
F. Militello and Y. Liu

CCFE-PR(15)22

Intrinsic Instabilities in X-Point Geometry: 
a Tool to Understand and Predict the Scrape 

Off Layer Transport in Standard and
Advanced Divertors



Enquiries about copyright and reproduction should in the first instance be addressed to the Culham 
Publications Officer, Culham Centre for Fusion Energy (CCFE), Library, Culham Science Centre, Abingdon, 
Oxfordshire, OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.



Intrinsic Instabilities in X-Point Geometry: 
a Tool to Understand and Predict the Scrape 

Off Layer Transport in Standard and
Advanced Divertors

F. Militello1 and Y. Liu1

1CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK

The following article was subsequently published in Plasma-Surface Interactions 21. Proceedings of
the 21st International Conference on Plasma-Surface Interactions in Controlled Fusion Devices,

Kanazawa, Japan. May 26-30, 2014. Journal of Nuclear Materials, Vol.463, August 2015, pp.1214-1219
Further reproduction distribution of this paper is subject to the journal publication rules.



.



P2-041

Intrinsic instabilities in X-Point geometry: a tool to understand and

predict the Scrape Off Layer transport in standard and advanced

divertors

F. Militello∗, Y. Liu

CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

Abstract

Intrinsic Scrape Off Layer (SOL) instabilities are studied using flute approximation and

incorporating the appropriate sheath boundary conditions at the target. The linear growth rate

and the structure of the modes are obtained. The associated diffusion is estimated using a

γ/k2⊥ approach for the fastest growing modes. The model used includes curvature and sheath

drives, finite Larmor radius effects and partial line tying at the target. The magnetic geometry is

obtained using current carrying wires, representing the plasma current and the divertor coils, and

naturally generates X-point geometry and magnetic shear effects. The calculation is performed

for ITER relevant parameters and scans in SOL width and distance from the separatrix are

presented. In addition to a standard lower single null, Super-X and Snowflake configurations

are examined in order to assess the importance of the geometry on the stability of the boundary

plasma.
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1. Introduction

Future magnetic fusion experiments will operate under the stringent constraint posed by the

interaction between plasma and solid surfaces [1, 2]. Current experimental extrapolations for

the heat flux Scrape Off Layer (SOL) width in ITER predict a 0.1cm thickness at the outer mid-

plane in the inter-ELM phase at low and medium collisionality [3]. Such sharp gradients might

induce or strengthen SOL instabilities, which could enhance perpendicular turbulent transport

and consequently flatten the SOL profiles. However, the mechanisms governing the perpendicu-

lar particle and energy transport in the SOL are not yet completely clarified. For example, there

might be competition between local (diffusive) and nonlocal (intermittent) transport, which

might contribute at different levels to the total fluxes [4, 5]. The transport might also radically

change in different regions of the plasma, e.g. being more intermittent upstream and more dif-

fusive at the target. This could be due to the large variation of the equilibrium quantities in

the SOL in collisional regimes [6] or to the disconnection between upstream and downstream

physics due to the strong magnetic shear at the X-point [7].

While an accepted and consistent theoretical framework to describe the anomalous trans-

port is not available, most SOL modelling codes employ a somewhat oversimplified treatment

of the perpendicular dynamics of the plasma. It is common practice to assume a simple diffusive

model with a diffusion coefficient independent from the magnetic geometry and spatially homo-

geneous, and use it as a fitting parameter to match the experimental data. These approximations

leave uncertainties on the reliability of the predictions for ITER and DEMO.

In this paper, we estimate the perpendicular diffusion coefficients by identifying some of

the sources of anomalous transport (the intrinsic instabilities in the SOL) and by determining

their growth rate and wave number. Our work is largely based on the flute approximation as

proposed in several theoretical papers [8, 9, 10] and well summarized in [10]. The stability
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of a single field line is considered and the structure and complex frequency of the unstable

modes associated to it are obtained. The calculation is carried out for an ITER class device

and repeated for field lines at different distances from the separatrix, for different SOL widths

and for different divertor concepts (Lower Single Null, exact Snowflake [11], Super-X [12]) in

order to assess the influence of the magnetic geometry on the stability of the SOL. While ITER

baseline scenario requires partial detachment, we focus on low collisionality regimes which lead

to sheath limited conditions. This is motivated by the fact that some of the results in [3] were

obtained in such a regime although the ITER divertor is expected to work in partial detachment

[13].

2. Model and equations

Our calculations were carried out using an ideal drift-fluid model which includes curvature,

finite Larmor radius effects, finite magnetic shear and sheath boundary conditions. The start-

ing normalized equations are the vorticity equation, parallel Ohm’s law, particle and energy

conservation:

∂U

∂t
+ (b ×∇⊥ϕ+ τb ×∇⊥n) · ∇⊥U = ∇∥J∥ +

2

δ
b × κ · ∇⊥ptot, (1)

∂ψ

∂t
+∇∥ϕ = ∇∥p+ α∇∥T, (2)

∂n

∂t
+ b ×∇⊥ϕ · ∇⊥n = 0, (3)

∂T

∂t
+ b ×∇⊥ϕ · ∇⊥T = 0, (4)

where, U ≡ ∇2
⊥ϕ, J∥ ≡ −∇2

⊥ψ, τ is the ratio between ion and electron temperature, ptot =

pi + pe = (τ + 1)nT and p = nT . The normalizations are as follows: x ≡ x̂ 1
R

for the lengths,

t ≡ t̂vA
R

for the time, ϕ ≡ ϕ̂ c
BvAR

for the electrostatic potential, ψ ≡ ψ̂ 1
BR

for the magnetic

flux, J∥ ≡ Ĵ∥
4πR
cB

for the parallel current density, p ≡ p̂ δβ
n0T0

for the pressure, n ≡ n̂e
δβ
n0

for the

density, T ≡ T̂e
1
T0

for the electron temperature, κ ≡ κ̂R for the curvature vector, U ≡ Û R
vA

for
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the vorticity. Note that vA is the Alfven speed, R is the major radius, B and b are the amplitude

and unity vector of the confining magnetic field, δ = c/(Rωpi) the normalized ion skin depth,

α = 0.71βδ, β = 4πn0T0/B
2 (note the different definition of β), n0 and T0 are typical values

of the density and electron temperature while the ion temperature is constant. These equations

contain most of the physics used in previous investigation of SOL stability (see e.g. [10] and

references therein).

Using the flute approximation (i.e. k∥ ≪ k⊥) for the perturbations and assuming no parallel

variations of the equilibrium we can write: f = feq(x⊥) + f̃(s)ei(k⊥·x⊥−ωt), where s is the

parallel coordinate along a field line, and then linearise the system. After some algebra we

obtain:

1

k2⊥
∇∥,0

(
k2⊥∇∥,0ϕ̃

)
+ [(ω̃ − ω∗ip)ω̃ + γ2MHD]ϕ̃ = 0, (5)

where: ωE ≡ k⊥ · b0 ×∇⊥ϕeq, ω∗en ≡ −k⊥ · b0 ×∇⊥neq, ω∗eT ≡ −k⊥ · b0 ×∇⊥Teq, ω∗ip ≡

+k⊥·b0×∇⊥pi,eq = −τω∗en, ω̃ ≡ ω−ωE and γ2MHD ≡ 1
k2⊥

(
2
δ
k⊥ · b0 × κ

)
(k⊥·b0×∇⊥ptot,eq).

This equation needs two boundary conditions, which are given by the continuity of the

plasma current at the entrance of the Debye sheath. The perturbed current from upstream is

easily obtained from ψ̃ = − i
ω̃
∇∥,0ϕ̃,ñ = ω∗en

ω̃
ϕ̃. The linear perturbed part of the sheath current

is given by [9]: J̃∥,sh = σ
√
β

ρ2
(ϕ̃ − ΛβδT̃ ), where ρ = δ

√
β is the hybrid Larmor radius, Λ ≡

−0.5 log[2π(me/mi)(Ti/Te)] ≈ −2.5 is the wall floating potential and σ = ±1 and depends on

the b0 · n where n is the unity vector perpendicular to the target surface. If the magnetic field is

entering the surface σ = 1, while if it is leaving it, σ = −1. Equating these two currents gives:

−ik2⊥∇∥,0ϕ̃ = σ

√
β

ρ2
(ω̃ − Λβδω∗eT ) ϕ̃ ≈ σ

√
β

ρ2
ωϕ̃ (6)

where we used: ωE ≈ −Λβδω∗eT [9].
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3. Geometry and equilibrium

3.1. Operators

The Cauchy problem formed by the second order differential equation Eq.5 and the bound-

ary conditions Eq.6 is well defined once the equilibrium quantities are fixed. In order to do that,

we need to express k2⊥, k⊥ ·b0×κ and the operator k⊥ ·b0×∇⊥. We start by writing the equilib-

rium field: b̂0 = eζ + eζ ×∇Ψ = q∇Ψ×∇θ+∇ζ ×∇Ψ, where b̂0 ≡ B/Bζ = b0B/Bζ ≈ b0

as B/Bζ ≈ 1, θ and ζ are the poloidal and toroidal angles, eζ is directed along ζ and has unity

norm. The parameter q = b̂0·∇ζ

b̂0·∇θ
is the local safety factor. With this convention, we have that

∂Ψ/∂x = by and ∂Ψ/∂y = −bx and we can define bp ≡ |Bp|/Bζ =
√
b2x + b2y ≪ 1, where Bp

is the poloidal magnetic field.

We evaluate k⊥ as in ballooning theory by imposing the following conditions [14]: 1) k⊥ =

N∇S; 2) b0 · k⊥ = N∇∥,0S = 0; 3) eζ · k⊥ = N . Here N is an integer number determining

the amplitude of the wave vector and condition 1) corresponds to ∇ × k⊥ = 0. This leads to:

k⊥/N = ∇ζ − ν∇θ + (βk − βk,0)∇Ψ, where ∇∥,0βk = −1
q
∂q
∂Ψ

= −ŝ, ŝ is the local magnetic

shear and βk,0 is an integration constant that determines the direction of the wave vector.

By writing ∇feq = ∂feq
∂Ψ

∇Ψ + ∂feq
∂θ

∇θ + ∂feq
∂ζ

∇ζ , we find: k⊥ · b0 × ∇⊥feq = −N ∂feq
∂Ψ

−

N(βk − βk,0)
∂feq
∂χ

, where χ is the bi-normal coordinate, such that ∂feq
∂χ

≈ 1
q

(
∂feq
∂θ

− qb2p
∂feq
∂ζ

)
.

Finally, in low β plasmas κ ≈ ∇⊥B/B with B ∼ R−1. This gives κ ≈ −ex and b0 × κ ≈

−ey + byeζ , from which the curvature operator can be calculated [14].

3.2. Magnetic field and equilibrium parameters

The equilibrium magnetic field is generated using straight current carrying wires repre-

senting the plasma current and the divertor coils. This has the advantage of giving simple

analytic expressions for the magnetic flux, Ψ = C log(rpr
α1
d1 r

α2
d2 ), and the poloidal angle,θ =

atan
(

y−yp
x−xp

)
+α1atan

(
y−yd1
x−xd1

)
+α2atan

(
y−yd2
x−xd2

)
+ c1. Here rp ≡

√
(x− xp)2 + (y − yp)2 is
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Table 1: Parameters of the current carrying wires.

yp xd1 yd1 α1 xd2 yd2 α2

LSN 0.5 0 -0.25 0.5 / / /

SF 0.57 0.139 -0.114 0.25 -0.139 -0.114 0.25

SX 0.535 0.125 -0.339 0.5 -0.129 -0.154 0.15

the distance between a point and the wire representing the plasma, which is at [x = xp, y = yp]

(the distance to the divertor coils is defined similarly), α1,2 are the ratio between the divertor

coils and the plasma currents and c1 is a constant used to fix the angle of the X-point at θ = 0.

With this convention, the angle θ is π/2 at the outer midplane, π at the top of the tokamak, 0

and 2π at the X-point (at the low and high field side, respectively), −θdo at the outer target and

2π + θdi at the inner target. The constant C = µ0Ip/(2πRB) determines the pitch angle of

the field lines and for a circular tokamak would become C ≈ (a/R)2q−1
a where a is the minor

radius and qa the safety factor there. We fixed C = 3−3 representing an equivalent circular

tokamak with an edge safety factor and aspect ratio of 3.

We studied three divertor configurations with Lower Single Null (LSN), exact Snowflake

(SF) [11] and Super-X (SX) [12] geometry. The wires parameters for these configurations are

shown in Table 1 (xp = 0 in all cases) and the geometry of the field is represented in Fig.1.

In the simulations, we assumed a deuterium plasma (Z = 1,A = 2) for ITER (T0 = 200eV ,

n0 = 2.5 · 1013cm−3, B = 5.3 · 104G, R = 600cm) relevant parameters [6] and assumed

τ = 2. In the three configurations, we compared the stability of field lines at four different

distances from the separatrix, d, calculated at the outer midplane (where Bx = 0): 0.1cm,

0.5cm, 1cm, 2cm. The connection length (outer midplane to target distance), L∥, is longer for

the SF and SX configurations with respect to the LSN, as shown in Fig.2. Note that in all the

simulations the divertors are in the sheath limited regimes (i.e. small collisionality ν∗ . 10),
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thus justifying an equilibrium with no parallel variations. Hence, we take an equilibrium with

an exponential decay in Ψ and no variation along χ and s, such that dneq/dΨ ≈ δβb−1
p λ−1

n and

dTeq/dΨ ≈ b−1
p λ−1

T , where λn,T , which are the decay length of the fields n and T (measured in

cm and normalized to R), and bp are evaluated at the outer midplane (where ∂feq/∂y = 0). In

the calculations presented here we assumed λ = λn = λT and investigated decay lengths equal

to 0.1cm and 1cm.

The effect of the magnetic shear is taken into account by the parallel variation of k⊥. In

Fig.3, we plot k⊥/N as a function of d for the three configurations and for θ0 equal to 0 and

π. Note that θ0 is the value of the poloidal angle at which βk = βk,0 and hence determines the

direction of k⊥. The curves in Fig.3 show that, with respect to the LSN configuration, the SF

and SX divertors produce stronger shearing at the target because of the effect of the X-point

region on the former and the longer divertor leg length on the latter. This has consequences on

the stability of the mode as well as on the estimated diffusivity.

4. Numerical results

We solved numerically Eq.5 with the boundary condition Eq.6 and the equilibria discussed

in the previous Section. In order to do that, we used a shooting code benchmarked with ana-

lytic solutions (obtained assuming constant k⊥) and with the non resistive results in [10]. By

systematically exploring the (N ,θ0) space, we identified the most unstable modes for each N ,

divertor configuration and plasma equilibrium.

We started by addressing the effect of a narrow SOL width. Our ”large” SOL case, λ = 1cm,

produced results largely consistent with those presented in [10]: maximum growth rate around

θ0 = π, with a broad maximum in θ0; mode stabilization due to partial line tying at low N

and due to diamagnetic effects at large N , see Fig.4(a); a weakly ballooned mode structure,

mildly localized on the outer region, see Fig.4(b); mode driven by curvature and sheath effects
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[9]. Not surprisingly, the steeper gradient increases the growth rate of the modes, Fig.4(c), but

also leads to an unexpected change in their nature. For all d, a gradual reduction of the decay

lengths shows initially a shift of the maximum value of the growth rate towards lower values

of θ0 and then the appearance of a mode localized in the outer divertor leg, Fig.4(d), which

becomes dominant when λ ≈ 0.1cm. In the [N, θ0] space, this perturbation is localized in a

narrow band around θ0 ≈ 0 and it reaches its maximum growth rate for values on N larger than

the still present weakly localized mode (see Fig.4(c)).

The stability of the mode changes significantly depending on the radial position in the SOL.

In all our simulations, the farther the field line is from the separatrix, the larger the maximum

growth rate, which is also achieved at higher N values, see Fig.5. This can be explained by

the fact that close to the separatrix, k⊥ at the target becomes large (see Fig.3), thus reducing

the incomplete line tying stabilization, that goes like 1/k2⊥ [10] and the sheath drive term [9].

For the same reason, Snowflake and Super-X divertors, which have higher perpendicular wave

number at the target, show a similar trend for ℑ(ω), see Fig.5.

We define the estimated diffusion coefficient as D ∼ ℑ(ω)/k2⊥ = D(s)ℑ(ω)/N2, where

D(s) determines its parallel variation and depends exclusively on the magnetic geometry, see

Fig.6. The quantity ℑ(ω)/N2 is plotted in Fig.7 for the cases studied and shows recognisable

trends. Comparing the left and the right columns of Fig.7 shows that higher SOL gradients

systematically increase the diffusion coefficient. This happens roughly in a linear way for d ≤

1cm and low N , while the increase is weaker for higher N . For λ = 0.1cm and sufficiently

largeN , the divertor modes discussed above contribute to the transport together with the weakly

ballooned modes, so that we expect a local enhancement of the turbulence and the transport in

the outer divertor leg.

In advanced divertors, ℑ(ω)/N2 increases around a factor 2 with respect to LSN, Fig.7.
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Only close to the separatrix and for steep gradients (i.e. d = 0.1cm, λ = 0.1cm) we find no

increase in the estimated diffusion. Snowflake and Super-X configurations behave similarly

despite the fact that the longer connection length and magnetic fanning are obtained in different

ways (in the X-point region for the former, in the long outer divertor leg for the latter). However,

to have a complete picture, also parallel variations (i.e. D) must be taken into account, Fig.6.

While LSN, SF and SX configurations have similar D above the X-point for the dominant

weakly ballooned mode, close to the target they change significantly with LSN reaching much

larger values of D = (N/k⊥)
2 than SF or SX, as shown in Fig.3 and 6. This suggests that

transport in advanced configuration might increase in the midplane region, but be reduced in

the proximity of the target. In other words, the longer connection length below the X-point

does not significantly increase the plasma spreading in the divertor region because the in the

extra length the diffusion coefficient reduces. However, the small perpendicular size of the

perturbations beyond the X-point might induce secondary instabilities in the nonlinear phase,

which might change the transport estimates.

5. Conclusions

We calculated the stability of an ITER like Scrape Off Layer to ideal curvature and sheath

driven flute perturbations. We found that steep gradients can destabilize a divertor localized

mode and increase the diffusion coefficient. For all magnetic geometries, this could have the

beneficial effect of spreading the SOL width below the X-point, thus alleviating the divertor heat

loads. We also compared standard Lower Single Null to Snowflake and Super-X configurations.

We showed that the increased shearing of the mode in the advanced configurations reduces the

maximum growth rate of the instabilities. With respect to standard configurations, the upstream

diffusion coefficient doubles, although in the divertor region the much larger perpendicular

wave number imply that in advanced configurations the turbulent diffusion due to the weakly
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ballooned mode below the X-point is increased only marginally. Experimental evidence shows

filaments ejected from the separatrix in both L-mode and in the inter-ELM phase [5]. The

transport due to these structures, which could account for 50-60 % of the total [5] (the rest

is due to the intrinsic instabilities and neoclassical effects), is not discussed in this paper and

might compensate the reduced diffusive coefficient due to the intrinsic instabilities in advanced

configurations. However, the question of how the intermittent transport is affected by steeper

gradients or advanced divertor configurations is still open [15].

Our work addresses the problem rigorously within the framework of the model used. How-

ever, a number of approximations were made and a few comments are appropriate. The extreme

shearing of the mode in the divertor region would call for a kinetic treatment of the problem, at

least in the close proximity of the separatrix. For the ITER simulations, however, ρk⊥ exceeds

unity only in advanced configurations when considering regions very close to the divertor and

very close to the separatrix (i.e. θ0 ≈ −θdo and d = 0.1cm). The linear approximation used here

is likely to be able to give only a qualitative understanding of the problem as fluctuations are

typically large in the SOL. Extensions of the model, such as the introduction of more complete

equations for the density and temperature evolution, as well as the effect of parallel advection

are envisaged and expected to play a role. The analysis of fully toroidal configurations in higher

collisionality regimes (i.e. high recycling and detached conditions) is left for future work.
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Figure captions

Figure 1. Magnetic geometry of the divertor configurations studied. The thin line is the sepa-

ratrix and the thick line tracks a field line 1 cm away from the separatrix at the outer midplane.

Lengths are normalized with respect to R.

Figure 2. Connection length for different configurations and different distances from the sepa-

ratrix as a function of the poloidal angle.

Figure 3. Modulus of the perpendicular wave number as a function of the distance form the

separatrix for different θ0 and divertor configuration. The blue, red and black curves represent

LSN, SF and SX respectively. The solid lines are for the outer divertor and the dashed for the

inner divertor.

Figure 4. Maximum growth rate and mode structure for LSN d = 0.5cm, λ = 1cm, plots (a)

and (b), and for d = 0.1cm, plots (c) and (d). In plot (c) the vertical dotted line shows the transi-

tion between weakly ballooned modes (b) and divertor localized modes (d). The dashed-dotted

and the dashed line represent the maximum growth rate of the former and latter modes.

Figure 5. Maximum growth rate as a function of N for all the configurations studied. Solid,

dashed, dash-dotted and dotted lines represent d equal to 0.1cm,0.5cm, 1cm and 2cm respec-

tively.

Figure 6. Parallel profiles of k⊥/N = D−1/2 at d = 1cm for θ0 = π (left) and θ0 = 0 (right).
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Figure 7. ℑ(ω)/N as a function of N for all the configurations studied. Line styles as in Fig.5.
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