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The plasma position and shape on the COMPASS-D
tokamak have been controlled simultaneously with a 75-
kHz bandwidth, hard-wired, real-time neural network. The
primary network operates with up to 48 selected mag-
netic inputs and has been used in the vertical position
control loop to control the position of the upper edge of
the plasma at the radius of a reciprocating Langmuir
probe and to keep this constant during a programmed
shape sequence. One of the main advantages of neural
networks is their ability to combine signals from differ-
ent types of diagnostics. Two coupled networks are now
in use on COMPASS-D. A dedicated soft-X-ray network
has been created with inputs from 16 vertical and 16 hor-
izontal camera channels. With just four hidden units, it
is able to accurately determine three output signals de-
fining the plasma core radius, vertical position, and elon-
gation. These signals are fed to the primary network along
with selected magnetic inputs and four poloidal field coil

control current inputs. The core data are expected to help
characterize the equilibrium by providing information on
the Shafranov shift and gradient of elongation, related
to the equilibrium parametersbp and li . This network,
with 15 hidden units, is able to define 10 outputs capable
of giving a parameterized display of the plasma bound-
ary. This paper describes results from several networks
trained on various combinations of inputs with~a! sim-
ulated inputs and output values, where the precision of
the network can be tested;~b! experimental inputs and
calculated output values, where operational precision can
be tested; and~c! hardware networks, where real-time per-
formance can be tested. The results confirm that the neu-
ral network method is capable of giving excellent precision
in tokamak boundary reconstruction but that the neces-
sary accuracy in the experimental inputs for this task is not
easily achieved.

I. INTRODUCTION

Neural networks have become a standard part of the
armory of methods available for control systems since
the development of the multilayer perceptron method
10 yr ago.1 Recent reviews have been given in Ref. 2 on
control methods and in Ref. 3 on neural networks. In the

case of the control of plasma shape and position within a
tokamak, the problem of solving the Grad-Shafranov
equation4 to derive the plasma parameters from the di-
agnostic signals is too complex to perform on-line with
present-generation digital processors but can be solved
numerically to give an analysis of a particular experi-
mental case. Alternatively, as in the neural network im-
plementation used here, a series of numerical simulations,
in which the predicted diagnostic signals are calculated*E-mail: colin.windsor@ukaea.org.uk.
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off-line for a series of possible plasma positions and
shapes, can be used to form a training database. The neu-
ral network thus operates by performing a nonlinear map-
ping between the multidimensional input space of the
various diagnostic variables to an output space contain-
ing the desired parameters to be measured or controlled.
The method can be characterized as one of “learning by
example.” The operation of the method was described by
Bishop et al.,5 who implemented a real-time network on
the COMPASS-D tokamak based on magnetic diagnos-
tic inputs. Off-line analysis to derive plasma parameters
had been implemented earlier by Lister and Schnurren-
berger6 and Lister et al.7

Neural networks are not the only method capable of
learning by example from a database of representative
plasma equilibria. Function parameterization represents
a conventional approach to the same task. Both input and
output variables are linearly combined to derive their prin-
cipal components, which are then fitted using up to third-
order Hermitian polynomials. The method is fast enough
for on-line use. Work by Wijnands8 suggests that func-
tion parameterization is somewhat less accurate than neu-
ral networks, working from the same database.

II. COMPASS-D AS A TEST BED FOR ITER

Although smaller than the International Thermo-
nuclear Experimental Reactor~ITER! by a factor of;15,
the COMPASS-D tokamak at Culham Laboratory in the
United Kingdom is well suited to trial studies of plasma
position control. It mimics ITER in featuring a strongly
asymmetric divertor configuration with a single lower-
null X point. Unlike many larger facilities, it is small
enough to allow novel control diagnostics and systems
to be tested comprehensively. The plasma currents are
typically of the order of 200 kA, and theq95 values are in
the range of 2.5 to 6.0. We assume here that the param-
eter accuracies possible on COMPASS are relevant to
ITER when scaled by the factor 15. This should be gen-
erally true for the magnetic diagnostics because they scale
with the plasma current. It may be less true for the soft-
X-ray ~SX! signals. A problem with ITER is that its long
pulses and high levels of fast neutron radiation mean that
magnetic diagnostics close to the plasma may not be re-
liable in the long term. This study, therefore, considers
the alternatives of control current~CC! inputs, remote
flux loops ~FLs!, and SX emission.

COMPASS-D is driven by four independent poloi-
dal field current controllers, ignoring the fast vertical con-
troller. Although the circuits in which these currents flow
can be rearranged to give various field configurations,
all the simulated shots in the database used~and the real
shots analyzed during this study! corresponded to an
ITER-like, single-null divertor configuration. It is there-
fore valid to consider the use of CCs as diagnostic inputs.

Although COMPASS-D has several sets of magnetic
diagnostics, the present study considers only 5 FLs in-
stalled close to the plasma, 5 remote FLs at a distance
from the plasma roughly corresponding to the ITER outer
blanket wall, and 22 saddle loops~SAs! on the vacuum
vessel arranged in summed pairs from opposite quad-
rants of the torus. The remote loops are placed around
the outer mechanical structure of COMPASS-D. The sim-
ulations use flux difference measurements, where that
from the near-midplane signal~coil number 3! is sub-
tracted from all other signals, to give just four difference
signals. Figure 1 shows the positions of these coils in the
poloidal cross section compared with the COMPASS-D
vessel and CC coils.

Fig. 1. The poloidal cross section of the COMPASS-D toka-
mak at Culham showing the vessel boundary and struc-
ture and a typical plasma with lowerX point. The CC
windings are shown by the arrays of small squares, the
positions of the inner and outer FLs are shown by the
black circles with arrows, and the chordal views from
the individual channels of the horizontal and vertical
SX cameras are shown by the full lines.
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The other COMPASS diagnostics considered here are
the horizontal and vertical SX cameras. The 16 views
across the plasma given by each of the two cameras are
shown by the radiating lines in Fig. 1. X-ray emission
rises sharply with the plasma density and temperature and
so is most sensitive to the conditions in the center of the
plasma where these are highest. Absolute calibration of
the X-ray emission is complicated by the spectral sensi-
tivity and by the effects of impurities. However, the rel-
ative distribution of the X-ray emission intensity across
the camera field of view, simulated in Fig. 2 for a typical
X-point plasma, gives the radius and vertical position of
the core of the plasma. The ratio of the vertical and hor-
izontal widths of the X-ray emission gives a good mea-
sure of the core elongation, independently of the exact
functional form of the emission, as long as the contours
of the X-ray emission follow the poloidal flux surfaces.

III. THE OPERATION OF NEURAL NETWORKS

The 5 inner FLs and 22 SAs were first used in April
1994 as inputs for the hardware neural network used to
control such parameters as the position of the top of the
plasma surface at the radius of the reciprocating Lang-
muir probe. Figure 3 shows an example of both position

and shape control of the plasma. In this shot, a network
with just two output variables was used to stabilize the
vertical position of the plasma at the radius of the recip-
rocating probe, while the elongation was feedback con-
trolled to track a prescribed variation. Both parameters
were trained with offsets~1 in k and 0.05 m inZprobe!, so
that the output range of the neural network lay in the 0-
to 5-V range, where the hardware has optimal perfor-
mance. The network elongation output follows closely
the programmed variation, although the magnitude is a
little less due to loop gain effects.

Here, neural networks are used to evaluate the accu-
racy in selected plasma parameters that might be achiev-
able from various possible combinations of diagnostic
inputs. A neural network may be set up so that its outputs
provide a direct measure of those parameters that need to
be precisely controlled. For example, on ITER, four gaps
between the plasma boundary and the limiter, together
with the positions of the plasma strike points on the di-
verter target, might be chosen.9 For the present study, a
set of 10 parameters that are convenient for a parameter-
ized description of the plasma boundary and profile has
been defined. These are the plasma inner radiusRp, ver-
tical positionZp, minor radiusa, elongationk, triangu-
larity d, X-point radiusRx, vertical positionZx, core radius
Rc, vertical positionZc, and elongationkc. The present

Fig. 2. The chordal SX intensities from the simulated plasma equilibrium shown. The vessel is shown by the heavy line. The
plasma boundary is shown as described in Sec. III by the plasma inner radiusRp, vertical positionZp, minor radiusa,
elongationk, triangularityd, X-point radiusRx, and vertical positionZx. The pressure contours are centered on the core
radiusRc and vertical positionZc, with core elongationkc. The intensity histograms at the left and bottom of the figure
show the chordally integrated SX intensity for each of the corresponding channels.
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parameterization of the plasma boundary uses, for circu-
lar plasmas and the upper section ofX-point plasmas, the
positional variation as a function of poloidal angleu given
by

R~u! 5 Rp 1 a cos~u 1 d sinu! ;

Z~u! 5 Zp 1 ak sinu . ~1!

The lower section of anX-point plasma is defined by
an approximate polynomial function

~R 2 Rp 6 a! 5 6@A2~Z 2 Zp!2 1 A4~Z 2 Zp!4

1 A6~Z 2 Zp!6# , ~2!

where the coefficientsA2, A4, andA6 are evaluated so
that the boundary goes through the desiredRx,Zx and
through the midplane with the curvature calculated from
Eq. ~4!; i.e.,

A2 5
C

2
; A4 5

~30Rx 2 14CZx
2!

18Zx
4 ;

A6 5
~212Rx 1 5CZx

2!

18Zx
6 , ~3!

where the curvatureC at R0,Z0 is given by

C 5
~1 6 d!

ak2 . ~4!

This parameterization has the advantage of needing only
6 parameters and gives a reasonable description of an
X-point boundary, as shown in Fig. 2. It has the defect of
showing a slightly unphysical vertical boundary at the
plasma midplane. The SX emissionE was evaluated by
integration along the viewing chords through the plasma
with a parameterized pressure dependence, enhanced by
a power law variation of the formE 5 pn, where the
exponentn is at present set equal to 2, representing ap-
proximately the convolution of bremsstrahlung radiation
and the detector behavior. The ITER neutron emission
profile would similarly be a function of temperature and
density.

Figure 4 shows the parameterized plasma boundaries
for the 501 simulated shots in the database used. The data-
base contains both predicted diagnostic values and plasma
boundary parameters for each shape shown. One sees that
it covers a wide range of plasma shapes and positions. Net-
work training consists of continually presenting the train-
ing fraction of these simulated shots to the network and

Fig. 3. The control of both plasma shape and top surface position of COMPASS-D for shot 13804. The upper traces show the
elongation given by the network compared with the programmed variation as a function of the time in seconds. The lower
traces show the corresponding values for the vertical position of the plasma upper boundary at the radius of the recipro-
cating probe. The crosses represent the output of a filament code~DFIT! matched to the measured data.

Windsor et al. REAL-TIME ELECTRONIC NEURAL NETS

FUSION TECHNOLOGY VOL. 32 NOV. 1997 419



adjusting the;400 weights until the output parameters de-
scribing the plasma shape are as close as possible to their
targets. The actual number of weights used depends on the
number of inputsni , the number of hidden unitsnh, and the
number of outputsno. Including the threshold weights, it
is given byni ~nh 1 1! 1 nh~no 1 1! and varies from 133
for the smallest networks to 457 for the largest.

Networks considered for this study include the sin-
gle networks as follows:

case 1. 5 inner FLs only~5 FL!

case 2. 4 CCs only~4 CC!

case 3. 32 SX inputs only~32 SX!

case 4. 5 inner FLs and 4 CCs only~5 FL 1 4 CC!

case 5. 5 inner FLs and 21 SAs only~5 FL 1 21
SA!

case 6. 5 inner FLs and 32 SX inputs only~5 FL 1
32 SX!

case 7. 5 inner FLs, 32 SX inputs, and 4 CCs~5
FL 1 32 SX1 4 CC!.

Also considered are the following double networks, where
the first network consists of 32 SXs, giving 3 SX outputs
~SXOs! ~3 SXO!, Rc, Zc, andkc, which are fed to the
second network. The advantage of the double network is
that in its hardware implementation, the training and test-
ing of the SX network may be completely separated from
that of the main network:

case 8.Rc, Zc, kc, and 5 FLs only~3 SXO1 5 FL!

case 9.Rc, Zc, kc, and 4 CCs only~3 SXO1 4 CC!

case 10.Rc, Zc, kc, 4 CCs, and 5 inner FLs~3 SXO1
5 FL 1 4 CC!.

Fig. 4. The plasma boundaries for the 502 simulated shots in the database expressed through the 7 parameters:Rp, Zp, a, k, d, Rx,
andZx.
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For all the options, it is possible to estimate the theo-
retical accuracy achievable by the neural network for equi-
libria represented in the training database, which for this
purpose is divided into equal populations of training and
testing shots. The results from this case are considered in
Sec. IV for diagnostic inputs that are varied by a nominal
Gaussian distribution with a standard deviation of 2% to
allow for experimental uncertainties. However, they can-
not be trusted to represent the true experimental situa-
tion, where systematic experimental errors from alignment
uncertainties, integrator drift, incorrect SX modeling, and
various irradiation effects in ITER must be included.

The results described in Sec. V will include such ef-
fects in thecaseofCOMPASS-Dbyusingdiagnostic inputs
from actual shots. In this case, the true boundary param-
eters are not known and must be estimated from, for ex-
ample, putting a full set of close-in magnetic diagnostic
inputs into a filament inversion code and comparing the re-

sults with the boundary parameters predicted by the net-
work. Clearly, such a process compounds any error due to
the neural net prediction with the error from the filament
code inversion process itself. The process is not yet pos-
sible with networks involving the outer FLs. The results of
Sec. V will be presented for simulated networks, which
have been shown to mirror very closely the actual hard-
ware networks installed on COMPASS-D.

IV. THEORETICAL PLASMA BOUNDARY ACCURACY
EVALUATED FROM THE DATABASE

This section evaluates the mean accuracy of the
plasma boundary parameters~in millimetres! for
COMPASS-D for the various networks. Values scaled by
a factor 15 to correspond to the ITER case are also given.
The input data for each diagnostic have had a variable

Fig. 5. A schematic diagram of the double neural network as simulated and installed on COMPASS-D. The two SX cameras
define 32 inputs to a dedicated SX network. Its outputs are fed, together with remote magnetic FL and CC data, to the main
network, which evaluates the 10 plasma parameters shown.
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percentage of random Gaussian noise added to simulate
experimental errors. In the first instance, 0 or 2% was
added; however, for some cases, the spread in the SX
values was increased to 10% with a minimum spread of
;10% of the peak intensity. The networks were trained
for at least 10 000 iterations, which previous studies with
this database have shown to give adequate convergence.10

The 251 training examples in the database were pre-
sented to the network, and the performance quoted here
refers to the absolute error between the network predic-
tions and the true values for the 250 test examples in the
database.

An important parameter is the number of hidden units
in the network. Several tests10 have been made in which
the test performance is plotted against the number of hid-
den units. Generally, there is a shallow minimum at;8
to 16 hidden units for this type of problem, and values in
this range have been chosen in this study.

The estimate of the accuracy of the prediction of the
main boundary may be defined in units of millimetres
from the average accuracy achieved in the parametersRp,
Zp, a, and the productak. TheX-point position is usu-
ally less well characterized and will be separately de-
fined by the average accuracy ofRx andZx. The accuracy
of the three core parameters is defined from the average
accuracy achieved in the three lengthsRc,Zc, and the

productakc. These three averages will be used to define
the accuracy of the neural network predictions.

Table I confirms many intuitive concepts. The 5 FLs
alone, listed as case 1 in Table I, give a fair performance
with an error of the order of 5 mm in the boundary and
core dimensions and a larger~15-mm! error in theX-point
position. The 4 CCs alone~case 2! give 50% larger er-
rors but when included together with the FLs~case 4!
give significantly smaller errors. The 32 SX channels
alone~case 3! give poor boundary accuracy and very poor
X-point accuracy but excellent accuracy in the core di-
mensions, that is, a factor of 4 better than with the 5 FLs
alone. This accuracy is only reduced by 50% when the
simulated noise in the peak channel is increased by a fac-
tor of 5, and that in the wings is increased by an even
larger factor.

The good performance in the core parameters pro-
vides the rationale for the double networks, as illustrated
in Fig. 5. The first network analyzes only the SXs and has
just three output parameters defining the core radius, ver-
tical position, and elongation. The outputs of this first net-
work are fed along with other diagnostic inputs to the main
network defining the plasma boundary. The 10 outputs of
the main network give the parametersRp, Zp, a, k, d, Rc,
Zc, kc, Rx, andZx, defined in Sec. III. These parameters
are correlated in that, for example, the Shafranov shift, the

TABLE I

The Accuracy in the Plasma Parameters Achieved by the Neural Network Compared
with Their Database Values for Test Examples*

Case Single Network Inputs

X-Ray
Spread

~%!
Hidden
Units

Boundary
Error
~mm!

X-Point
Error
~mm!

Core
Error
~mm!

Scaled
Boundary

~mm!

Scaled
X Point
~mm!

Scaled
Core
~mm!

1 5 FLs 0 8 4.1 16.5 5.3 61.6 248.0 78.9
5 FLs 2 8 4.0 17.2 5.4 60.0 258.6 80.6

2 4 CCs 2 12 6.1 19.8 7.0 91.1 296.3 105.8
3 32 SXs 2 8 5.1 38.9 1.5 76.9 583.3 22.6

32 SXs 10 8 8.4 59.3 3.9 108.6 771.4 50.3
4 5 FL 1 4 CC 2 8 2.7 20.7 4.1 40.0 311.1 62.1
5 21 SA1 5 FL 8 2 2.2 17.4 3.1 33.0 261.4 46.0
6 32 SX1 5 FL 8 2 2.2 29.7 1.1 33.6 445.2 15.9
7 32 SX1 5 FL 1 4 CC 0 8 2.4 19.7 2.3 36.5 295.7 34.1

32 SX1 5 FL 1 4 CC 2 8 1.9 23.9 0.7 28.5 358.5 10.5
32 SX1 5 FL 1 4 CC 10 8 3.8 31.6 4.7 57.0 474.2 70.3

Double Network Inputs

8 3 SXO1 5 FL 2 41 8 3.4 33.4 2.8 51.4 501.2 42.5
9 3 SXO1 4 CC 2 41 6 4.0 20.4 2.7 59.3 306.8 39.8

10 3 SXO1 5 FL 1 4 CC 2 41 8 2.3 22.6 2.1 34.7 338.8 31.2

*The boundary error corresponds to the mean error in 4 boundary length parameters, theX-point error to that of the 2X-point
coordinates, and the core error to the 3 core length parameters, as defined in Sec. IV. The scaled values are multiplied by 15 to
correspond to the case of ITER.
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difference between the plasma magnetic and core radii, is
related to the aspect ratio and elongation. However, the hid-
den units of a neural network are able to use such corre-
lations to maximum advantage.

Figure 6 shows an example of the very good simu-
lation performance of this primary network for the case
of core elongation. The crosses show for test data the elon-
gation predicted by the network compared with the ac-

tual value. This network has an overall performance, as
shown in Table II, of;3-mm accuracy in the core posi-
tion and 0.01-mm accuracy in the core elongation.

There is evidently some cost in this procedure be-
cause a double network fed by 32 SX channels and 5 FLs
~case 8! has a significantly worse performance overall
than the single network with the same inputs~case 6!.
This is also seen in the comparison of networks for cases

Fig. 6. A comparison of the core elongation given by the output of the SX network, compared with its actual value. The crosses
denote the testing examples, and the diamonds denote the training examples.

TABLE II

Test Error in the Core Positions and Elongation for the 3-Output SX Network with the 32 SX Inputs Only*

Case
Spread

~%!
Hidden
Units

Radius Error
~mm!

Position Error
~mm!

Core
Elongation

Scaled Radius
~mm!

Scaled Position
~mm!

1 2 4 3.5 3.9 0.0098 52.5 58.5
2 2 8 3.1 4.1 0.0095 46.5 61.5
1 10 4 1.8 1.8 0.045 27.8 27.0
2 10 8 1.5 1.5 0.045 22.5 22.5
3 10 16 1.5 1.4 0.049 22.5 21.0

*The scaled values are multiplied by 15 to correspond to the case of ITER.
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7 and 10. Part of this deterioration is the further 2% error
that was added to the SX network outputs to allow for
possible errors introduced by the network itself. The dou-
ble network still performs appreciably better than that
with FL inputs alone, especially in the plasma core pa-
rameters. Double networks with SXOs included with CCs
~case 9! and with both FLs and CCs~case 10! provide
steadily improved performance as more diagnostic in-
puts are added, with the networks including SXOs, FLs,
and CCs having the best overall performance of all the
networks considered.

V. THE PLASMA BOUNDARY ACCURACY ACHIEVED
FROM EXPERIMENT

This section considers the boundary accuracy
achieved for particular shots on COMPASS-D using var-
ious combinations of diagnostic inputs to the neural net-
work. Experimental errors caused by integrator drift,
calibration errors, and noise are now necessarily in-
cluded. In the case of SXs, there is a possible leakage
current, providing a variable background to the signal.
There is a problem with the analysis of the results in that

Fig. 7a. Accuracy of predictions for case 1 with 5 close-in FLs only.
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the true answer is no longer at hand and must be evalu-
ated approximately from some numerical code with its
own attendant errors. In this case, it has been evaluated
from the DFIT filament code.11 Each shot gives a time
series of different configurations that all may be used to
test the reconstruction accuracy. For the present analy-
sis, each shot has been divided into 29 time slices at 0.01-s
intervals, from 0.02 to 0.30 s.

The input variables are read in from the COMPASS
database of files. The data are stored at intervals of
150 ms, and the data at each start time have been aver-
aged over 0.005 s to remove any fluctuations that may

exist over shorter timescales. Magnetic signals are gen-
erally proportional to the plasma current, so that the train-
ing database has been generated for a fixed plasma current
of 400 kA, and the network magnetic inputs have been
normalized to this according to the measured instanta-
neous value of the current. Other diagnostic inputs are
treated differently. The signals from the two SX cam-
eras, for example, are each separately normalized to the
signals of their central channel.

The results in this section have been obtained from
simulations of the neural networks rather than from real-
time hardware networks. However, our previous studies

Fig. 7b. Accuracy of predictions for case 9 with a double network merging SX and CC inputs only.
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show that these simulations agree closely with the actual
outputs of hardware networks.10 The simulated net-
works are used to predict the plasma boundary, as de-
fined in Sec. III by 10 output parameters. As in Sec. IV,
the results are given both for single networks and for dou-
ble networks where the first analyzes just the SX data to
give outputs describing the core parameters, which are
then fed as inputs to the second network. The accuracy
of the predictions may be judged by Fig. 7. These show
by the full lines, for various sets of experimental inputs
from shot 14776, the plasma boundary predicted by the

neural network simulator and, near the center of the
plasma, the boundary of the core region at a fixed minor
radius of 50 mm. The inner lines show the predicted
plasma core position and elongation at one-third of the
minor radius. The dashed lines show the boundaries given
using the corresponding parameters predicted by the DFIT
filament code from extensive magnetic data including both
FLs and external partial Rogowski coils. The degree of
agreement between the two boundaries indicates the cor-
responding agreement between the 10 parameters used
to define these approximate boundaries, as calculated

Fig. 7c. Accuracy of predictions for case 10 with a double network using the 32 SX inputs in the first network and its outputs
together with magnetic and CC signals in the second.
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using the neural net and as found from DFIT. Because
filament codes cannot calculate an independent core po-
sition or elongation with any precision, the core accu-
racy results can be only illustrative.

Figure 7a is for the 5 FLs alone~case 1! and gives a
fair picture of the evolution of the shot. In particular,
the initial elongation increase is well described. The core
position given by the network is consistently outside the
DFIT prediction, but this may well be an artifact of a
filament code based on magnetic data alone. Figure 7b
is for a double network with SXs and CCs only, with all
torus-based magnetic information~case 9! omitted. The
X-point is rather poorly judged, but the reconstruction
is otherwise quite good. Figure 7c is the double net-
work with SX, CC, and magnetic inputs~case 10!. The
data may also be expressed as a time-dependent mov-
ing image as in Fig. 8, which corresponds to case 1 given
in Fig. 7a.

All sets of data are analyzed in Table III to give a
quantitative estimate of the error in the plasma param-
eters. The boundary error is the average over the differ-
ences in the four length parametersRp, Zp, a, and ak
between the network predictions and those of DFIT. The
X-point error is the corresponding average error in the

two length parametersRx andZx. The core error is that
for the three length parametersRc, Zc, and akc. The
X-point averages are taken only over the period from 0.06
to 0.30 s when theX point exists.

Generally, the precision of the results is very much
worse than in the case of the pure simulations given in
Table I. However, the results are being refined at present,
and the present results must be regarded as preliminary.The
neural network parameters, being based on the inversion
of the Grad-Shafranov equation, are not expected to agree
too closely with those from a filament code.

It is noticeable that in some cases, such as in the SX
reconstructions, cases 3 and 4 in Table III, all three mea-
sures of the accuracy improve as the spread in the train-
ing X-ray signal increases. This is because the small
spurious signals in the wings of the X-ray distribution,
caused by leakage currents, are treated with less weight
than are the larger central signals. With inappropriate train-
ing errors, the addition of extra information can give worse
results, as in case 7, which adds SX inputs, compared to
case 4. With optimal training errors as in case 10, the
accuracy is much improved.

In particular, it is necessary to consider the accuracy
achieved as a function of time through the shot. At both
early and late times, the SX intensity is very low, and good
results cannot be expected. Around the middle of the shot
when the plasma pressure is high and the SX signals are
large, much better results can be achieved. This is illus-
trated in Fig. 9, which shows the three accuracy param-
eters, as defined earlier in this section, evaluated at a given
instant and expressed as a function of time.

VI. REAL-TIME SX RESULTS

Figure 10 shows early results from the real-time SX
network and corresponds to the time range from 0.25 to
0.255 s, with the points plotted at spacings of 150ms.
The upper curve shows a simulation of the core elonga-
tion output of the network, while the lower curve shows
the measured output from the hardware before scaling
and offset subtraction. The ability of the net to respond
to the rapid signals is clearly shown.

VII. CONCLUSIONS AND WORK IN PROGRESS

The results of Sec. IV, using simulations from the
database, show clearly that the neural network method
would be capable of determining the ITER plasma bound-
ary to the required accuracy given that the experimental
diagnostic inputs to the network were of an adequate ac-
curacy and that the assumed size scaling is valid. They
show also that SX data give much improved accuracy to
the boundary prediction. The additional information they
give would be more important for the long pulses of ITER.

Fig. 8. The plasma boundary predicted from the network from
experimental data from shot 14776. The lines show a
superposition of the boundaries as a function of time.
This figure corresponds to case 1 with 5 inner FLs only,
as shown in Fig. 7a.
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TABLE III

The Accuracy in the Plasma Parameters Achieved by the Neural Network with Experimental Data
Inputs Compared with the Corresponding Values Given by the DFIT Filament Code*

Case Single Network Inputs

X-Ray
Spread

~%!
Hidden
Units

Boundary
Error
~mm!

X-Point
Error
~mm!

Core
Error
~mm!

Scaled
Boundary

~mm!

Scaled
X Point
~mm!

Scaled
Core
~mm!

1 5 FLs 2 8 8.7 11.7 19.0 130 175 285
2 4 CCs 2 12 8.5 12.7 13.2 127 190 198
3 32 SXs 2 8 43.7 379.1 38.2 655 5686 573
3 32 SXs 10 8 43.6 347.8 39.9 654 5217 598
4 5 FL 1 4 CC 2 8 36.4 117.6 57.0 546 1764 855
5 21 SA1 5 FL 2 8 33.5 19.4 51.0 502 291 765
6 32 SX1 5 FL 10 8 10.8 15.7 19.4 162 235 291
7 32 SX1 5 FL 1 4 CC 2 8 55.8 33.8 89.9 837 507 1348
7 32 SX1 5 FL 1 4 CC 10 8 54.2 32.1 84.1 813 483 1261

Double Network Inputs

7 3 SXO1 5 FL 2 41 8 27.4 14.3 28.6 411 214 429
7 3 SXO1 5 FL 10 41 8 16.3 25.2 46.9 244 378 703
8 3 SXO1 4 CC 2 41 8 23.5 20.5 36.8 379 307 552
8 3 SXO1 4 CC 10 41 8 27.5 35.2 42.3 412 528 634

10 3 SXO1 5 FL 1 4 CC 2 41 8 24.3 11.1 35.3 364 166 529
10 3 SXO1 5 FL 1 4 CC 10 41 8 9.7 17.0 30.2 145 255 453

*The boundary error corresponds to the mean error in 4 boundary length parameters, theX-point error to that of the 2X-point
coordinates, and the core error to the 3 core length parameters, as defined in Sec. V. The scaled values are multiplied by 15 to
correspond to the case of ITER.

Fig. 9. The average accuracy of the parameters defining the boundary,X-point, and core dimensions~in millimetres! as a func-
tion of time for the double network~case 10! showing the much better performance in the middle period of the shot when
the SX intensity is high.
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The inclusion of real experimental data in Sec. V
shows all too clearly the difficulties of obtaining diag-
nostic data to the accuracy needed to make full use of the
neural network and other analysis methods. None of the
results yet obtained are close to the accuracy required for
ITER. The results show the utility of the additional in-
formation given by SXs and by CCs. They also demon-
strate the feasibility of the neural network method to
include several diagnostic techniques.

The real-time SX is now installed on COMPASS-D
and is giving its first results. Experience with the mag-
netic input network now running is that the simulation
closely follows the experiment, so the results given here
are unlikely to change significantly. The remote FLs are
nowcollectingdataonCOMPASS-D;however, theiranaly-
sis must await a new database with a spatially extended
computational grid.
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