
A. Fernandez-Caballero, J.S. Wróbel, P.M. Mummery, and D. Nguyen-Manh

CCFE-PR(17)14

Short-range Order in High Entropy 
Alloys: Theoretical Formulation and 

Application to Mo-Nb-Ta-V-W System



Enquiries about copyright and reproduction should in the first instance be addressed to the Culham 
Publications Officer, Culham Centre for Fusion Energy (CCFE), Library, Culham Science Centre, Abingdon, 
Oxfordshire, OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.



Short-range Order in High Entropy 
Alloys: Theoretical Formulation and 

Application to Mo-Nb-Ta-V-W System

A. Fernandez-Caballero1,2, J.S. Wróbel3, P.M. Mummery2, and D. Nguyen-Manh1

1CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.
2School of Mechanical Aerospace and Civil Engineering, University of Manchester, UK

3Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141 02-507 
Warsaw Poland

Further reproduction distribution of this paper is subject to the journal publication rules.



.



Short-range order in high entropy alloys:
Theoretical formulation and application to Mo-Nb-Ta-V-W system

A. Fernández-Caballero,
CCFE, United Kingdom Atomic Energy Authority, Abingdon , Abingdon, OX14 3DB, UK and

School of Mechanical Aerospace and Civil Engineering, University of Manchester, UK

J.S. Wróbel,
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In high-entropy alloys (HEAs), the local chemical fluctuations from disordered solute solution state
into segregation, precipitation and ordering configurations are complex due to the large number of
elements. In this work, the cluster expansion (CE) Hamiltonian for multi-component alloy systems
is developed in order to investigate the dependence of chemical ordering of HEAs as a function of
temperature dependence due to derivation of configuration entropy from the ideal solute solution.
Analytic expressions for Warren-Cowley short-range order (SRO) parameters are derived for a five
component alloy system. The theoretical formulation is used to investigate the evolution of the ten
different SRO parameters in the MoNbTaVW and the sub-quaternary systems obtained by Monte-
Carlo simulations within the combined CE and first-principles formalism. The strongest chemical
SRO parameter is predicted for the first nearest-neighbor Mo-Ta pair that is in consistent agreement
with high value of enthalpy of mixing in the B2 structure for this binary system. The prediction
of B2 phase presence for Mo-Ta pairs in the considered bcc HEAs is reinforced by the positive
contribution to the average SRO from the second nearest-neighbor shell. Interestingly, it is found
that the average SRO parameter for the first and second nearest-neighbor shells of V-W pairs is
also strongly negative in a comparison with the Mo-Ta pairs. This finding in the HEAs can be
rationalized and discussed by the presence of the ordered-like B32 phase which has been predicted
as the ground-state structure in binary bcc V-W system at the equimolar composition.

I. INTRODUCTION

Multi-principal element alloys, termed High Entropy Alloys (HEAs) with predominantly single solid solution phases
have become an emerging field for alloy development with many basic concepts, including the origin of entropy effect
on interplay between thermodynamic analysis of complex, concentrated alloys and their microstructural properties
[1–3]. This new class of materials, first brought to the attention in 2004 through the work of Cantor et al. [4] and
Yeh et al. [5], is based around the concept that their high configurational entropy of mixing should stabilize simple
solid-solution phases (such as fcc or bcc) relative to the formation of potentially-embrittling intermetallic ones. Recent
experimental investigations cast doubts about the effect of entropic stabilization of solid solutions in different HEAs
[6–9]. In particular, the formation of two distinct types of Cr-rich precipitates (M23C6 and the σ phases) has been
reported in the initially believed single fcc phase of the HEAs CrMnFeCoNi following long-term heat treatment [7].

Nevertheless, HEAs offer not only new and exciting approach to alloy design but also attract interest due to the
discovery of alloys with unusual and attractive properties including physical, chemical, magnetic and mechanical
properties [3,9]. An example of exceptional mechanical property is having greater yield strength than any of its
individual constituents in the bcc-structured refractory high entropy alloys MoNbTaVW. These HEAs have high
melting points and the excellent yield strength sustained to ultrahigh temperatures has been usually attributed to
solid solute strengthening mechanism and/or associated lattice strains [10]. In general, the HEAs are characterized not
only by high values of entropy but also by high atomic-level stresses originating from mixing of elements with different
sizes [11,12]. Therefore, there are still many fundamental questions that need to be addressed to understand local
atomic structure in the terms order and disorder of HEAs. Each element in HEAs will tend to occupy the position
that minimizes its site energy and bond energies which in turn depend on preferred local chemical environments, inter-
atomic interactions and atomic volumes of different constituent species. To experimentally determine the elemental
distribution, several complementary techniques have been applied to ascertain the HEAs local structure include
neutron scattering, high energy synchroton x-ray diffraction, atom probe tomography and transmission electron
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microscopy coupled with XEDS (X-ray energy dispersive spectroscopy)[9,13,14].
In recent years, HEAs have attracted significant attention due to their superior radiation resistance compared to

conventional single phase Fe-Cr-Ni austenitic stainless steels making them potential candidates for high-temperature
fission and fusion applications [15,16]. Stability upon irradiation after cascade events may be attributed to presence of
high atomic level stresses resulted from difference in atomic sizes in HEAs and their tendency for amorphization and
recrystallization at high rates after irradiation induced thermal spike [17]. It is worth mentioning that W based alloys
are considered the preferred option for plasma facing materials in magnetically confined fusion reactor designs[18].
Beside the high melting point, the reasons for the interest are high thermal conductivity, low activation, low tritium
retention and low sputtering yield with regards to radiation damage for structural materials in nuclear fusion power
plants [19,20].

In the present work, a predictive model developed previously for investigating phase stability in multi-component
alloys [11,21] has been employed in order to quantify short-range ordering of different atomic species for HEAs from
first-principles calculations in a combination with the Cluster Expansion (CE) approach. The CE Hamiltonian can be
used to describe both enthalpy and entropy contributions to free energy consistently not only for solid solution but also
inter-metallic phases in multi-component alloy systems. In particular, by using thermodynamic integration via Monte-
Carlo simulations with the effective cluster interactions (ECIs), it is shown that in general the configurational entropy
contribution depends strongly on temperature and therefore the entropy expression for ideal random solid solution
phenomenologically adopted for HEAs is valid only at high-temperature limit[21]. The non-random configuration
gives a tendency toward phase separation or chemical short-range ordering (SRO) and both of these trends decrease
the configurational entropy from ideal estimates. This paper is organized as follows. In section II, the CE formalism
is introduced and developed for the Hamiltonian of multi-component system with a special focus on quinary alloys.
In section III, the mathematical expression of short-range order formulas are derived explicitly for five element alloy
in terms of average pair correlation functions. In section IV, the SRO expressions are applied to the short range
order parameters for the specific HEAs MoNbTaVW and the corresponding five quaternary sub-systems. The second
nearest-neighbor contributions into SRO properties are discussed in section V. A summary of our results is given in
section VI.

II. CLUSTER EXPANSION HAMILTONIAN FOR MULTICOMPONENT ALLOYS

The phase stability of multi-component alloys can be investigated using a combination of Density Functional Theory
(DFT) technique and lattice statistical simulations based on CE formalism [11,21]. DFT calculations were performed
using the projector augmented wave (PAW) method implemented in Vienna Ab-initio Simulation Package (VASP)
[22–27]. We use PAW potentials with semi-core p electron contribution with 11 electrons treated as valence for V, Nb,
Ta and 12 electrons for Mo and W. Exchange and correlation interactions were treated in the generalized gradient
approximation GGA-PBE [28].

The enthalpy of mixing for a five-component alloy, which can be evaluated using DFT, can be defined as

(1)∆Hmix(~σ) = Elat
tot (AcABcBCcCDcDEcE , ~σ)− cAElat

tot(A)− cBElat
tot(B)− cCElat

tot(C)− cDElat
tot(D)− cEElat

tot(E)

where cA, cB , cC , cD, cE are the average concentrations of alloy components A, B, C, D and E, respectively, and
Elatticetotal is the total energy per atom for considered structure. Here the vector ~σ defines the alloy configuration for a
given lattice such as body-centered cubic (bcc). Within the cluster expansion formalism [29–32], the configurational
enthalpy of mixing from Eq.(1) can be expressed in term of different cluster interaction energies by the following
formula

(2)∆Hmix(~σ) =
∑
ω

Jωmω 〈Γω′(~σ)〉ω

where the summation in Eq.(2) is performed over all the clusters ω distinct under symmetry operations within
the underlying lattice. mω denotes the multiplicities indicating the number of clusters equivalent to ω by symmetry
and Jω are the effective cluster interactions corresponding to cluster ω. 〈Γω′(~σ)〉ω are the cluster functions defined
as product of point functions of occupation variables, γi(σp), on specific cluster ω and averaged over the clusters of
atoms ω′ that are equivalent to cluster ω. The general expression for the cluster correlation function corresponding
to an alloy configuration given by ~σ is given by:

(3)
〈

Γ
(ijk· · ·)
|ω|,m (~σ)

〉
=
∑

pqr· · ·
γi(σp)γj(σq)γk(σr) · · · ypqr· · ·

m
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Here m is an integer corresponding to the configuration of the atomic labellings of the lattice points in the cluster
shell. ypqr· · ·

m denotes the temperature-dependent probability of finding atomic species pqr· · · which are located at
atomic configuration in the shell specified by m. For a general n-component systems, the orthogonal point functions
γ, are defined as in [31] by:

γj,n (σi) =


1 if j = 0 ,

− cos
(
2πd j2e

σi

n

)
if j > 0 and odd,

− sin
(
2πd j2e

σi

n

)
if j > 0 and even,

(4)

From Eqs.(3) and (4), the cluster correlation functions for point and pair clusters are given, respectively, by:

〈
Γ
(i)
1,m(~σ)

〉
=
∑
p

γi(σp)ypm =
∑
p

γi(σp)cp (5)

(6)
〈

Γ
(ij)
2,m(~σ)

〉
=
∑
pq

γi(σp)γj(σq)ypq
m

Note that in Eq.(5), the average single-site cluster functions can be expressed in term of alloy concentration cp.
For the average pairwise cluster functions, Eq.(6), the index m denotes the mth nearest-neighbor pair which has
probability ypq

m with atom of type p sitting at the first site and atom of type q at the second site of the mth pair.
The expression for the single-site correlation function for five-component alloy can be obtained by using Eq.(5) in

terms of average atomic concentration of all the elements present in the system as follows

(7a)
〈
Γ0
1,1

〉
= 1

(7b)
〈
Γ1
1,1

〉
=

1

4
[φ− (cB + cE) + φ+ (cC + cD)− 4cA]

(7c)
〈
Γ2
1,1

〉
=
√
χ− (cD − cC) +

√
χ+ (cE − cB)

(7d)
〈
Γ3
1,1

〉
=

1

4
[φ− (cC + cD) + φ+ (cB + cE)− 4cA]

(7e)
〈
Γ4
1,1

〉
=
√
χ− (cE − cB) +

√
χ+ (cC − cD)

where we used the following notation: φ± = 1 ±
√

5, χ± = 5
8 ±

√
5
8 . From Eq.(6), the expressions for the pairwise

cluster functions can be expressed in terms of the pair probabilities, ypq
m , as follows:

(8a)

〈
Γ11
2,m

〉
=

1

16

[
2φ−φ+

(
yBC
m + yBD

m + yCE
m + yDE

m

)
− 8φ−

(
yAB
m + yAE

m

)
+ φ2−

(
yBB
m + 2yBE

m + yEE
m

)
− 8φ+

(
yAC
m + yAD

m

)
+ φ2+

(
yCC
m + 2yCD

m + yDD
m

)
+ 16yAA

m

]

(8b)

〈
Γ12
2,m

〉
=

1

4

[
φ−
√
χ+

(
yEE
m − yBB

m

)
+
√
χ−φ+

(
yDD
m − yCC

m

)
+ 4
√
χ−
(
yAC
m − yAD

m

)
+
√
χ−φ−

(
−yBC

m + yBD
m − yCE

m + yDE
m

)
+ 4
√
χ+

(
yAB
m − yAE

m

)
+
√
χ+φ+

(
−yBC

m − yBD
m + yCE

m + yDE
m

)]

(8c)

〈
Γ13
2,m

〉
=

1

16

[
φ−φ+

(
yBB
m + 2yBE

m + yCC
m + 2yCD

m + yDD
m + yEE

m

)
− 4φ−

(
yAB
m + yAC

m + yAD
m + yAE

m

)
+φ2−

(
yBC
m +yBD

m +yCE
m +yDE

m

)
−4φ+

(
yAB
m +yAC

m +yAD
m +yAE

m

)
+φ2+

(
yBC
m +yBD

m +yCE
m +yDE

m

)
+16yAA

m

]
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(8d)

〈
Γ14
2,m

〉
=

1

4

[
φ−
√
χ+

(
yBC
m − yDE

m

)
+
√
χ−φ+

(
yDE
m − yBC

m

)
+
(
φ−
√
χ+ +

√
χ−φ+

) (
yCE
m − yBD

m

)
+ 4
√
χ−
(
yAB
m − yAE

m

)
+
√
χ−φ−

(
yEE
m − yBB

m

)
− 4
√
χ+

(
yAC
m − yAD

m

)
+
√
χ+φ+

(
yCC
m − yDD

m

)]
(8e)

〈
Γ22
2,m

〉
= 2
√
χ−χ+

(
yBC
m − yBD

m − yCE
m + yDE

m

)
+ χ−

(
yCC
m − 2yCD

m + yDD
m

)
+ χ+

(
yBB
m − 2yBE

m + yEE
m

)

(8f)

〈
Γ23
2,m

〉
=

1

4

[(
φ−
√
χ+ +

√
χ−φ+

) (
yDE
m − yBC

m

)
+ φ−

√
χ+

(
yCE
m − yBD

m

)
+
√
χ−φ+

(
yBD
m − yCE

m

)
+ 4
√
χ−
(
yAC
m − yAD

m

)
+
√
χ−φ−

(
yDD
m − yCC

m

)
+ 4
√
χ+

(
yAB
m − yAE

m

)
+
√
χ+φ+

(
yEE
m − yBB

m

)]

(8g)

〈
Γ24
2,m

〉
=
√
χ−χ+

(
yBB
m − 2yBE

m − yCC
m + 2yCD

m − yDD
m + yEE

m

)
+ χ−

(
yBC
m − yBD

m − yCE
m + yDE

m

)
+ χ+

(
−yBC

m + yBD
m + yCE

m − yDE
m

)

(8h)

〈
Γ33
2,m

〉
=

1

16

[
2φ−φ+

(
yBC
m + yBD

m + yCE
m + yDE

m

)
− 8φ−

(
yAC
m + yAD

m

)
+ φ2−

(
yCC
m + 2yCD

m + yDD
m

)
− 8φ+

(
yAB
m + yAE

m

)
+ φ2+

(
yBB
m + 2yBE

m + yEE
m

)
+ 16yAA

m

]

(8i)

〈
Γ34
2,m

〉
=

1

4

[√
χ−φ+

(
yEE
m − yBB

m

)
+ φ−

√
χ+

(
yCC
m − yDD

m

)
+ 4
√
χ−
(
yAB
m − yAE

m

)
+
√
χ−φ−

(
−yBC

m − yBD
m + yCE

m + yDE
m

)
− 4
√
χ+

(
yAC
m − yAD

m

)
+
√
χ+φ+

(
yBC
m − yBD

m + yCE
m − yDE

m

)]
(8j)

〈
Γ44
2,m

〉
=
√
χ−χ+

(
−2yBC

m + 2yBD
m + 2yCE

m − 2yDE
m

)
+ χ−

(
yBB
m − 2yBE

m + yEE
m

)
+ χ+

(
yCC
m − 2yCD

m + yDD
m

)
Rewriting Eq.(2) in term of average point and pair cluster functions given by Eqs.(7) and (8), it is found that the

configurational enthalpy of mixing for quinary alloys can be expressed as a function of concentration cp and average
pair probabilities ypq

m by the following expression:

(9)

∆Hmix(~σ) = J0
1,1

〈
Γ0
1,1(~σ)

〉
+ J1

1,1

〈
Γ1
1,1(~σ)

〉
+ J2

1,1

〈
Γ2
1,1(~σ)

〉
+ J3

1,1

〈
Γ3
1,1(~σ)

〉
+ +J4

1,1

〈
Γ4
1,1(~σ)

〉
+

∑
m pairs

[
m11

2,mJ
11
2,m

〈
Γ11
2,m(~σ)

〉
+m12

2,mJ
12
2,m

〈
Γ12
2,m(~σ)

〉
+m13

2,mJ
13
2,m

〈
Γ13
2,m(~σ)

〉
+m14

2,mJ
14
2,m

〈
Γ14
2,m(~σ)

〉
+m22

2,mJ
22
2,m

〈
Γ22
2,m(~σ)

〉
+m23

2,mJ
23
2,m

〈
Γ23
2,m(~σ)

〉
+m24

2,mJ
24
2,m

〈
Γ24
2,m(~σ)

〉
+m33

2,mJ
33
2,m

〈
Γ33
2,m(~σ)

〉
+m34

2,mJ
34
2,m

〈
Γ34
2,m(~σ)

〉
+m44

2,mJ
44
2,m

〈
Γ44
2,m(~σ)

〉 ]
+
∑

triplets

· · ·

The ECI Jω parameters in five-component alloy MoNbTaVW system were obtained by mapping DFT energies
calculated for 428 bcc-like structures from different binaries, ternaries, quaternaries into the CE Hamiltonian in
Eq.(9) by using the structure inversion method (SIM) [33,34]. The fitting procedure was carried out using the ATAT
package [29] and the cross-validation error between DFT and CE energies was about 8 meV/atom. The values of 30
pair and 40 triple ECIs were reported in [11]. It is found that the dominant contributions to the pairwise energies
come from the first and second bcc nearest neighbor interactions whereas the third nearest-neighbor pair interactions
and the three-body interactions are significantly smaller. It is worth noting that the CE energy for multi-component
alloy in Eq.(9) represents a generalization of the Ising-like Hamiltonian where the only nearest neighbor interactions
between different species are taken into account, for example, in the case of four-component HEAs MoNbTaW [35].
The CE Hamiltonian can be used to perform quasi-canonical Monte-Carlo simulations in order to investigate free
energies of alloy formation from disorder to order phase transitions. The evaluations of the free energies involved
thermodynamic integration algorithm for computing the configurational entropies of alloys as it has been described in
detail previously [21]. More importantly, the chemical short-range order (SRO) parameters describing the occupational
derivations from the average random configuration at a local atomic scale can be evaluated from the CE free energies
of mixing and compared with available experimental data.
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III. SHORT RANGE ORDER PARAMETERS FOR MULTICOMPONENT ALLOY

The degree of chemical SRO influences both the configuration entropy and enthalpy of mixing in alloy complex. The
chemical SRO is absent in ideal solid solutions where atom species occupy sites randomly. It is common to describe
SRO in form of Warren-Cowley short-range order or pair-correlation parameters in the following formula [36]:

(10)αpq
2,m = 1− ypq

m

cpcq

Here we use the notation for the average concentration cp and the average pair probability for the mth nearest-
neighbor shell ypqm as they have been defined from Eqs.(5) and (6), respectively. Note that P pqm =ypqm /cp is the conditional
probability of finding atom q in the mth coordination shell surrounding the atom p. When αpq

2,m = 0 this describes
random alloys namely in this case elements p and q in the pair configuration m are found in the alloy system with a
probability equal to cpcq. In the case of αpq

2,m > 0 there is a tendency of clustering or segregation of p-p and q-q pairs

and for αpq
2,m < 0 there is a tendency of unlike pairs ordering p-q.

Short ranger order parameters can be expressed in terms of average point and pair correlation functions. The
expressions for the ypq

2,m in Eq.10 can be obtained from the inversion of the equations 8 and 7. For a five component
alloy system there are 10 distinct pair probability functions and their explicit formulas are below.

yAB
2,m =

1

50

[
−(κ+ 3)

〈
Γ1
1,1

〉
+
√

2
√
κ+ 5

(
2
(〈

Γ12
2,m

〉
+
〈
Γ23
2,m

〉)
−
〈
Γ2
1,1

〉)
+
√

10− 2κ
(
2
(〈

Γ14
2,m

〉
+
〈
Γ34
2,m

〉)
−
〈
Γ4
1,1

〉)
+ (κ− 3)

〈
Γ3
1,1

〉
+ 2(κ− 1)

〈
Γ11
2,m

〉
− 4

〈
Γ13
2,m

〉
− 2(κ+ 1)

〈
Γ33
2,m

〉
+ 2
]

(11a)

(11b)
yAC
2,m =

1

50

[
(κ−3)

〈
Γ1
1,1

〉
+
√

10− 2κ
(
2
(〈

Γ12
2,m

〉
+
〈
Γ23
2,m

〉)
−
〈
Γ2
1,1

〉)
+
√

2
√
κ+ 5

(〈
Γ4
1,1

〉
−2
(〈

Γ14
2,m

〉
+
〈
Γ34
2,m

〉))
− (κ+ 3)

〈
Γ3
1,1

〉
− 2(κ+ 1)

〈
Γ11
2,m

〉
− 4

〈
Γ13
2,m

〉
+ 2(κ− 1)

〈
Γ33
2,m

〉
+ 2
]

(11c)
yAD
2,m =

1

50

[
(κ−3)

〈
Γ1
1,1

〉
+
√

10− 2κ
(〈

Γ2
1,1

〉
−2
(〈

Γ12
2,m

〉
+
〈
Γ23
2,m

〉))
+
√

2
√
κ+ 5

(
2
(〈

Γ14
2,m

〉
+
〈
Γ34
2,m

〉)
−
〈
Γ4
1,1

〉)
− (κ+ 3)

〈
Γ3
1,1

〉
− 2(κ+ 1)

〈
Γ11
2,m

〉
− 4

〈
Γ13
2,m

〉
+ 2(κ− 1)

〈
Γ33
2,m

〉
+ 2
]

yAE
2,m =

1

50

[
−(κ+ 3)

〈
Γ1
1,1

〉
+
√

2
√
κ+ 5

(〈
Γ2
1,1

〉
− 2

(〈
Γ12
2,m

〉
+
〈
Γ23
2,m

〉))
+
√

10− 2κ
(〈

Γ4
1,1

〉
− 2

(〈
Γ14
2,m

〉
+
〈
Γ34
2,m

〉))
+ (κ− 3)

〈
Γ3
1,1

〉
+ 2(κ− 1)

〈
Γ11
2,m

〉
− 4

〈
Γ13
2,m

〉
− 2(κ+ 1)

〈
Γ33
2,m

〉
+ 2
]

(11d)

(11e)
yBC
2,m =

1

25

[〈
Γ1
1,1

〉
−
√

2κ+ 5
(〈

Γ2
1,1

〉
+
〈
Γ14
2,m

〉)
+
√

5− 2κ
(〈

Γ4
1,1

〉
−
〈
Γ23
2,m

〉)
+
〈
Γ3
1,1

〉
−
〈
Γ11
2,m

〉
−
√

10− 2κ
〈
Γ12
2,m

〉
+ 3

〈
Γ13
2,m

〉
+ κ

〈
Γ22
2,m

〉
− κ

〈
Γ24
2,m

〉
−
〈
Γ33
2,m

〉
+
√

2
√
κ+ 5

〈
Γ34
2,m

〉
− κ

〈
Γ44
2,m

〉
+ 1
]

(11f)

yBD
2,m =

1

100

[
4
〈
Γ1
1,1

〉
− 4
√

5− 2κ
〈
Γ2
1,1

〉
+ 4

〈
Γ3
1,1

〉
− 4
√

2κ+ 5
〈
Γ4
1,1

〉
− 4

〈
Γ11
2,m

〉
+
√

2
√
κ+ 5

(
−4
〈
Γ12
2,m

〉
+ (κ− 3)

〈
Γ14
2,m

〉
+ (κ+ 1)

〈
Γ23
2,m

〉)
+ 4

(
3
〈
Γ13
2,m

〉
− κ

〈
Γ22
2,m

〉
+ κ

〈
Γ24
2,m

〉
−
〈
Γ33
2,m

〉
−
√

10− 2κ
〈
Γ34
2,m

〉
+ κ

〈
Γ44
2,m

〉)
+ 4
]

(11g)yBE
2,m =

1

50

[
−2(κ− 1)

〈
Γ1
1,1

〉
+ 2(κ+ 1)

〈
Γ3
1,1

〉
− (κ− 3)

〈
Γ11
2,m

〉
− 4

〈
Γ13
2,m

〉
− (κ+ 5)

〈
Γ22
2,m

〉
− 4κ

〈
Γ24
2,m

〉
+ (κ+ 3)

〈
Γ33
2,m

〉
+ (κ− 5)

〈
Γ44
2,m

〉
+ 2
]
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(11h)yCD
2,m =

1

50

[
2(κ+ 1)

〈
Γ1
1,1

〉
− 2(κ− 1)

〈
Γ3
1,1

〉
+ (κ+ 3)

〈
Γ11
2,m

〉
− 4

〈
Γ13
2,m

〉
+ (κ− 5)

〈
Γ22
2,m

〉
+ 4κ

〈
Γ24
2,m

〉
− (κ− 3)

〈
Γ33
2,m

〉
− (κ+ 5)

〈
Γ44
2,m

〉
+ 2
]

(11i)

yCE
2,m =

1

100

[
4
〈
Γ1
1,1

〉
+ 4
√

5− 2κ
〈
Γ2
1,1

〉
+ 4

〈
Γ3
1,1

〉
+ 4
√

2κ+ 5
〈
Γ4
1,1

〉
− 4

〈
Γ11
2,m

〉
−
√

2
√
κ+ 5

(
−4
〈
Γ12
2,m

〉
+ (κ− 3)

〈
Γ14
2,m

〉
+ (κ+ 1)

〈
Γ23
2,m

〉)
+ 4

(
3
〈
Γ13
2,m

〉
− κ

〈
Γ22
2,m

〉
+ κ

〈
Γ24
2,m

〉
−
〈
Γ33
2,m

〉
+
√

10− 2κ
〈
Γ34
2,m

〉
+ κ

〈
Γ44
2,m

〉)
+ 4
]

(11j)
yDE
2,m =

1

25

[〈
Γ1
1,1

〉
+
√

2κ+ 5
(〈

Γ2
1,1

〉
+
〈
Γ14
2,m

〉)
+
√

5− 2κ
(〈

Γ23
2,m

〉
−
〈
Γ4
1,1

〉)
+
〈
Γ3
1,1

〉
−
〈
Γ11
2,m

〉
+
√

10− 2κ
〈
Γ12
2,m

〉
+ 3

〈
Γ13
2,m

〉
+ κ

〈
Γ22
2,m

〉
− κ

〈
Γ24
2,m

〉
−
〈
Γ33
2,m

〉
−
√

2
√
κ+ 5

〈
Γ34
2,m

〉
− κ

〈
Γ44
2,m

〉
+ 1
]

where κ =
√

5. Substituting Eqs.(11) into (10), the full set of ten different chemical SRO parameters αpq2,m can
be calculated using both point and pair correlation functions generated by the Monte-Carlo simulations with the
ECIs. The numerical value of each of the cluster correlation functions are obtained from the cluster expansion of the
Hamiltonian in combination with Monte Carlo simulations as a function of temperature. The resulting Warren-Cowley
SRO parameters : αAB

2,m, αAC
2,m,...,αED

2,m as a function of alloy temperature for equimolar HEAs Mo-Nb-Ta-V-W will be
analyzed in the next section.

IV. APPLICATION HIGH ENTROPY ALLOY MO-NB-TA-V-W

-0.14
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-0.1

-0.08

-0.06

-0.04

 500  1000  1500  2000  2500  3000

E
m

ix
 (

eV
)

T(K)

Mo-Nb-Ta-V-W
Mo-Ta-V-W
Mo-Nb-V-W

FIG. 1: Enthalpy of mixing of the three equimolar HEAs: quinary Mo-Nb-Ta-V-W and quaternaries Mo-Ta-V-W, Mo-Nb-V-W,
as a function of temperature.

Using the effective cluster interactions (ECI) computed for quinary system Mo-Nb-Ta-V-W [11] the energetically
favorable atomic configurations are investigated as a function temperature and alloy composition using quasi-canonical
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Monte-Carlo simulations. Fig. 1 shows the evolution of mixing enthalpy as a function of temperature from 3000 K for
the equimolar quinary Mo-Nb-Ta-V-W system as well as for the two quaternary sub-systems: Mo-Ta-V-W and W-
Nb-V-W. These pre-melting configurations were generated by random numbers for the case of large systems whereas
for the case of smaller simulation cell special quasi-random structures (SQSs) can be used [37]. Inflection points
from the temperature curve of enthalpy of mixing indicate order-disorder phase transformations from solid solution
phase into different non-random configurations. From Fig.1, at temperatures below 750 K, a partially ordered phase
is thermodynamically more stable than the equimolar solid-solution random configuration. For the two sub-system
alloys, it is found that the enthalpy of mixing for HEAs in the presence of Mo-Ta binaries, namely Mo-Ta-V-W, is
significantly lower not only than the those for the Mo-Nb-V-W where Ta element is absent, but also in a comparison
with quinary Mo-Nb-Ta-V-W system.

The simulated structure of this alloy system is generated at T=400K and depicted in Fig.2. Phase segregation or
clustering of Nb (in green) around the edges of the atomic cell and of V (in yellow) around the centre of the cell can
be seen clearly from the presented configuration implying that there are no chemical attractive interactions between
Nb and V atoms. The latter finding is consistent with our DFT calculations for bcc Nb-V alloy that the enthalpies
of mixing for this binary are positive in all the composition range from our DFT calculations. On the contrary the
chemical ordering of Mo-Ta (red and blue) can be appreciated on the left hand side face of the cubic cell that is in a
full agreement with the strong negative enthalpy of mixing for the bcc binary Mo-Ta system. More detailed analysis
of chemical SRO parameters will confirm the above observations.

FIG. 2: Atomistic configuration for equimolar Mo-Nb-V-Ta-W HEAs obtained from the present MC simulations at 400 K

For the five-component alloy, the SRO formulation presented in previous section can be applied to study order-
disorder trends of the high-entropy Mo-Nb-Ta-V-W system as a function composition and temperature. The
temperature-dependent evolution of ten different SRO parameters for the first nearest-neighbor (NN) shell for the
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equimolar composition is shown in Fig.3. In the high-temperature limit, it can be seen clearly from Fig.3 that all the
SRO parameters trend to zero value corresponding to the presence of ideal randomly single phase of solid solution
with the configuration entropy of mixing ∆Smix=-R

∑
p cplncp (where R is the gas constant). The latter expression is

conventionally used in the definition of HEAs [3]. In the temperature region lower than 750K, from Fig.3 it is found
that the SRO parameter for Mo-Ta pair, αMo-Ta

2,1 , becomes the most negative one. This indicates a strong probability
of having Ta atoms around a Mo atom in the first shell of the considered equimolar Mo-Ta-Ta-V-W bcc alloy. The
prediction of strong chemical SRO parameter for Mo-Ta pair is in a consistent agreement with the previous DFT
study for the first nearest-neighbor Mo-Ta bonding interaction in the quaternary equimolar Mo-Nb-Ta-W system [35]
and the present study of DFT data-base for the negative enthalpy of mixing in bcc binary Mo-Ta system. The next
and strong negative SRO parameter has been predicted for V-W pair from our MC simulation and it is followed
by the SRO parameter for Mo-Nb pair. Note that the negative SRO parameters for Mo-Ta, V-W and Mo-Nb are
in agreement with the energetically phase stability trend of bcc binary systems between groups V and VI from the
periodic table of elements [38]. It is interesting to find from Fig.3 that the SRO parameter for Mo-Nb pair becomes
positive at very low temperature showing that there is competition between Nb and Ta atoms to occupy the first
nearest-neighbor shell surrounding Mo atom in the five-component alloy. At low temperature region there is strong
tendency of segregation with the positive values of αNbV

2,1 , αMoW
2,1 and αTaV

2,1 namely for SRO parameters of the pairs
between elements of the same groups V or VI.
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FIG. 3: Evolution of 1NN short-range-order parameters in equimolar HEAs Mo-Nb-Ta-V-W as a function temperature.

Having said that it is worth mentioning here that the behavior of first nearest-neighbor SRO parameter in the
multi-component bcc-HEAs is much more complex than those predicted from the related binary system. For example,
interpretation of the favorable V-W and unfavorable Ta-W 1NN chemical bonding obtained from Fig.3 for the negative
αVW
2,1 and positive αTaW

2,1 value, respectively, at very low temperature seems to be quite different to those predicted by
the DFT calculations of the ground-state structure of B32 for V-W and B23 for Ta-W binary systems at equimolar
composition [39]. It is known that the 1NN environment in B32 structure is not fully favorable for the chemical
interaction in a comparison with those in the B2 or B23 structure. It is also important to emphasize again that
the present study provides atomistic configurations which have been generated from a set of ECIs which include not
only pair-wise interactions but also the triple effective cluster-expansion contributions in Eq.(9). This means that the
enthalpy of mixing for five-component system Mo-Nb-V-Ta-W and therefore the configuration entropy as well as the
free energy of mixing are certainly determined beyond the simple Ising model with first nearest-neighbor interaction
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parameter from the ten constituent binary systems. It can be seen from Fig.3 that the SRO parameters αTaW
2,1 , αNbW

2,1

and αMoV
2,1 are positive whereas the enthalpy of mixing for the corresponding binaries are negative but smaller than

those of the dominant Mo-Ta binary alloys. The complex behavior of interplay between the ten SRO parameters
as a function of temperature can be explained by the many-body effects of cluster interactions in stabilizing the
multi-component HEAs.

In order to cross-check the consistency of SRO expressions for the five component system, in particular the competi-
tion between transition metal elements Nb and Ta from group V in the quinary Mo-Nb-Ta-V-W, the SRO parameters
for the equimolar and quaternary sub-systems Mo-Ta-V-W and Mo-Nb-V-W are calculated and depicted in Fig.4 and
Fig.5, respectively. Mathematical derivation of the SRO parameters for a quaternary system (A-B-C-D) is carried
out by inverting formulas for the correlation functions to get the average pair probabilities (see Eq.10) in an similar
fashion as for the five component system. For a four component system the explicit results in αAB

2,m, αAC
2,m,...,αCD

2,m are
as follows.

(12a)αAB
2,m = 1−

−2
(〈

Γ1
1,1

〉
+
〈
Γ2
1,1

〉
− 2

〈
Γ12
2,m

〉
+
〈
Γ13
2,m

〉
−
〈
Γ23
2,m

〉)
−
〈
Γ33
2,m

〉
+ 1(

−2
〈
Γ1
1,1

〉
−
〈
Γ3
1,1

〉
+ 1
) (
−2
〈
Γ2
1,1

〉
+
〈
Γ3
1,1

〉
+ 1
)

(12b)αAC
2,m = 1−

−2
〈
Γ3
1,1

〉
− 4

〈
Γ11
2,m

〉
+
〈
Γ33
2,m

〉
+ 1(

1−
〈
Γ3
1,1

〉)
2 − 4

(〈
Γ1
1,1

〉)2
(12c)αAD

2,m = 1−
−2
(〈

Γ1
1,1

〉
−
〈
Γ2
1,1

〉
+ 2

〈
Γ12
2,m

〉
+
〈
Γ13
2,m

〉
+
〈
Γ23
2,m

〉)
−
〈
Γ33
2,m

〉
+ 1(

−2
〈
Γ1
1,1

〉
−
〈
Γ3
1,1

〉
+ 1
) (

2
〈
Γ2
1,1

〉
+
〈
Γ3
1,1

〉
+ 1
)

(12d)αBC
2,m = 1−

2
(〈

Γ1
1,1

〉
−
〈
Γ2
1,1

〉
− 2

〈
Γ12
2,m

〉
+
〈
Γ13
2,m

〉
+
〈
Γ23
2,m

〉)
−
〈
Γ33
2,m

〉
+ 1(

2
〈
Γ1
1,1

〉
−
〈
Γ3
1,1

〉
+ 1
) (
−2
〈
Γ2
1,1

〉
+
〈
Γ3
1,1

〉
+ 1
)

(12e)αBD
2,m = 1−

2
〈
Γ3
1,1

〉
− 4

〈
Γ22
2,m

〉
+
〈
Γ33
2,m

〉
+ 1(〈

Γ3
1,1

〉
+ 1
)
2 − 4

(〈
Γ2
1,1

〉)2
(12f)αCD

2,m = 1−
2
(〈

Γ1
1,1

〉
+
〈
Γ2
1,1

〉
+ 2

〈
Γ12
2,m

〉
+
〈
Γ13
2,m

〉
−
〈
Γ23
2,m

〉)
−
〈
Γ33
2,m

〉
+ 1(

2
〈
Γ1
1,1

〉
−
〈
Γ3
1,1

〉
+ 1
) (

2
〈
Γ2
1,1

〉
+
〈
Γ3
1,1

〉
+ 1
)

By using Eq.(12), the evolution of six SRO parameters in equimolar Mo-Ta-V-W sub-system is represented in Fig.4.
It is found that the most favorable chemical bonding between the Mo-Ta and V-W pairs in this quaternary sub-system
Fig.3 are consistent with the results obtained for the corresponding SRO parameters in equimolar Mo-Nb-Ta-V-W
system. Here the tendency of phase separation between Mo and W as well as Ta and V in the quaternary Mo-V-
Ta-W alloy at the low-temperature region (T 〈 750K) is also demonstrated by positive values of the corresponding
parameters αMoW

2,1 and αTaV
2,1 . Again the SRO parameters αTaW

2,1 , αMoV
2,1 become also positive at the low temperature

that is in agreement with the previous discussion for the quinary Mo-Nb-V-Ta-W alloys. Importantly, the opposite
feature between 1NN SRO parameters αVW

2,1 and αTaW
2,1 in a comparison with those found in the ground state of B32

and B23 structure for VW and TaW binary, respectively, discussed previously in the quinary system remains the
same in the quaternary Mo-Ta-V-W.
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FIG. 4: Dependence of 1NN short range order parameters for quaternary subsystem without Nb as a function of temperature.
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FIG. 5: Dependence of 1NN short-range-order parameters for quaternary subsystem without Ta as a function of temperature.
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In the absence of Ta, the six SRO parameters in the quaternary Mo-Nb-V-W sub-system are represented in Fig.5.
The most interesting result from this figure is that the chemical SRO between Mo and Nb αMoNb

2,1 is now dominantly

negative and in a strong competition with αVW
2,1 , instead of those for the Mo-Ta pair. This finding indicates the

preferred ordering between the Mo-Nb pairs that is a different behavior in a comparison with quinary Mo-Nb-V-Ta-W
and quaternary Mo-Ta-V-W alloys where it becomes positive at lower temperatures than 200K. On the other hand,
the SRO for V-W pair is also negative as in previously considered cases for the quinary and the quaternary HEAs.
Finally the SRO parameter for Nb-V pair, αNbV

2,1 , remains strongly positive for the quaternary Mo-Nb-V-W system in
a consistent with its behavior for the initial five-component alloy.

V. SECOND NEAREST-NEIGHBOR SRO EFFECTS

Figs.(3),(4),(5) represent SRO parameters in the first nearest-neighbor shell of the three considered HEAs. For a bcc
alloy where the first and second NN distances are very close to each other, the average SRO parameter corresponding
to the grouped shell of coordination z1+z2 is defined as

(13)αpq
1+2 =

z1α
pq
2,1 + z2α

pq
2,2

z1 + z2

where z1=8 and z2=6. Note that the average SRO papameter αpq
1+2 can be deduced experimentally with good

confidence from diffuse-neutron scattering measurements [40]. Figs.(6),(7),(8) show the dependence of all average
SRO parameters calculated for the equimolar HEAs Mo-Nb-Ta-V-W, Mo-Ta-V-W and Mo-Nb-V-W, respectively.

Comparing the results obtained from Fig.(6) for the average SRO parameters for both 1NN and 2NN, αpq
1+2, with

those presented in Fig.(3) for the first shell only, it is found a significant change in the SRO parameter for Mo-Ta pair
in the quinary HEAs. The second NN contribution to SRO parameter for the Mo-Ta pair becomes positive and the
resulting average SRO parameter, αMoTa

1+2 , is now reduced in low temperature region in a comparison with the 1NN

SRO parameter, αMoTa
2,1 . This confirms that in equimolar Mo-Nb-Ta-V-W HEAs, the presence of B2 phase where the

2NN shell contain only atoms of the same chemical species for Mo-Mo or Ta-Ta pairs are very favorable from the
short-range order consideration. A similar reduction in average SRO parameter for the Mo-Ta pair is also consistently
predicted in the quaternary alloys without the presence of Nb element (see Fig.(7)).
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FIG. 6: Dependence of average short-range-order parameters for quinary system as a function of temperature.
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FIG. 7: Dependence of average short-range-order parameters for quaternary subsystem without Nb as a function of temperature.

An other interesting result found by comparing Figs. (6) and (3) is that when the 2NN contribution is taken
into consideration, the average SRO parameters for the V-W pair become more dominant and comparable with the
corresponding values for Mo-W. By analyzing separately the contributions from the 1NN and 2NN, it is found that
the 2NN SRO parameter αVW

2,2 for V-W pair is negative in a large rage of temperatures and only becomes positive at
very low temperatures smaller than 100K. Therefore unlike Mo-Ta binary, the formation of B2-like phase for V-W
bcc-binary systems in the considered quinary HEA system is therefore only favorable at the low-temperature phase
transition. For temperatures higher than 100K the negative value of SRO parameter indicates the presence of unlike
V-W pairs in the 2NN. The latter finding seems to support the local chemical environment of the ordered B32 phase
which is the ground-state structure predicted by DFT calculations in the equimolar binary system [39]. A similar
analysis for average SRO parameter for V-W pair in the two quaternary sub-systems without Nb and Ta (see Fig.7
and 8, respectively) shows that the phase transition from the ordered-like B32 configuration to B2-like structure
occurs at the temperatures smaller than 200K.

Finally, by including the 2NN effects, the average SRO αTaV
1+2 for Ta-V pair (see Fig.7) and αNbV

1+2 - for Nb-V pair (see
Fig.8) are now clearly positive at the very low-temperature region of quaternay HEAs Mo-Ta-V-W and Mo-Nb-V-W,
respectively. Both of these SRO parameters remain strongly positive in quinary Mo-Nb-Ta-V-W system (see (6))
showing the segregation trend between Ta and V as well as between Nb and V. This predicted trend is consistent
with atomic configuration visualized in Fig.2.
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FIG. 8: Dependence of average short-range-order parameters for quaternary subsystem without Ta as a function of temperature.

VI. CONCLUSION

A theoretical formulation for the Warren-Cowley short-range order parameters has been systematically developed
for the five and four-component alloy systems. Their analytical expressions are written in terms of correlation
functions which can be computed from many-body cluster-expansion Hamiltonian in a combination with Monte Carlo
simulations using ECIs. As an application of the formulation, the dependence of SRO as a function of temperature
has been analyzed consistently for the equimolar quinary Mo-Nb-Ta-V-W and two of its quaternary sub-systems
(Mo-Nb-V-W and Mo-Ta-V-W) in bcc lattice. It is found that below temperatures of 750 K there is an order-disorder
phase transition from the high-temperature limit of ideal solutions to a non-random distribution of different chemical
species where the excess of configuration entropy terms come from non-zero values of SRO parameters. In general,
the SRO exists in HEAs structures that show a preference of a particular pair of atoms to occur as first neighbors. In
the present study, a strong negative SRO parameter has been predicted for Mo-Ta pair in quinary Mo-Nb-Ta-V-W
and quaternary Mo-Ta-V-W HEAs. The origin of this phenomenon comes from the negative enthalpy of mixing and
therefore the effective first-nearest neighbor interaction between Mo and Ta in the bcc binary system in our DFT
data base calculations for the CE Hamiltonian. It is also in an agreement with previous ab-initio analysis for phase
transition between the disordered (A2) to the ordered (B2) phases [35] as well as electronic structure calculations
for the quaternary Mo-Nb-Ta-W system [41]. For the case of quaternary Mo-Nb-V-W HEAs where there are no Ta
atoms, it is found that the chemical preference for a Mo-Nb pair becomes dominant in the first nearest neighbor and
therefore its SRO is strongly negative at low temperature. For all the three considered HEAs, the chemical SRO
parameter for W and V pair is also predicted to be strongly negative and consistently preferable in the first neighbor
of the bcc lattice. It is important to note that the values of three SRO parameters, αMoTa

2,1 , αMNb
2,1 , αWV

2,1 , represent
the chemical bonding of transition metals between the group V and VI in the periodic table of elements and their
negative values can be understood from the analysis of mixing enthalpy in the corresponding binary systems.

The analytically calculated Warren-Cowley SRO parameters for other pairs in the equimolar quinary and quater-
nary systems are positive at low temperature showing different degrees of phase segregation between them in first
nearest neighbors. While the positive values of αMoW

2,1 , αNbTa
2,1 , αNbV

2,1 and αTaV
2,1 can be explained from the fact that

thermodynamically the chemical bonding is not favorable for bcc binary between transition metal elements from the
same group V or VI, the separation between Nb-W, Ta-W and Mo-V pairs in HEAs are not directly related to the
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mixing enthalpy values of their binaries. The complex trend of SRO parameters in multi-component alloys there-
fore can only be explained from the cluster-expansion Hamiltonian model which goes beyond the nearest-neighbor
pair-wise approximation in the present study.

A further investigation of SRO parameters by including the 2NN shell in bcc alloys confirms the formation of
favorable B2 phase for the Mo-Ta binaries in both quinary and quaternary systems. The investigation for V-W pair
shows that the average SRO parameter becomes comparably negative to those for Mo-Ta pair.The formation of B2-
like, where the 1NN and 2NN SRO parameters have the opposite signs, is only favorable for the V-W in the considered
HEAs at very the low temperatures, namely lower than 100K for the quinary and 200K for the quaternary systems.
At higher temperatures, both 1NN and 2NN SRO parameters for V-W pair are found to be negative indicating a
similar local environment of the ground-state B32 phase which has been predicted previously in the corresponding
bcc binary system. The average SRO parameters for both 1NN and 2NN pairs confirm a clear trend of segregation
between Nb and V (or Ta and V) elements from the group V of bcc transition metal series.

Finally, it is noted that the SRO phenomenon considered in this work describes the degree of local deviation from
the average on a local scale in term of chemical occupation. The displacive deviation due to atomic size effects is
not considered here although a generalized theory of SRO from first-principles calculations can be taken into account
[11,42,43]. It would be very desirable to compare the present theoretical data for SRO in Mo-Nb-Ta-V-W with a
detailed experimentally detectable analysis of local chemical order, for example, from neutron diffraction experiment
first produced in [44].
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