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Abstract. We develop a Spin-Lattice Dynamics (SLD) simulation model for ferromagnetic iron
where atoms are treated as classical particles with spins. The atoms interactvia many-body forces
as well asvia spin-orientation-dependent forces of the Heisenberg form. The coupling between the
lattice and the spin degrees of freedom is described by acoordinate-dependentexchange function.
An algorithm for integrating the spin-lattice dynamics equations of motion is based on the 2nd
order Suzuki-Trotter decomposition for the non-commuting Liouville evolution operators for atomic
coordinates and spins. The notions of the spin thermostat and the spin temperature are introduced
through a combined application of the Langevin spin dynamics and the fluctuation-dissipation
theorem. Several applications of the new method described in the paper illustrate the significant
effect of the spin degrees of freedom on the dynamics of atomic motion in iron and iron-based alloys,
and confirm that the Spin-Lattice Dynamics approach provides a viable framework for performing
realistic large-scale simulations of magnetic materials.
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INTRODUCTION

Modelling dynamical processes occurring in steels at high temperature or/and under ir-
radiation is one of the major mathematical challenges in the field of advanced nuclear
and fusion materials. Steels are very unusual systems in that their properties are deter-
mined by the magnetism of iron and solute (e.g. chromium or nickel) atoms or, in other
words, by the effects of electron exchange and correlations. Probably the most convinc-
ing argument confirming the pivotal role played by the exchange and correlation effects
comes from the fact that the body-centred cubic (bcc) crystal structure of iron itself is
anomalous. A simple examination of the Periodic Table shows that in the absence of
magnetism iron would adopt the hexagonal closed packed (hcp) structure, and hence the
stabilization of its bcc structure is a magnetic phenomenon [1, 2, 3]. The structure of
radiation defects in transition metals also reflects this magnetic anomaly, with a self-
interstitial atom defect in iron adopting the〈110〉 dumbbell configuration whereas in all
the non-magnetic bcc metals a self-interstitial atom defect is a〈111〉 crowdion [4, 5].



The main challenge associated with modelling steels is the fact that their structural
and mechanical properties are determined by magnetism. This requires developing new
physical approximations and mathematical algorithms capable of describing the entire
complexity of phenomena resulting from the interplay between magnetism and elastic
deformations, phase transformations, the finite temperature effects, excitation of spin
waves and spin-phonon interactions, and the presence of magnetic solute atoms and
impurities. In this paper we make the first step towards addressing this complexity by
implementing a new method for the treatment of linked dynamics of kinematic motion
of atoms and precession of spins.

In a transition metal the angular moments (spins) of atoms and the associated mag-
netic moments are formed due to the intra-atomic exchange interaction betweend-
electrons in the partially filled atomicd-shells, see e.g. [6]. According to Hund’s rule,
the total moment of an isolated atom is maximum subject to the constraint that the total
number ofd-electrons in an atom is constant. For example, an individual iron atom con-
taining sevend-electrons has the magnetic moment of 3µB in agreement with the fact
that the difference between the total number of electrons in the full spin-up sub-shell,
containing fived-electrons, and the spin-down sub-shell containing the remaining two
electrons, equals three. In a transition metal, thed-electrons (or, more precisely,s- and
d-electrons) are hybridized and hence become itinerant, hopping (or tunneling) from
one lattice site to another. The interplay between the effect of intra-atomic exchange and
inter-atomic quantum hopping affects the magnitudes of atomic moments and results in
ordering the directions of moments, which adopt a ferromagnetic, or an antiferromag-
netic, or a complex non-collinear magnetic configuration.

In this paper, we develop a reformulation of molecular dynamics that includes the spin
degrees of freedom, and treats the coupled spin and lattice excitations within a unified
simulation framework, taking into account the coordinates of atoms and the orientations
of atomic spins as independent variables. The equations of motion are derived from the
generalized Heisenberg Hamiltonian where the exchange coupling function is fitted to
the ab-initio data, and where the scalar part of the interatomic interaction is given by
the magnetic potential [8, 9, 10]. These equations form the basis for the Spin-Lattice
Dynamics (SLD) algorithm. They are integrated using the 2nd order Suzuki-Trotter
decomposition (STD) scheme for the non-commuting Liouville evolution operators
for the lattice and the spin degrees of freedom. The position of each atom and the
direction vector of the atomic spin are determined at each simulation time step. The
coordinate dependence of the exchange coupling function links evolution of the spin and
the lattice subsystems, and is responsible for the spin-orientation-dependent part of the
inter-atomic forces. The "spin temperature" is introduced using the stochastic Langevin
dynamics approach combined with the fluctuation-dissipation theorem.

In this paper we describe the fundamentals of the SLD algorithm and apply it to a
micro-canonical ensemble simulation of adiabatic relaxation of a periodic array of 180◦
domain-walls in ferromagnetic bcc iron, and then to a canonical ensemble simulation of
various finite-temperature magnetic properties, investigated using a method that treats
the exchange of energy and angular momentum with the thermal bath (reservoir). We
show that the SLD approach provides a suitable framework for evaluating the equilib-
rium nearest-neighbour atom spin-spin correlation functions as well as time-dependent
autocorrelation functions of spin orientations.



THE SPIN-LATTICE DYNAMICS EQUATIONS

Magnetism is a signature of the fact that electrons in a material interact. For a non-
interacting system of electrons the Hamiltonian is independent of the spin variable. The
energies of eigenstates of this Hamiltonian are also independent of the spin of electrons,
and so is the density of states

D(E) = ∑
α

δ (E−Eα). (1)

HereEα are the spin-independent energies of eigenstates, and summation is performed
over all the eigenstates{α} of the system. The energy of the system of non-interacting
electrons can be trivially evaluated by integrating the density of states up to the Fermi
energy, viz.

Etot = 2
∫ εF

D(E)dE, (2)

whereεF is the Fermi energy, and the factor of 2 comes from summation over spins. The
only practical problem associated with the evaluation ofEtot and with the development
of a numerical scheme for molecular dynamics simulations consists in finding a suitable
approximation forD(E). This may be accomplished for example by using the tight-
binding approximation and the Green’s functions approach, see for example [1].

The treatment of interacting electrons presents an incomparably more difficult prob-
lem and hence "few subjects in science are more difficult to understand than mag-
netism1" [11]. A general property of an interacting electron system, as opposed to a
non-interacting one, is the appearance of low energy scales [12]. This remarkable phe-
nomenon is based on the fact that in an ordinary non-magnetic metal the characteristic
energy scale for electronic excitations is provided by the bandwidth. This quantity is
of the order of 5 eV and the associated temperature scale is of the order of 50000K.
Excitations in a system of interacting electrons are characterized by temperatures many
orders of magnitude lower, for example the Curie temperature of iron is 1043K. Hence,
to model the microscopic behaviour of iron at a finite temperature one must include in
the treatment both the coordinate and the spin degrees of freedom.

The collective coordinate degrees of freedom in a system of interacting atoms are
the low energy phonon excitations, whereas the collective low-energy excitations in a
system of interacting electrons are spin waves. Hence the (relatively) low temperature
dynamics of iron can be well described using the coordinate and spin variables rep-
resenting these excitations. The above argument also highlights the limitations of the
mean-field Stoner model that does not describe the low-energy collective magnetic ex-
citations. For example the relation between the electronic structure and the magnetic
susceptibility is entirely different from that predicted by the Stoner model [13].

1 Encyclopedia Britannica, 15th Edition, 1989



The Spin-Lattice Dynamics model investigated in this paper uses the classical spin-
lattice Hamiltonian function [6, 7]

H({pi},{Ri},{ei}) = ∑
k

p2
k

2mk
+U(R1,R2, ...,RN)− 1

2 ∑
i, j,i 6= j

Ji j (R1,R2, ...,RN)ei ·ej ,

(3)
whereRi andpi are the coordinates and the momentum of atomi, andei is the unit
vector of atomic spin.Ji j (R1,R2, ...,RN) is the coordinate-dependent exchange function.
The dynamics of the system is now 8-dimensional since in addition to the six degrees
of freedom per atom in the coordinate and the momentum space we now have two
additional degrees of freedom for the direction of the atomic angular momentum. The
equations of motion for atoms and spins (the Spin-Lattice Dynamics, or SLD, equations)
now have the form

dRk

dt
=

pk

mk

dpk

dt
= − ∂U

∂Rk
+

1
2

∂
∂Rk

∑
i, j,i 6= j

Ji j (R1,R2, ...,RN)ei ·ej

Πk
dek

dt
= ek×Hk, (4)

where Hk = ∑i,i 6=k Jik(R1,R2, ...,RN)ei and Πk is the classical intrinsicmechanical
angular momentum associated with atomk. These equations may be derived quantum-
mechanically using the Heisenberg operator formalism. In the classical limit where the
magnitude of atomic spinΠk is many times the spin of a single electron, the system
of atomsand spins evolves along the classical trajectories given by the solutions of
differential equations (4).

CONSTRAINTS IMPOSED BY THE CONSERVATION LAWS

In this section we show that solutions of the SLD equations (4) satisfy the total energy
and total angular momentum conservation laws, which in some cases strongly affect the
dynamical behaviour of the system, preventing it from approaching a thermodynami-
cally equilibrium configuration even in the macroscopic limit. First, consider the energy
conservation law. The energy of the system is given by an expression similar to (3) where
Ri(t), pi(t), andei(t) are now the solutions of the SLD equations (4), namely

E(t) = ∑
k

p2
k(t)

2mk
+U(R1(t), ...,RN(t))− 1

2 ∑
i, j,i 6= j

Ji j (R1(t), ...,RN(t))ei(t) ·ej(t). (5)

The time derivative ofE(t) is

dE(t)
dt

= ∑
k

pk(t)
mk

dpk

dt
+∑

l

∂U
∂Rl

dRl

dt
− 1

2 ∑
i, j,i 6= j

∑
l

∂Ji j

∂Rl

dRl

dt
ei(t) ·ej(t)



− 1
2 ∑

i, j,i 6= j

Ji j
d
dt

(
ei(t) ·ej(t)

)
. (6)

The first three terms in the right-hand side of this equation cancel each other in accord
with the SLD equations of motion (4) forRi(t), pi(t), andei(t). The fourth term is

1
2∑

i, j
Ji j

d
dt

(
ei(t) ·ej(t)

)
=

1
2∑

i, j
Ji j

[
1

Πi
∑
l

Jli (ei×el ) ·ej +
1

Π j
∑
l

Jl j ei ·
(
ej ×el

)
]

=
1
2∑

i, j
Ji j

1
Πi

∑
l

Jli (ei×el ) ·ej +
1
2∑

i, j
Ji j

1
Π j

∑
l

Jl j ei ·
(
ej ×el

)

=
1
2∑

i, j
Ji j

1
Πi

∑
l

Jli (ei×el ) ·ej +
1
2∑

i, j
Jji

1
Πi

∑
l

Jli ej · (ei×el )

= ∑
i, j,l

1
Πi

Jil Ji j (ei×el ) ·ej = ∑
i

1
Πi

(
ei×

[
∑
l

Jil el

])
·
[
∑

j
Ji j ej

]

= ∑
i

1
Πi

(ei×H i) ·H i = 0. (7)

In the last equation, we used the fact thatJi j = Jji and that for any two vectorsA and
B the scalar vector product of the formA · (B×A) vanishes. This shows that the total
energy of the system remains constant while the individual energies of the lattice or the
spin subsystems vary as a function of time.

Similarly, by considering the time derivative of the total angular momentum of the
system∑i Πiei(t) we find that for pure spin dynamics this quantity is also conserved.
We prove this by a series of transformations involving the transposition of summation
indices, namely

d
dt ∑i

Πiei(t) = ∑
i,l

Jli (ei×el ) = ∑
i,l

Jil (el ×ei) =−∑
i,l

Jil (ei×el ) =−∑
i,l

Jli (ei×el ) = 0,

(8)
where we noted thatJli = Jil and that for any two vectorsA andB their vector product
changes sign if the vectors are transposedA×B =−B×A.

The total angular momentum conservation law imposes an unusually severe constraint
on the dynamics of evolution of the spin system. Indeed, imagine a case where initially
all the atomic spins pointed upwards. Since this configuration corresponds to the maxi-
mum possible vertical projection of the total angular momentum, and since the dynamics
of the system, even in the case where interaction with the lattice is present, conserves the
total angular momentum, the spin of every atom is constrained and has to remain station-
ary and independent of time during the entire simulation. Numerical studies performed
for a microcanonical ensemble and described below confirm this finding.

In terms of the general methodology of atomistic simulations this is a very unusual
point. In the field of molecular dynamics simulations, it is generally believed that the best
strategy for maintaining accuracy is to perform a microcanonical simulation for a very
large system. The argument about the conservation of the total angular momentum given
above shows that fundamentally this strategy does not apply to Spin-Lattice Dynamics.



The fact that the SLD equations (4) conserve the total energy and, in the case of
the spin subsystem, the total spin angular momentum, shows that interaction between
a system of magnetic atoms and the thermostat (i.e. the thermal bath or the thermal
reservoir) has to involve the exchange of energyandangular momentum. Since the spin
and the lattice subsystems are linked, it is natural that this interaction should proceed
through the spin rather than through the lattice subsystem. Indeed, the spin subsystem
can exchange both the angular momentum and energy with the thermal reservoir while
the lattice subsystem can only exchange energy. We consider this point in detail below,
after investigating a microcanonical ensemble simulation where dynamical evolution of
a closed large system of magnetic atoms is followed on a nanosecond timescale.

THE INTEGRATION ALGORITHM

A prime criterion for the choice of a numerical integration algorithm is its performance
with respect to the energy and angular momentum conservation in a large-scale simula-
tion performed over a relatively long interval of time. Our preliminary studies showed
that that standard predictor-corrector methods did not conserve the energy and angular
momentum satisfactorily. In this work we adopt the symplectic Suzuki-Trotter decom-
position (STD) integration algorithm investigated in connection with spin dynamics by
Omelyanet al. [14, 15] and Tsaiet al. [16, 17]. Omelyanet al.and Tsaiet al.used inte-
gration schemes based on the 2nd order STD for the non-commuting Liouville evolution
operators describing the spin and the lattice degrees of freedom. In comparison with the
4th-order Runge-Kutta method, the 2nd order STD has superior performance in terms
of the total energy and the total angular momentum conservation.

Consider the differential equations of motion of the formdx/dt = L̂x, whereL̂ is the
Liouville operator. The vector solution of these equations is given by the matrix exponent
x(t) = exp

(
L̂(t− t0)

)
x(t0) = exp

(
L̂(t− tN)

)
exp

(
L̂(tN− tN−1)

)
...exp

(
L̂(t1− t0)

)
x(t0),

wheret > tN > tN−1 > ... > t1 > t0. The second-order Suzuki-Trotter decomposition
formula states that if̂L = L̂A + L̂B then for a small time stepδ t

exp
(
(L̂A + L̂B)(δ t)

)
= exp

(
L̂A(δ t)/2

)
exp

(
L̂B(δ t)

)
exp

(
L̂A(δ t)/2

)
+O

(
(δ t)3) . (9)

Alternatively we may also write

exp
(
(L̂A + L̂B)(δ t)

)
= exp

(
L̂B(δ t)/2

)
exp

(
L̂A(δ t)

)
exp

(
L̂B(δ t)/2

)
+O

(
(δ t)3) .

For example, the velocity Verlet algorithm, which is one of the most often used methods
for integrating equations of conventional molecular dynamics, where the evolution of
the system involves only the coordinatesRi and momentapi of atoms, is equivalent to
the SDT of the form [16, 17]

exp
(
(L̂p + L̂R)(δ t)

)
= exp

(
L̂p(δ t)/2

)
exp

(
L̂R(δ t)

)
exp

(
L̂p(δ t)/2

)
+O

(
(δ t)3) ,

(10)
where

exp
(
L̂p(δ t)

){R(t),p(t)} = {R(t),p(t +δ t)}= {R(t),p(t)+F(t)δ t}



exp
(
L̂R(δ t)

){R(t),p(t)} = {R(t +δ t),p(t)}=
{

R(t)+
p(t)
m

δ t,p(t)
}

. (11)

In the case of SLD equations (4) the Liouville operator is given by the sum of
three termsL̂ = L̂e + L̂p + L̂R, and now several possible forms of the STD can
be used. Depending on how we order the Liouville evolution operators in the for-
mula for the STD, we can arrive at either the(p,R,e,R,p) decomposition [14, 15]
corresponding to the choice of the single-time-step Liouville operator of the form
exp

(
L̂p(δ t)/2

)
exp

(
L̂R(δ t)/2

)
exp

(
L̂e(δ t)

)
exp

(
L̂R(δ t)/2

)
exp

(
L̂p(δ t)/2

)
, or at the

(e,p,R,p,e) decomposition used in [16, 17]. Our simulations use the(e,R,p,R,e)
decomposition that minimizes the frequency of evaluation ofL̂p, which is the most time
consuming step of the algorithm. It is important to keep track of the non-commuting
spin evolution operators, since the correct application of the STD requires ordering
spins in accord with the way how they enter the Liouville operator. As opposed to
conventional molecular dynamics, in SLD each degree of freedom is coupled to all the
other degrees of freedom, making parallelizing the algorithm a challenging task. In
this work we have been able to address this problem, and all the calculations described
below were performed using an efficient parallel numerical integration scheme based
on the second-order STD.

MICROCANONICAL ENSEMBLE SIMULATIONS

We start with a simple case of a closed (microcanonical ensemble) system and inves-
tigate the dynamics of adiabatic spin-lattice relaxation of a periodic array of 180◦ do-
main walls. The scalar part of interatomic potential, which we take in the form given
in [8], together with the exchange function, fully define the dynamics of evolution of
positions and velocities of atoms and their spins, as well as how the magnitude of the
magnetic moments of an atom varies as a function of its position in a lattice. Evolution
of a closed system follows the conservative dynamics equations where both the energy
of the system and the total angular momentum stay constant during the simulation. The
simulations were performed for a system of 54000 atoms initially forming a regular bcc
lattice with lattice parametera = 2.8665Å. The initial dimensions of the cubic simula-
tion cell are30a×30a×30a with periodic boundary conditions applied alongx, y and
z. To follow the dynamics of adiabatic relaxation of a domain wall we chose the initial
spin configuration in the form where all the spins in the left hand side of the simulation
cell (0 < x < 15a) pointed upwards whereas the spins in the right hand side of the cell
(15a < x < 30a) pointed downwards. A full description of these simulations is given
elsewhere [18].

A microcanonical simulation provides a convenient means for investigating the trans-
fer of energy between the lattice and the spin subsystems. Figure 1 shows an example of
classical trajectories for the direction vector of an atomic spin and for the position vector
of an atom in the crystal lattice followed by integrating the SLD equations (4).

The simulations also show how the coordinate dependence of the exchange param-
eter facilitates the transfer of energy between the two subsystems. In a simulation of
the dynamics of adiabatic relaxation of a domain wall considered here we assumed that
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FIGURE 1. Trajectories of the two-dimensional direction vector of an atomic spin (a) and the three-
dimensional vector of atomic displacement from an equilibrium position in the lattice (b) calculated by
solving the SLD equations for a closed system of 54000 atoms initially thermalised at 300K and then
evolved according to the system of equations (4) integrated using the 2nd order Suzuki-Trotter decom-
position method. Note that the characteristic period of precession of an atomic spin is approximately an
order of magnitude shorter than the period of oscillations of an atom near an equilibrium position in the
crystal lattice.

initially the velocities of all the atoms were set to zero, and the energy was stored purely
in the spatially heterogeneous spin configuration of the domain wall. Fig. 2 shows that
initially the force associated with the spin-spin exchange term excites lattice vibrations
at the domain boundary. These vibrations remain coherent on the timescale of approx-
imately two periods of oscillations, each occurring on the Debye timescale of∼0.1 ps.
The lattice perturbation propagates through the simulation cell in the form of sound
waves which collide in the centre of the cell att ∼ 0.3 ps. The subsequent lattice relax-
ation gives rise to the rapid equipartitioning of the kinetic and the potential energy of
the lattice occurring on the 10 to 20 ps timescale. This equipartitioning of energy in the
lattice subsystem is driven primarily by the anharmonicity of thescalar interatomic po-
tential, and the resulting phonon-phonon interactions [19]. On this 10 to 20 ps timescale
the spin subsystem remains coupled to the lattice, but the effect of this coupling on the
rate of the intra-lattice equipartitioning of energy is relatively weak. On the same 10 to
20 ps timescale the spin subsystem evolves into a quisi-equilibrium configuration that
can be approximately described as an incoherent superposition of spin waves. Fig. 2
shows that the equipartitioning of energy in the combined spin-lattice system is char-
acterized by a much longer relaxation timescale of the order of a nanosecond. On this
timescale the two subsystems exchange energy, and this results in the eventual thermal-
isation of both the spins and the lattice. The process of spin-lattice thermalisation is
driven by the spin-phonon interaction occurring because the exchange parameter varies
as a function of the interatomic distance. The nanosecond timescale of the spin-phonon



FIGURE 2. Time evolution of the kinetic, potential and spin energies in a microcanonical ensemble
simulation of evolution of an initially atomically sharp domain wall. All the terms are shown with respect
to their initial values at the start of the simulation. Equipartitioning of the kinetic and potential energies in
the lattice subsystem results in that the two terms become almost indistinguishable fort ≥ 20ps. The weak
coupling between the lattice and the spin subsystems results in that the process of spin-lattice relaxation
found in this simulations occurs on a much longer timescale∼ 1 ns.

thermalisation found in our simulations agrees with analytical estimates given in [20].
This final slow spin-lattice thermalisation occurs subject to the condition that the total
angular momentum of the spin subsystem remains constant, as the total angular momen-
tum conservation law in the case of a microcanonical ensemble simulation imposes a
constraint on the possible modes of evolution of the spin subsystem.

THE LANGEVIN DYNAMICS OF SPINS

in addition to the use of an efficient integration algorithm, to perform a canonical
ensemble simulation we need to develop a method for controlling the temperature of
the system. We have already noted above that the spin subsystem does not thermalise
on its own in a microcanonical ensemble simulation because of the constraint imposed
by the law of conservation of the total angular momentum. In this respect, the dynamics
of a large closed system of interacting atomic spins is fundamentally different from
the dynamics of a large closed system of interacting atoms, where collisions between
the atoms eventually result in the statistical equilibration of positions and velocities. To
introduce the notion of the spin temperature, we replace the deterministic spin dynamics
equations considered above by the the stochastic Langevin-type equations of the form

Πk
dek

dt
= ek× (Hk +hk)−ηek× (ek×Hk), (12)

wherehk is a fluctuating random vector field satisfying the condition

〈hα(t ′)hβ (t ′′)〉= µδαβ δ (t ′− t ′′). (13)



0 500 1000 1500
0.0

0.2

0.4

0.6

0.8

1.0

 

 

<
e

i.e
 j>

 (
co

rr
el

at
io

n 
fu

nc
tio

n)


Temperature (K)

 1st N.N.
 2nd
 3rd
 4th

FIGURE 3. The spin-spin〈ei ·ej〉 equilibrium correlation functions evaluated for pairs of neighbouring
atoms using dynamical microcanonical simulations performed for spin-lattice systems initially equili-
brated at a given temperature. The spin-spin correlations vanish above the Curie temperature as the
distance between the pairs of atoms increases.

Here indicesα and β refer to the Cartesian coordinates, andη is a dimensionless
damping constant. In practical simulations the value of this damping constants was
chosen in the interval10−4 < η < 10−3. The random field and the damping term together
describe interaction between the spin subsystem and the thermal reservoir. This gives
rise to the exchange of energy and angular momentum between the spin subsystem and
the thermostat. The temperature of the spin subsystem is defined through the application
of the fluctuation-dissipation theorem. Following Brown, Jr. [21], we define the value
of the damping coefficientη by finding the energy distribution for the spin subsystem
from the corresponding Fokker-Planck equation, and by requiring that this distribution
is identical to the Gibbs distribution corresponding to a given temperature. This results
in a condition relating the amplitude of the random field and the damping term,

µ = 2ΠkkBTη , (14)

whereT is the absolute temperature of the spin thermostat. In the numerical implemen-
tation of the method, the fluctuating field is modelled using Gaussian random numbers.

CANONICAL ENSEMBLE SIMULATIONS

The critical temperature of a ferro-/paramagnetic phase transition corresponds to the
disappearance of long-range order in spin orientations. To investigate the short-range
directional order in the spin subsystem at equilibrium we investigated the spatial spin-
spin correlation functions in a fully thermalized ensemble. Fig. 3 shows the spatial spin-
spin correlation functions evaluated dynamically using the SLD algorithm for several
nearest neighbour (NN) atomic shells. Even for temperatures higher than the Curie
temperature correlations between directions of atomic spins persist for the 1st and 2nd
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FIGURE 4. The time autocorrelation functions of atomic spin direction vectors evaluated using micro-
canonical ensemble simulations for systems that were initially thermally equilibrated at a given tempera-
ture. Note the fluctuating behaviour of autocorrelation functions at short times.

nearest neighbours. The spin-spin correlation functions remain non-negative for all the
sites up to the 12th nearest neighbour investigated in this work.

To investigate the temporal fluctuations of directions of atomic spins at thermal equi-
librium, we evaluated the time-dependent spin direction autocorrelation functions by
performing NVE simulations for a thermally equilibrated ensemble. Fig. 4 shows the
oscillating behavior observed for short times, and associated with the rotation of spins
illustrated in Fig. 1. In the limitt → ∞ the autocorrelation functions asymptotically ap-
proach the square of the equilibrium value of the spin direction vector corresponding
to a given temperature. The amplitude of fluctuations increases with temperature due to
larger transverse projections spanned by the rotating spins. At around 700K the fluctu-
ations reach maximum and then gradually die out due to the ever increasing precession
angle and the increasing frequency of events of flipping of the spin direction vector. The
profiles of the time correlation functions vary depending on absolute temperature.

CONCLUSIONS

Large-scale molecular dynamics simulations of magnetic materials, such as ferromag-
netic iron, often neglect coupling between the spins (or magnetic moments) and the
lattice degrees of freedom of atoms. This restricts the applicability of simulations to
short timescales or to systems where the spin-lattice coupling is very small. A ther-
modynamically accurate simulation of a ferromagnetic material at a high temperature
requires treating the flow of energy between the lattice and the spin subsystems. This in
turn requires that the coupling between the spin and lattice dynamics should be explic-
itly considered in the treatment of dynamics of the system. In this paper the equations
of motion for both the coordinates of atoms and the direction vectors of atomic spins
are derived from a Hamiltonian expressed in terms of the magnetic interatomic poten-



tial and the Heisenberg spin-spin interaction with a pair-wise exchange function. Each
atom is considered as a classical particle with an intrinsic spin. The dynamics of atoms
is partially similar to that described by the conventional Molecular Dynamics equations,
but with additional degrees of freedom associated with the evolution of directions of
atomic spins. We call the new simulation approach the Spin-Lattice Dynamics (SLD) to
differentiate it from MD where the dynamics of atomic spins is neglected. The equations
of motion are integrated using the 2nd order Suzuki-Trotter decomposition for the non-
commuting Liouville evolution operators, and the spin temperature is introduced via a
combination of the Langevin spin dynamics and the fluctuation-dissipation theorem.
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