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Abstract.

A complete model of the dynamics of scrape-o� layer �laments will be rather complex, including temperature
evolution, three dimensional geometry and �nite Larmor radius e�ects. However, the basic mechanism of E×B
advection due to electrostatic potential driven by the diamagnetic current can be captured in a much simpler
model; a complete understanding of the physics in the simpler model will then aid interpretation of more
complex simulations, by allowing the new e�ects to be disentangled. Here we consider such a simple model,
which assumes cold ions and isothermal electrons and is reduced to two dimensions. We derive the scaling with
width and amplitude of the velocity of isolated scrape-o� layer �laments, allowing for arbitrary elliptical cross-
sections, where previously only circular cross-sections have been considered analytically. We also put the scaling
with amplitude in a new and more satisfactory form. The analytical results are extensively validated with two
dimensional simulations and also compared, with reasonable agreement, to three dimensional simulations having
minimal variation parallel to the magnetic �eld.

Filaments are a prominent feature of the scrape-o� layer (SOL) of tokamaks, in L-mode and in H-mode both
during and between ELMs[1], and in other magnetised plasmas. They provide a signi�cant component of the
particle transport[2], especially in the far SOL, and so may have a strong impact on particle �uxes to the �rst wall
and divertor. Data from gas-pu� imaging diagnostics[3] suggests that �laments may sometimes have signi�cantly
elliptical (rather than circular) cross-sections. Most of the theoretical work on SOL �laments has been done
in simpli�ed, two dimensional models, see [4] and [5] for reviews, but recently there has been an increasing
amount of attention given to increasingly realistic models, for example using three dimensional simulations[6�8]
or including �nite Larmor radius e�ects[9]. These developments have motivated us to re-examine and extend
the earlier analytical work to try to give as complete a physical picture of the two dimensional mechanisms
that regulate �lament motion as possible, in order to facilitate the interpretation of more complicated models
applied to isolated �laments, and ultimately to SOL turbulence simulations[10�12].

Our subject here is the scaling of �lament velocity with various parameters of the �lament, in the two
dimensional limit where parallel variation may be neglected and assuming cold ions and isothermal electrons. In
order to be able to make progress analytically we assume that the �laments propagate coherently and steadily,
i.e. at constant velocity and without changing their shape. In practice the shape of the �laments does evolve with
time (typically `mushrooming' or `�ngering'[13]), but the steady state value estimates a typical velocity of the
�laments. We will see in Section 2 that the calculation corresponds well to the maximum velocity of �laments
in simulations. Finite Larmor radius e�ects may also increase the coherence of �laments[9], and L-mode and
inter-ELM �laments are observed experimentally to have small accelerations[1, 14]. This represents the very
simplest model that can capture the basic mechanism of �lament motion. By characterising quantitatively the
basic physical processes driving �lament motion in this simple model, we will be able, when analysing more
complicated models, to identify the deviations from this behaviour. These deviations can then be ascribed to
the extra physics in, for example, three-dimensional or non-isothermal simulations. The aim therefore is to
provide a theoretical tool to aid the interpretation of more complicated models, as part of a programme of
research building systematically towards models which are both well enough understood to be trusted and also
realistic enough to be quantitatively compared to experiment and used predictively for future machines. The
particular model we consider contains two principal mechanisms that limit the �lament velocity: inertia and
sheath currents; viscosity is also present. While inertia is universally present, the sheath current (as modelled
here) is only relevant on the assumption that parallel resistivity is small so that parallel currents may reach
the sheath unimpeded. Where this assumption is invalid, whether due to cold plasma[15] or interaction with
neutrals in the divertor or to large magnetic shear near X-points, di�erent mechanisms will come into play;
for some examples see [4]. If it is desired to include other e�ects, as di�erent closures for the two dimensional
equations, we hope that the framework of the calculation provided here will make further additions relatively
straightforward.

We present here a calculation of the scaling of the �lament velocity allowing arbitrary elliptical cross-
sections, which have not previously been considered analytically. We also aim to clarify the physical mechanisms



while giving more detail than has previously been published (in particular, the scaling with amplitude, though
considered in [16] and mentioned brie�y in several works[17�19], has not previously been given a satisfactory
analytical treatment or validated convincingly with simulations).

1. Velocity scaling

1.1. Physical picture

An isolated �lament is, under the assumptions here, a density �uctuation comparable to or larger than the
background in amplitude, extended along the magnetic �eld and with a monopolar structure perpendicular to
it. The basic mechanism of �lament motion is that there is a current source due to the inhomogeneity of the
magnetic �eld which propels the �lament, balanced by dissipation from, in the simple model considered here,
drag due to the surrounding background plasma and from currents through the sheath where the magnetic
�eld intersects the wall at the targets. This description is in some respects inspired by the `equivalent circuit'
picture[4, 20]. In contrast to the qualitative description in [4], here we consider drifts/currents only in the �uid
model, rather than considering the particle drifts. In order to obtain simple expressions for the �lament velocity,
we reduce the problem to two dimensions by assuming zero variation parallel to the magnetic �eld and also
assume that the �lament reaches a steady state in which it travels at constant velocity. A more rigorous version
of this argument, beginning from the plasma �uid equations, is encapsulated in the calculation given in Section
1.2.

Drive Due to the curvature of the magnetic �eld, represented by κ = −x̂/RC where RC is the radius
of curvature, and the change in its magnitude with radius, ∇B = −Bx̂/RC , the diamagnetic current

Jdia = B−1∇(nT )× b̂ has a non-zero divergence, as sketched in Figure 1. This divergence gives a current source
whose strength is proportional to the pressure gradient in the direction perpendicular to κ and ∇B, which we
will call ẑ, and hence scales like ∆δ−1z where ∆ represents the �lament amplitude (or, more accurately, some
function of the amplitude, see Section 2.2) and δz is the typical scale in the ẑ-direction. The total current source
is then given by integrating over the volume of the �lament and so scales like L‖δxδz∆/δz = ∆L‖δx, where
L‖ is the length of the �lament along the magnetic �eld, assumed the same as the connection length between
the targets, and δx is the scale length in the x̂-direction (anti-parallel to κ and ∇B). In order to maintain
quasineutrality, this current must be closed. Depending on the parameters of the �lament, this may occur either
through the polarisation current (giving rise to `aerodynamic' drag) or the parallel current (giving rise to sheath
current dissipation).
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Figure 1. Diamagnetic current in a �lament: The width of the line represents the magnitude of the current
(integrated in the b̂-direction). The diamagnetic current (left) can be split into a divergence-free part (centre)
and the remainder (right). This last, divergent part must be closed by parallel or polarisation currents and so
provides the drive for �lament motion

Aerodynamic drag When the current source closes through the polarisation current it results in a J ×B force
on the �lament. We can estimate the total force by taking the net polarisation current to �ow for a distance
δz, so that the force scales like ∆L‖δxδz. The scaling is as if it were a body force (like, for example, gravity or
buoyancy), but this is a mere coincidence arising from the combination of scaling of the current source and the
mode of its action on the �lament through J × B. The dissipation, however, has a simpler physical picture;
it is aerodynamic drag arising from the inertia of the the background plasma which must be displaced by the
�lament as it moves. Therefore the drag scales as the frontal area of the �lament, L‖δz, and as the square of its

velocity, V 2
f . Thus the propelling force and the drag balance when Vf ∼

√
∆δx.

Sheath current dissipation When the current source closes through the parallel current it is regulated by the
sheath boundary condition, (8), which determines the current that passes through the Debye sheath to the target
plates. For small currents the sheath behaves as an ideal resistor, with current proportional to the electrostatic
potential, φ. In steady state the potential is then proportional to the current source, so scales like ∆δ−1z . The
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Figure 2. The forces acting on a �lament in which the diamagnetic current closes through the polarisation
current path

�lament velocity is given by the E×B drift. Since the electric �eld generated is in the ẑ-direction, the velocity
scales as Vf ∼ Ez ∼ φ/δz ∼ ∆δ−2z .
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Figure 3. Equivalent circuit for a �lament in which the diamagnetic current closes through the parallel current
path

1.2. Scaling calculation

We use a coordinate system that takes x̂ in the `radial' direction (anti-parallel to the magnetic �eld curvature
and ∇B), ŷ along the magnetic �eld and ẑ in the binormal direction. We consider the steady motion of a
coherent density structure, so that we neglect all time-variation except for the displacement of the �lament,
at constant velocity in the x̂-direction, V f = Vf x̂. We take the �lament to be a monopolar density structure
(possibly distorted, in the inertial regime), characterised by two length scales, δx and δz in the x̂- and ẑ-
directions, and an induced, dipolar potential structure. To aid visualisation of the con�guration, the density
and potential from a simulation (see Section 2) of a �lament in the sheath current regime are shown in Figure
4. We assume cold ions and isothermal electrons, neglect electron inertia and use Bohm normalisation (as in
[8], times are normalised to the ion cyclotron frequency Ωci = eB0/mi, lengths to the hybrid Larmor radius
ρs = cs/Ωci, where cs =

√
Te/mi is the sound speed, and electrostatic potential by Te/e, with e the elementary

charge, B0 the magnetic �eld strength, mi the ion mass and Te the electron temperature; in addition densities
are normalised to a typical value, usually the background density). Signs of gradients in scaling expressions are
taken in the upper half-plane, e.g. ∇zn ∼ −n/δz.

The velocity scaling will follow from quasineutrality,∇·J = 0. As the total current is the sum of diamagnetic,
polarisation and parallel contributions, J = Jdia + Jpol + J‖, we now need to evaluate the divergence of each
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Figure 4. Density (colour-map) and potential (contours; solid for φ > 0, dashed for φ < 0) for a �lament in
the sheath regime, at maximum Vx



of these terms.

Diamagnetic current For cold ions, the diamagnetic current is due just to the electron diamagnetic velocity.
Neglecting electron inertia and viscosity, the electron momentum equation is

0 = −∇n+ n∇φ+ n
V e ×B
B0

. (1)

Taking the cross product with b̂ gives the perpendicular electron velocity with two contributions, the E ×B
and diamagnetic velocities: V e = V E×B + V dia, with

nV dia = −B0
∇n× b̂
B

. (2)

Here we must not yet take B = B0 (B0 being the constant magnetic �eld used for normalisation) until we have
taken its gradient in the divergence of the diamagnetic current:

∇ · Jdia = B0∇ ·
(
∇n× b̂
B

)

= −B0
∇n · ∇ × b̂

B
−B0

∇B · ∇n× b̂
B2

= 2
ẑ · ∇n
RC

= −b̂ · g ×∇n ∼ − g

δz
(n− n0) , (3)

for a toroidal magnetic �eld B = eφ/R at a major radius R = RC (RC denoting the radius of curvature of the
magnetic �eld and eφ being the unit vector in the toroidal direction) much larger than the size of a �lament
and de�ning g = gx̂ = x̂/RC.

Polarisation current To evaluate the polarisation current contribution, we start from the total momentum
equation (neglecting electron inertia)

∂V i

∂t
+ V i · ∇V i =

1

n
J × b̂− 1

n
∇n+ µi∇2

⊥V i

=
1

n
Jpol × b̂+ µi∇2

⊥V i. (4)

In the second line we have removed the diamagnetic contribution to J × b̂, which balances the pressure gradient
exactly. This part includes the e�ects both of inertia, as discussed in Section 1.1, on the left of (4), and also the
viscosity, µi. Assuming that the �lament moves coherently with velocity V f , then in the �lament frame (de�ned
by {x̃, z̃} = {x− Vft, z} and in which Ṽ = V − V f) ∂Ṽ i/∂t = 0 and the momentum equation becomes

Ṽ i · ∇̃Ṽ i =
1

n
Jpol × b̂+ µi∇̃2

⊥Ṽ i. (5)

We use this equation to estimate Jpol. Since the polarisation current does not �ow in from the boundaries, it is
clear that only the ẑ-component can close the diamagnetic current divergence (since the divergent part of the
diamagnetic current moves charge in the positive ẑ-direction, the current closing it must move charge back in
the negative ẑ-direction). Taking the x̂-component of (5),

Jpol,z = −nṼ i · ∇̃Ṽi,x + µi∇̃2
⊥Ṽi,x.

For a con�guration with a symmetric monopole in density and symmetric dipole in potential (as in Figure 4),
it is clear that Jpol,z (which is odd under x̂-re�ection) cannot close the divergence of the diamagnetic current
(which is even under x̂-re�ection). Therefore a quasi-stationary state cannot be symmetric; it may instead have,
as shown in Figure 5, a fairly symmetric potential dipole, but a distorted density structure, which is largely
displaced to the right side of the potential dipole. As far as the scaling calculation is concerned, this makes no
di�erence to the magnitudes, but indicates that the appropriate signs to take in the estimation of Jpol,z are those
in the region of largest density (while V i remains symmetric, the current is weighted by the density and so is
larger in this region, which therefore gives the dominant contribution), namely in the upper half-plane between
the φ = 0 line and the maximum of φ, and on the right-hand side of the dipole (and when the inertia terms
dominate nṼi,x∇xṼi,x must be larger than nṼi,z∇zṼi,x in steady state so that Jpol,z is in the right direction).
Thus we �nd

Jpol,z ∼ −
n

δx
Ṽ 2
i,x +

n

δz
Ṽi,zṼi,x

− µi

(
1

δ2x
+

1

δ2z

)
nṼi,x. (6)
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Figure 5. Density (colour-map) and potential (contours; solid for φ > 0, dashed for φ < 0) for a �lament in
the inertial regime, at maximum Vx

We can estimate Ṽi,z from the density equation, which in the �lament frame is

∇ · (nṼ ) = 0

⇒ Vi,z ∼
δz
δx
Vi,x

and estimating the characteristic magnitude of Ṽi,x ∼ Vf , (6) becomes

∇zJpol,z ∼ −
n

δxδz
V 2
f −

µi

δz

(
1

δ2x
+

1

δ2z

)
nVf . (7)

Parallel current Linearising the sheath boundary condition,

J‖
∣∣
sheath

= ±nsheath
(

1− e−φ|sheath
)
≈ ±nφ (8)

and integrating over y,ˆ
dy∇ · J‖ ≈ 2nφ.

Since the �lament velocity is approximately the central E ×B velocity of the �lament (in the lab frame), we
can further estimate Vf ∼ φ/δz and henceˆ

dy∇ · J‖ ∼ nδzVf (9)

Velocity scalings So �nally, charge conservation

∇ · J = 0

−∇ · Jpol = ∇ · Jdia +∇ · J‖
gives, integrating over y and using (3), (7) and (9),

V 2
f

δx︸︷︷︸
inertia

+µi

(
1

δ2x
+

1

δ2z

)
Vf︸ ︷︷ ︸

viscosity

∼ g (n− n0)

n︸ ︷︷ ︸
drive

− 1

L‖
δ2zVf︸ ︷︷ ︸

sheath

dissipation

. (10)

We can �nd several asymptotic limits by balancing each of the dissipative terms against the diamagnetic drive:

• sheath current regime

Vf ∼
L‖g

δ2z

(n− n0)

n
(11)

valid for

δ2z
√
δx � L‖

√
g

(n− n0)

n
(12)

and
δ2xδ

4
z

(δ2z + δ2x)
� L‖µi (13)



• inertial regime

Vf ∼
√
δxg

(n− n0)

n
(14)

valid for

δ2z
√
δx � L‖

√
g

(n− n0)

n
(15)

and
δ

3
2
x δ2z

(δ2x + δ2z)
� µi√

g (n−n0)
n

(16)

• viscous regime

Vf ∼
δ2xδ

2
zg

(δ2x + δ2z)µi

(n− n0)

n
(17)

valid for
δ2xδ

4
z

(δ2z + δ2x)
� L‖µi (18)

and
δ

3
2
x δ2z

(δ2x + δ2z)
� µi√

g (n−n0)
n

(19)

We have a sequence of di�erent scalings as the �lament width varies, with viscosity dominating for the narrowest
�laments, sheath dissipation dominating for the widest �laments and inertia dominating at an intermediate scale,

if the other parameters leave a su�cient window for this to happen (if µi � L
3/5
‖ (g(n − n0)/n)4/5 for circular

�laments). Interestingly, the velocity depends on δx but not δz in the inertial regime and conversely on δz but
not δx in the sheath current regime. The latter point was noted in the seminal paper [21], in the case without
background plasma where a separable solution exists, but seems to have been neglected since then.

2. Comparison with simulations

We have used two dimensional simulations to validate the scalings derived in Section 1.2. The equations used
represent a �lament assumed to have negligible variation along the magnetic �eld; closure is given by integrating
the three-dimensional system over the parallel direction to give equations for the density and vorticity

dn

dt
= b̂ · g × (n∇φ−∇n) +

n
(
1− e−φ

)
L‖

+ µn∇2
⊥n (20)

dΩ

dt
= − 1

n
b̂ · g ×∇n+

(
1− e−φ

)
L‖

+ µi∇2
⊥Ω (21)

Ω =
1

n
∇ · (n∇⊥φ) ≈ ∇2

⊥φ (22)

with d/dt =
(
∂/∂t+ b̂ · ∇φ×∇

)
and, as before, g = gx̂. The Boussinesq approximation (neglecting gradients

of n) is used in (22) to simplify the Laplacian inversion. The dimensionless parameters used are L‖ = 11000,
g = 2.5 × 10−3, µn = 1.5 × 10−5 and µi = 4 × 10−4; for this theoretical study the dissipative parameters have
been reduced by a factor of 100 (except in Appendix A) compared to those used in [8], based on the expressions
in [22], in order to separate the transitions from viscous to inertial regimes and from inertial to sheath regimes
so that the inertial scaling can be separately observed. Filaments are initialised as Gaussian density �uctuations
with elliptical contours, tilted at an angle α to the x̂-direction, on a constant background,

n(t = 0) = n0

(
1 +A exp

(
− x̂

2/ε+ εẑ2

δ2

))
(23)

where A is the amplitude of the �lament, ε is the ratio of the lengths of the axes of the ellipse, δ is the geometric
mean of the lengths of the axes, x̂ = x cosα + z sinα and ẑ = z cosα − x sinα. The diagram in �gure 6 shows
the con�guration with the corresponding length scales, in the x̂- and ẑ-directions respectively,

δx = δ

√
ε(

cos2 α+ ε2 sin2 α
) (24)

δz = δ

√
ε(

ε2 cos2 α+ sin2 α
) , (25)

which appear in the velocity scaling above. Filament velocities are measured as the maximum velocity of the
centre of mass of the density above background, i.e. n−n0, in the x̂-direction. These simulations, as well as the
three dimensional ones in Section 3, have been implemented using BOUT++[23, 24].
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Figure 6. Schematic showing sizes and orientation of a tilted, elliptical �lament cross-section
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Figure 7. Inertial scaling vs. δx (left) and sheath current scaling vs. δz (right) with A = 4 for several values of
ε and α

2.1. Scaling with size and shape

The results of a scan in width δ, ellipticity ε and inclination α, at constant amplitude A = 4, are shown in
Figure 7. For four di�erent ε and four di�erent α, scanning δ results in a region of

√
δx scaling, corresponding to

the inertial regime, and a region of δ−2z scaling corresponding to the sheath current regime. Moreover, although
we have a three parameter space, {δ, ε, α}, of �lament sizes and shapes, a single combination (δx in the inertial
regime and δz in the sheath current regime) entirely determines the �lament velocity, at a particular amplitude
(the e�ect of amplitude will be discussed in Section 2.2); this is evident from Figure 7 since all the points, for
any ε and α (in the region where they follow

√
δx or δ−2z scaling) have not only the same gradient but also the

same absolute magnitude.
The results for ε = 3, α = 90◦ and ε = 5, α = 90◦ exceed the δ−2z scaling for δz ≈ 20 − 50. This is due to

the non-linearity of the sheath boundary condition which is included in the simulations, but not in the scaling.
The maximum value of the potential is φ ≈ 1.3 at δz ≈ 35 for ε = 3 and φ ≈ 1.2 at δz ≈ 22 for ε = 5, so it makes
sense that the deviation of exp (−φ) from its linearised form is noticeable here. The e�ect of the non-linearity
is to decrease the magnitude of the negative lobe of potential and increase the positive lobe. However, the
enhancement of the positive lobe must be larger in order to allow the same magnitude, j0, of current through
the sheath: |φ+| / |φ−| = − ln (1− j0) / ln (1 + j0) > 1. The overall e�ect is therefore to increase the �lament
velocity, since the increase from the positive lobe outweighs the decrease from the negative lobe, resulting in a
larger Ez.

The trend lines are V ≈ 4.8× 10−2
√
δx for the inertial scaling and V ≈ 11δ−2z for the sheath scaling. These

intersect at δ
4/5
z δ

1/5
x ≈ 8.8 whereas (12) and (15) suggest a crossover at δ

4/5
z δ

1/5
x ≈ 14.6 for these parameters, in

good agreement up to the order unity factors which are not �xed by analytical scaling arguments. (16) predicts
that the crossover from inertial to viscous regime is mostly below the widths in the scan; the largest limit as a
function of δx is for the ε = 5, α = 0◦ case, where (16) evaluates to δx � 0.27 and indeed the �rst point in this
series (at δx ≈ 0.22) is indeed slightly below the

√
δx scaling, indicating that the viscosity is beginning to have

an e�ect; scaling in the viscous regime is examined brie�y in Appendix A, using larger dissipation parameters.
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Figure 8. Amplitude scaling in the inertial regime, δx = δz = 0.5, (left) and in the sheath current regime,
δx = δz = 200, (right). The solid red line shows the �tted linear ansatz, (26), and the dashed black line shows
the �tted square-root ansatz, (27)

2.2. Amplitude scaling

From the maximum �uctuation amplitude A = max [(n− n0) /n0] we may estimate ∇z(n− n0) ∼ An0/δz, but
we need to �nd a representative value of n to estimate n−1∇z(n−n0). We �nd, by �tting the simulation results,
that the appropriate value is neither the maximum, n ∼ (1 + A)n0 nor the background n ∼ n0, but rather an
intermediate value n ∼ (1 + βA)n0, where 0 < β < 1. β corresponds to some point on the density pro�le at a
distance δ̃z: β = exp(−δ̃2z/δ2z). Then Vf as a function of A with all other parameters held constant is, from (11),
(14) and (17),

Vf ∝
A

1 + βA
sheath current or viscous regimes (26)

Vf ∝
√

A

1 + βA
inertial regime (27)

if the representative value of n is found at the same relative position, δ̃z/δz for any A. This does indeed seem
to be the case, as illustrated in Figure 8. For an amplitude scan with δx = δz = 0.5, which is in the inertial
regime, (27) (residual 2.0 × 10−4) gives a much better �t than (26) (residual 2.1 × 10−2) and gives β ≈ 0.12.
Conversely, for an amplitude scan with δx = δz = 200, which is in the sheath current regime, (26) (residual
1.8 × 10−3) gives a much better �t than (27) (residual 7.6 × 10−2) and gives β ≈ 0.31. This conclusion holds
also when varying the ellipticity, see Appendix B.

Comparing this to previous work: the most detailed consideration of amplitude dependence is Kube and
Garcia[16], where the scaling analysis starts from the vorticity equation and �nds similar results to those
given here, except that they assume a form equivalent to setting β = 1 which prevents them from �nding a
quantitative, analytical amplitude scaling (their �t coe�cients vary with amplitude, whereas here we have only
a single, constant coe�cient, β, to be derived from simulations); Angus et al.[6] give, albeit brie�y, a derivation
along very similar lines to the one here, but neglect the amplitude dependence of the drive; Theiler et al.[19]
in contrast use an interchange instability growth rate to estimate ∂/∂t ∼ γinterchange, and �nd a linear scaling
with amplitude of the �lament velocity in the inertial regime (which is contradicted here, emphasising that it is
the non-linear, advective, term that is relevant); their derivation in [19] follows Garcia et al.[17, 25], but there
the `ideal interchange rate' is de�ned, without explanation, as

γ =

(
g

`

∆θ

Θ

)1/2

(where g corresponds to our g, ` to L‖, ∆θ is the �uctuation amplitude and Θ is the background density) which
includes an amplitude dependence giving a square-root scaling of the �lament velocity in the inertial regime.

3. Three-dimensional validation

Here the normalised background density in the two dimensional simulations was set to n0 ≈ 1.48 to be
consistent with the (source-driven) background used for the three-dimensional simulations, which normalise
to the equilibrium density at the sheath entrance. The amplitude was set to a lower value than in the two
dimensional case, A = 2, to avoid the possibility of drift wave instabilities playing a role in the three dimensional
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Figure 9. Comparison of 2D (lines) and 3D (markers) results for A = 2 and several ε

simulations. For more details on the equations used in and implementation of three dimensional simulations,
see [8]. The three-dimensional �laments were initialised with no variation in the parallel direction, in order to
correspond to the two dimensional calculation as closely as possible; investigation of really `three-dimensional'
e�ects due to parallel gradients is left for future work. Figure 9 shows that the three-dimensional simulations
follow the two dimensional trends closely.

The velocity of three dimensional �laments in the sheath current regime is slightly larger than the
corresponding two dimensional ones. We attribute this to the variation in the background density: since this
decreases near the sheath, the potential needed to drive the same sheath current is slightly increased and it
follows that the �lament velocity must then increase slightly.

The bump on the ε = 1/3 curve between δ = 20 and δ = 30, the part most a�ected by the non-linearity of
the boundary condition (see Section 2.1), is due to the eventual fragmentation and subsequent acceleration of
the �laments. In other words, it is due to their ceasing to travel as coherent structures and so its investigation
is a subject beyond the scope of this paper.

4. Discussion

A number of works[18, 19] have analysed �lament motion by analogy with the theory of linear instabilities; this
has been termed the `blob correspondence principle'[18, 26]. Our analysis above shows that the picture is not
quite so simple, the nature of the �laments as coherent, non-linear objects is important because the density
and potential �elds have fundamentally di�erent structures, the density being a (possibly distorted) monopole
and the potential being a dipole (see Figures 4 and 5), rather than the identical structures, up to a phase shift,
that they have in the linear theory. This is particularly evident in the amplitude scaling (Section 2.2) where
the parameters of the scaling depend on the relative scale lengths of the potential and density. Moreover, the
nature of the physical processes involved in limiting �lament velocity are clearer when considering the �lament
itself instead of analysing the governing equations by analogy or `correspondence' to linear theory.

An interesting point to note is that the derivation of the scalings in Section 1.2 does not depend on whether
or not the Boussinesq approximation, (22), is used. It therefore predicts that velocities of isolated �laments will
not be a�ected much by the approximation, although their coherence, stability and interactions may well be.

5. Conclusions

We have given here the �rst calculation of SOL �lament velocity to include the e�ect of the �lament shape and
have also clari�ed the role of the �lament amplitude. The analytical scaling calculations have been extensively
validated by two dimensional simulation results, and also compared (with good agreement) to three-dimensional
simulations in which the �laments are initialised without parallel variation. Thus we now have a complete
understanding of the mechanisms of �lament propagation in the simple limit considered here. This understanding
provides a solid foundation for the interpretation of �lament motion in more complicated, more realistic models.



Acknowledgements

We would like to thank Prof. Steve Cowley for stimulating discussions which provided the initial impetus for
the work described here. This work has been carried out within the framework of the EUROfusion Consortium
and has received funding from the Euratom research and training programme 2014-2018 under grant agreement
No 633053 and from the RCUK Energy Programme [grant number EP/I501045]. To obtain further information
on the data and models underlying this paper please contact PublicationsManager@ccfe.ac.uk. The views and
opinions expressed herein do not necessarily re�ect those of the European Commission. This work used the
ARCHER UK National Supercomputing Service (http://www.archer.ac.uk) under the Plasma HEC Consortium
EPSRC grant number EP/L000237/1.

Appendix A. Viscous regime

For MAST relevant values of the dissipative parameters[8, 22], µn = 1.5× 10−3 and µi = 4× 10−2, there is not
a clear inertial regime with

√
δx scaling between the viscous and sheath current regimes, as we see in Figure

A1. There is δ2 scaling in the viscous regime, consistent with (17), but even though the dissipative parameters
for MAST are relatively large (due to low magnetic �eld, high safety factor and high collisionality), pure δ2

scaling is reached only for δ < 1, i.e. for �laments narrower than the hybrid Larmor radius, ρs. Therefore the
asymptotic viscous regime cannot be physically relevant, which is the reason that we do not pursue a more
detailed characterisation here. However for these parameters, small �laments, 1 < δ < 10, are clearly a�ected
(although not dominated) by viscosity.

10−2 10−1 100 101 102 103
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∝δ2 ∝ δ−2

Figure A1. Scaling for circular �laments with amplitude A = 4 and using MAST relevant dissipative parameters

Appendix B. Amplitude scaling �ts

δz β residual(sqrt)
residual(lin)

0.5/10 -0.05030 14.74
0.5/5 0.005967 0.9183
0.5/3 0.04802 0.1704
0.5/2 0.08022 0.03628
0.5 0.1244 0.009581

0.5× 2 0.1479 0.01428
0.5× 3 0.1440 0.02435
0.5× 5 0.1271 0.1082
0.5× 10 0.08299 0.4548

Table B1. Inertial regime: Comparison of (i) values of β inferred by least squares regression on the relative
error between the ansatz (27) (square-root scaling) and �lament velocities measured from simulations and (ii)
ratio of residual for this regression to that for regression with the ansatz (26) (linear scaling), at δx = 0.5 for
several values of δz . Amplitudes used for the analysis were A = 1, 1.5, 2, 3, 4, 5, 6, 7, 8.
For extreme values of ellipticity the �lament is no longer in the pure inertial regime. Both viscous and sheath
current regimes have linear scaling, so the square-root �t is then less good.



δx β residual(lin)
residual(sqrt)

200/10 0.3105 0.02341
200/5 0.3110 0.02341
200/3 0.3111 0.02342
200/2 0.3113 0.02327
200 0.3113 0.02329

200× 2 0.3109 0.02390
200× 3 0.3108 0.02358
200× 5 0.3109 0.02383
200× 10 0.2333 0.06529

Table B2. Sheath current regime: Comparison of (i) values of β inferred by least squares regression on the
relative error between the ansatz (26) (linear scaling) and �lament velocities measured from simulations and (ii)
ratio of residual for this regression to that for regression with the ansatz (27) (square-root scaling), at δz = 200
for several values of δx. Amplitudes used for the analysis were A = 1, 1.5, 2, 3, 4, 5, 6, 7, 8.
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