D-MSFK model enables us to estimate the
barrier with little computational effort.

The dislocation glide is considered to proceed along the minimum energy pathway,
defined as the trajectory connecting the global energy minima corresponding to the
adjacent periodic cells with the smallest possible energy barrier. This energy barrier

9



1→

2→

3→

4→

(a) ux,x (b) ux,y (c) uy,x (d) uy,y

Figure 4. Strain fields in the vicinity of 1
2 [111](121) edge dislocation core in tungsten. The strain fields at

the first four atomic rows above (compressive strain, filled dots) and below (tensile strain, unfilled dots) the
glide-plane are pictured here, according to the indices in figure 3. The x-axis is given in units of the Burgers
vector length b, and the y-axis refers to the dimensionless strains ui,j . Graphs for the same strain use identical
axes scales, and the tensile strains pictured here are point-reflected.

is commonly referred to as the Peierls migration barrier[3]. We compute the barrier
by evaluating the discrete expressions for the dislocation energy using the continuum
solution1 for the displacement fields ux and uy as shown in Eq. (23).

The migration pathway is approximated to lie along the fixed height y0 = ymin where
the energy minimum (xmin, ymin) of the bulk energy Lbulk(x0, y0) occurs2. The Peierls
barrier is then given by:

Lnet(x0, y0) = Lbulk(x0, y0) + L∂Ω(x0, y0) (24)

VP =
(
maxx0∈[0,b)Lnet(x0, ymin)−minx0∈[0,b)Lnet(x0, ymin)

)
/L. (25)

We express the shear modulus µ in terms of the MSFK force constants by comparing the
MSFK equation of motion with the elastostatic equation (before cancelling constants):

µ = mω2l2ηG. (26)

Let xn,j , yn,j , and zn,j be the coordinates of the pristine, unstrained lattice. The inter-

1The continuum solution can be used for a discrete lattice if the displacement fields vary slowly in comparison
to the atomic spacings. Hence we expect greater uncertainties for the [100](010) configuration.

2The bulk energy Lbulk diverges with respect to system size, while the interfacial energy L∂Ω remains finite.
The change in bulk energy for dislocation translation however is finite. Consequently, the energy barrier is a
well-defined finite quantity and the migration pathway passes through energy minima of the bulk energy.
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facial energy (5) is expressed as:

L∂Ω(x0, y0) = − µb2

π2l2ηG

∑
j∈Ω+

j+h∈Ω−

∞∑
n=−∞

sin2
(
π

b
((ux)n,j − (ux)n,j+h)

)
. (27)

where (ui)n,j = ui(xn,j − x0, yn,j − y0) represents the displacement field in i-direction
according to the continuum solution (23), offset by the dislocation centre (x0, y0). The
bulk energy is expressed in terms of the standard isotropic elastic energy evaluated at
the discrete lattice coordinates:

Lbulk(x0, y0) = − 1
2η

∑
j∈R3

∞∑
n=−∞

∑
ipkl

cipkl(εip)n,j(εkl)n,j , (28)

where cipkl is the isotropic stiffness tensor, η is the atom number density, and (εip)n,j is
the strain tensor:

(εip)n,j = 1
2 ((ui,p)n,j + (up,i)n,j) . (29)

The total energy (24) is evaluated numerically for the tungsten edge dislocations, using
the structure constants appropriate to the 1

2 [111](121) and [100](010) orientations, as
shown in table 2. The Peierls barrier in the atomistic reference is obtained by migrating
one dislocation in a dipole pair using the nudged elastic band method[14], subsequently
correcting the energy for elastic interactions. The 1

2 [111](121) and [100](010) dislocations
have a migration period of b/3 and b respectively.

Table 2. Peierls barrier VP for the tungsten 1
2 [111](121) and

[100](010) edge dislocations computed using appropriate param-
eters for tungsten (µ = 160 GPa, ν = 0.28).

type p VMSFK
P /meVÅ−1 VMD

P /meVÅ−1

1
2 [111](121) 1.11 < 10−4 0.918

[100](010) 4.72 143 274

The MSFK and MD barriers for the [100](010) dislocation are found to be similar. The
1
2 [111](121) barrier is considerably lower in MD, however in the MSFK model it vanishes
almost entirely due to a combination of wide core width and staggered atomic stacking
in the (121) direction. We considered the continuum displacement fields as identical for
every atomic layer in the (121) direction, effectively neglecting core interactions between
atomic layers. More sophisticated models based on Peierls-Nabarro can attain migration
barriers quantitatively comparable to those found in atomistic simulations[15–17].

6. Conclusion

In this treatise, we have systematically derived and validated a continuum non-singular
model that predicts strain fields of an edge dislocation, including its core. Predictions
derived from the model are consistent with atomistic simulations performed using sev-
eral interatomic potentials, for the 1

2 [111](121) edge dislocation in iron and tungsten.
Analytical solutions found for the edge dislocation strain fields are explicit and exact.
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The model provides a physically motivated connection between equations of linear
elasticity and the Peierls-Nabarro boundary value problem. Although the model is in
principle parameter free, the surface structure constant p offers a convenient way of
controlling the dislocation core width. For wider dislocation cores the constant p can
be fitted to reproduce atomistic strain fields, while for narrow dislocation cores some
alternative measures, such as line-tension, need to be considered due to the limitations
inherent to the continuum approximation.

Further work can be well motivated by applying the model to more complex systems,
such as screw and mixed dislocations, interacting dislocation segments, and most im-
portantly line tension calculations for curved dislocation. The availability of reference
data from atomistic simulations offers a promising testing ground for these applications.
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Appendix A. The two-dimensional Multi-String Frenkel-Kontorova model

In the one-dimensional MSFK model we consider atoms to interact harmonically with
their nearest neighbours in direction of the Burgers vector. The first step is to also
consider atoms to interact harmonically to their nearest neighbours in the perpendicular
direction, with neighbouring strings interacting through a sinusoidal potential. If we
let b ‖ êx and b ⊥ êy, assuming plane-strain conditions in z-direction, we obtain an
additional equation of motion for the transversal field uy:

uy,yy + ω2l2G

c2 uy,xx = 0 (A1)

We have chosen the stiffness and string-interaction strength such that identical prefac-
tors as for the ux field are obtained, as required by the isotropic elasticity. We do not
need to split the transversal field between upper and lower domains Ω± because edge
dislocation discontinuity only applies to the boundary conditions of ux. A comparison
with the elastostatic equations (13) makes clear that we need to further add coupling
between fields ux and uy.

For the sake of simplicity, we shall restrict the discussion that follows to atoms ar-
ranged in a two-dimensional square lattice with a spacing of b. The displacement fields
of an atom originally placed at rn,m = nbêx + mbêy are written as uxn,m and uyn,m. We
add a cross coupling term to the discrete Lagrangian:

Lxy =
∑
n,m
n′=±1
m′=±1

n′m′V0 sin
(
π

b
(uxn+n′,m+m′ − uxn,m)

)
sin
(
π

b
(uyn+n′,m+m′ − u

y
n,m)

)
. (A2)
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Approximating the displacement differences to first order according to

uin±1,m±1 = uin,m ± b
∂uin,m
∂n

± b
∂uin,m
∂m

, (A3)

the Lagrangian is linearised in the continuum limit:

Lxy = η

∫
dV 4π2V0 (ux,xuy,y + ux,yuy,x) . (A4)

Using the principle of least action we see that the coupling Lagrangian contributes
mixed terms to the equations of motion:

u±x,xx + ω2l2G

c2 u±x,yy + 4π2V0uy,xy = 0

uy,yy + ω2l2G

c2 uy,xx + 4π2V0u
±
x,xy = 0.

(A5)

We are free to choose the coupling-potential strength V0 such that the correct form for
linear elasticity is obtained:

4π2V0 = 1
2(1− ν) = ω2l2G

c2 − 1, (A6)

where the MSFK definition of Poisson’s ratio (15) was used. This leads to the elastostatic
equations:

u±x,xx + 1− 2ν
2(1− ν)u

±
x,yy = − 1

2(1− ν)uy,xy

uy,yy + 1− 2ν
2(1− ν)uy,xx = − 1

2(1− ν)u
±
x,xy.

(A7)

In summary, we have derived the elastostatic equations from a two-dimensional discrete
Multi-String Frenkel-Kontorova model for a simple cubic crystal structure.

It remains to characterise the influence of the cross-coupling Lagrangian on the
boundary value problem. Similarly to the 1D-MSFK case, we consider strings lying
on opposing sides of the dividing surface:

Lxy,∂Ω = −2
∑
n,m
n′=±1

n′V0 sin
(
π

b
(uxn+n′,m−1 − uxn,m)

)
sin
(
π

b
(uyn+n′,m−1 − u

y
n,m)

)
. (A8)

Exploiting the symmetries of the straight edge dislocation displacement fields as known
from the linear elasticity solution, we arrive at the interfacial Lagrangian in the contin-
uum limit:

Lxy,∂Ω = 4V0

b2

∫
∂Ω

dS cos
(
πu−x,x

)
sin
(2π
b
u+
x

)
sin(πuy,x). (A9)

The interfacial Lagrangian vanishes because uy,x is an odd function with respect to x.
For generally curved dislocations that is not the case; neglecting the effect of transverse
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fields on the boundary value problem is equivalent to the planar core approximation
commonly used in Peierls-Nabarro models.

The derivation for a more general crystal lattice follows equivalently, but the notation
is opaque as we would be handling two separate sets of string vectors, displacement
vectors, and string distances.

15


	UKAEA-CCFE-PR(18)38
	Blank Page

	39new

