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Massive amounts of data generated by fusion ma-
chines (such as JET) require developing automatic meth-
ods for data analysis. Edge-localized modes (ELMs) are
instabilities occurring in the edge of H-mode plasmas.
The aim of this work is to develop an automatic off-line
method for identifying and locating ELMs. This method
uses Universal Multi-Event Locator (UMEL) as the event
locator. The combination of information from Da emis-
sion and diamagnetic energy allows the recognition of
single ELMs. This paper shows the way in which wave-

forms of a wide range of discharges can be treated and
how UMEL is applied in order to identify and locate
ELMs independently of the signal amplitudes. A large
database of more than 1200 discharges has been used to
test the performance of the method obtaining 226 751
ELMs.

KEYWORDS: edge-localized modes, universal multi-event lo-
cator, support vector regression

I. INTRODUCTION

In modern fusion machines such as JET, machine
safety is one of the most important factors to take into
consideration. All the risks should be mitigated during
plasma operation as much as possible to increase the
operational safety.

Edge-localized modes ~ELMs! are instabilities oc-
curring in the edge of H-mode plasmas. These events can
be dangerous in high-performance scenarios of fusion
machines. In order to minimize the potential problems
caused by ELMs, the statistical knowledge of these phe-
nomena should be improved. Most ELMs occurring in
tokamak experiments are not indexed, so the information
provided is not easily used or is totally wasted. Nowa-
days, the location process is not automatic. In the context

of this paper, “automatic location” has a specific mean-
ing. First, it should be emphasized that no publications
exist ~to our knowledge! on a general methodology to
locate ELMs. Visual data analysis ~VDA! to identify ELMs
consists of recognizing typical peaks in the Ha0Da sig-
nals that are synchronous with a drop in the stored dia-
magnetic energy. In software applications, generally,
people identify ELMs by means of software functions
that implement the manual procedures of VDA. These
functions are completely dependent on waveform am-
plitudes and noise. Therefore, if the amplitude or noise
changes from one discharge to another ~or even within a
single discharge!, the software is modified to be adapted
to the signal conditions at any time. In this way, the
typical user software may include many IF-THEN-ELSE
sentences to manage the recognition of large and small
ELMs. This identification procedure is tedious and re-
quires strong human intervention. To avoid continuous
editing0compiling of software, automatic location meth-
ods should be developed. The term “automatic” refers to
the existence of the same software not depending on the
ELM size.
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This paper develops an automatic method to locate
ELMs in plasma signals. The combination of informa-
tion provided by the Da emission and the stored diamag-
netic energy is used to determine the exact temporal
location of every single ELM. Consequently, large ELM
databases can be automatically generated with this tech-
nique. These databases can be used as input for other
automatic methods such as the ELM classification sys-
tem described in Ref. 1 and other approaches that require
large ELM databases with high statistical weight.

A new Universal Multi-Event Locator2 ~UMEL! has
recently been developed. It allows the location of events
in a wide range of data types, such as waveforms or
images. In this paper UMEL is used to locate the specific
events in the Da emission ~peaks! and the stored diamag-
netic energy ~drops! that allow the automatic location of
individual ELMs. It should be emphasised that UMEL
recognizes large and small ELMs without any change in
the source code. Because of its reusability property, ex-
actly the same software is applied to the Da and the
stored diamagnetic energy signals. This means that no
separate functions are necessary for each individual wave-
form, thereby making software maintenance easier.

This paper is structured as follows. Section II intro-
duces Support Vector ~SV! Regression ~SVR! and UMEL.
It explains how it can be applied to the ELM location
problem. Section III describes the two main steps re-
quired to locate ELMs. Results are presented in Sec. IV.
Finally, conclusions and directions of future work are
given in Sec. V.

II. UMEL AND SVR

UMEL is a technique to locate relevant events in the
signals. UMEL is based on a SVR estimation method.
Section II.A provides a brief explanation of the SVR
theory, and Sec. II.B presents an overview of the most
important aspects of UMEL.

II.A. Support Vector Regression

Let us consider S training samples ~x1, y1!, . . . ,
~xS , yS !, ~x i � R

n and yi � f ~x i !, where f : Rn r R!. The
regression function is given by3

f *~x! � (
k�1

S

gk
*H~xk , x! . ~1!

The parameters gk
* are determined using the solution

of a quadratic optimization problem as follows:

gk
* � ak

*� bk
* , k � 1, . . . , S ,

where the parameters are chosen by maximizing the func-
tion as follows:

Q~a, b! � �e (
k�1

S

~ak � bk ! � (
k�1

S

~ak � bk !

�
1

2 (
k, l�1

S

~ak � bk !~al � bl !H~xk , xl !

subject to the following constraints:

(
k�1

S

ak � (
k�1

S

bk , 0 � ak �
C

S
,

0 � bk �
C

S
, k � 1, . . . , S

given the training data ~xk,yk!, k � 1, . . . ,S, an inner
product kernel H~x, x '!, an insensitive zone e, and a
regularization parameter C.

II.A.1. Insensitive Zone e

The quality of the approximation produced by a learn-
ing machine is measured by a loss function L~ y, f ~x!! or
discrepancy between the output produced by the system
and the training set for a given point x. Large values of
the loss function correspond to poor approximations. The
regression formulation for the SV machines uses a spe-
cial loss function defined in Ref. 4. This loss function is
linear with an insensitive zone e ~Fig. 1a!:

L~ y, f ~x!! � �0 , if 6y � f ~x!6� e

6y � f ~x!6� e , otherwise .
~2!

The area between fit � e and fit � e is called e-tube,
and it will have an important role in UMEL as is shown
in Sec. II.B.

II.A.2. Support Vectors

Only a subset of the parameters gk
* in Eq. ~1! is

nonzero. The data points xk associated with the nonzero
gk
* are called SVs. Therefore, the regression function is

actually

f *~x! � (
SV

gk
*H~xk , x! . ~3!

II.B. Universal Multi-Event Locator

This section reviews how the information contained
in the SVs can be used to perform an automatic method
for event location.

The aim of UMEL is the automatic location of any
type of event inside any class of signals ~for example,
images and waveforms!. Equation ~1! expresses the fact
that the SVR estimation of complex data sets can require
all samples to obtain a regression model. On the other
hand, it should be taken into account that the complexity
of a function can be defined in terms of its smoothness
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since for smoother functions fewer data points are re-
quired for an accurate estimation. This is the meaning of
Eq. ~3!. The smoother the function to regress, the fewer
SVs are required.

In the UMEL technique, the training samples that lie
on or outside the e-tube defined by the loss function in
Eq. ~2! are called External SVs ~ESVs! @Eq. ~4! and
Fig. 1b# . But, some samples within the e-tube also be-
come SVs, which are called Internal SVs ~ISVs! @Eq. ~5!
and Fig. 1b# :

ESV [ ESV � SV , �i � ESV , 6yi � f ~xi !6 � e

~4!

and

ISV [ ISV � SV , �i � ISV , 6yi � f ~xi !6� e .

~5!

Although ISVs are necessary samples for the regres-
sion estimation, they do not present the degree of rele-
vance that can be assigned to the ESVs. The samples
that become ESVs are the most difficult samples to
regress ~they cannot be fitted inside a smooth e-tube!,
and these samples provide essential additional informa-
tion in the regression process. The ESVs reveal the
occurrence of special patterns inside a signal: peaks,
high gradients, or segments with different morphologi-
cal structure in relation to the bulk of the signal. Typi-
cally, several ESVs appear together, and they define
limited signal segments. On one hand, singular points
show a signature with a strong location in the signal
domain. This property is used for the location of ELMs.
On the other hand, large sequences of ESVs denote the

presence of signal intervals with patterns clearly differ-
ent from the rest of the signal.

In SVR, there are three parameters that can affect the
final model complexity, i.e., the smoothing degree of
the regression estimation: the regulation parameter C, the
kernel function, and the e value. The regularization pa-
rameter C can be estimated ~see Ref. 3, p. 448! as

C � Kc max~6 Ty � 3sy 6, 6 Ty � 3sy 6! , ~6!

where

Ty � mean of the training samples

sy � standard deviation of the training samples

Kc � constant dependent on the type of signal to fit.

In UMEL, the criterion in the selection of the e
value is based on the standard regression formulation:
y � t~x! � j. Typically, it is assumed that the standard
deviation of additive noise snoise is known or can be
reliably estimated from the data. Then, the e value should
reflect the level of additive noise j, that is, evalue@ snoise.
In particular, and according to Ref. 3, p. 449, the selec-
tion criterion used is

evalue � Ke snoise� ln~n!

n
, ~7!

where

n � number of training samples

ln~n! � natural logarithm of the number of training
samples

Ke � constant dependent on the type of signal
to fit.

Fig. 1. Loss function for SVR and an example of the two different types of SVs.
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The kernel function H~x, x '! will determine the shape
of the regression estimation. This function can be a linear
function, a polynomial function, or a radial basis func-
tion ~rbf !, among others. Once the type of kernel is cho-
sen, the kernel parameters ~for example, in the case of a
polynomial function, the polynomial degree! must be
determined. In the present ELM location method, a radial
basis kernel function has been used:

H~xk , x! � exp�� 7x � xk72

2sk
2 � , ~8!

where the sk value can be estimated from the input data
using the normal reference rule defined in Ref. 5:

sk � Ks{1.06{sy{n�105 , ~9!

where

sy � standard deviation of the training samples

n � number of training samples

Ks � constant dependent on the type of signal to fit.

III. ELM LOCATION METHOD

As previously explained, the aim of this work is to
develop an automatic off-line method to recognize and
locate individual ELMs in JET discharges. It is carried
out through the simultaneous location of both a peak in
the Da and a drop in the stored diamagnetic energy sig-
nals. It should be mentioned again that “automatic” means
to use the same software independently of signal noise
and amplitude. UMEL is a proper tool for these purposes.
In addition, UMEL provides the extra capability of ex-
ecuting exactly the same software to locate the peaks and
the drops in the different signals. The only difference
between signals is the selection of the different param-
eters to accomplish the regression process: the regular-
ization parameter, the e-tube width, and the rbf parameter.
Estimations to select these values are given in Eqs. ~6!,
~7!, and ~9!, respectively.

The present ELM location method consists of two
main phases: locating the global temporal interval with
ELMs and detecting individual ELMs:

1. Locating the global temporal interval with ELMs:
The Da emission waveform is processed in order to de-
termine the global interval in a discharge with ELMs and
to make the individual ELM location process easier. This
phase is explained in Sec. III.A.

2. Detecting individual ELMs: The Da emission peaks
and the stored diamagnetic energy drops are located. The
information is combined to identify each single ELM.
This phase is explained in Sec. III.B.

III.A. Locating the Global Temporal Interval with ELMs

The objective of this phase is to delimit the temporal
segment of a discharge in which ELMs appear. This pre-
processing step is required to save computational time in
the regression process. The application of UMEL makes
no sense in time slices where no ELM activity is present.
Therefore, the search for ELMs is focused only on H-mode
segments because ELMs appear only in this confinement
mode. So, this phase is actually a gross H-mode locator
system that uses the Da signal as identifier.

Three sequential tasks are performed: normalizing
the waveform, reducing the dimensionality, and locating
the time interval with ELMs.

III.A.1. Normalizing the Waveform

The Da waveform is normalized between 0 and 1.
The purpose of this normalization is double. On one hand,
it allows the use of the same regression parameters de-
fined in Eqs. ~6! and ~7! for a large number of discharges.
On the other hand, it also optimizes the computation of
the SVR estimation.

III.A.2. Reducing the Dimensionality

In the regression estimation process, the more sam-
ples to regress, the more computation time is needed. In
order to save processing time, the number of samples per
waveform should be reduced. However, this reduction
should not completely degrade the signal. A proper trans-
formation should provide just a coarser resolution of the
original time sequence. To this end a Haar wavelet trans-
form6 has been used. This transformation is adequate
because it simultaneously retains the most relevant sig-
nal information in the time and frequency domains.

Wavelet algorithms process data at different resolu-
tions or decomposition levels. Each decomposition level
reduces the number of samples by a factor of 2. There-
fore, for a waveform with S initial samples, the number
of samples becomes S02L , after using a decomposition
level of L. A level L � 2 has been used in this paper,
which means that waveforms with an initial number of
131 072 samples have been reduced to 32 768 samples
without loss of significant information.

III.A.3. Locating the Time Interval with ELMs

UMEL has been used as a gross H-mode locator
system. Given a discharge, a SVR is computed with all
Da samples ~Fig. 2a!. The regression parameters are cho-
sen according to Eqs. ~6!, ~7!, and ~9! to produce a smooth
approach of the waveform, and a set of ESVs is found.
The number of ESVs is grouped in slots of 0.1 s ~Fig. 2b!.
This histogram defines the temporal segment that has
been more difficult to regress smoothly, and therefore,
the regression estimation reveals the signal slice with
higher-frequency components ~peaks!. This temporal slice
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corresponds to a period of time with ELM activity. To
delimit the global temporal interval of ELMs, starting
and ending histogram bins are determined. They are de-
fined by the first and last time slots that have more ESVs
than a decision value, respectively. This decision value is
computed as

decisionvalue � K{
(
i�1

N

ESVi

N
, ~10!

where

K � constant depending on the discharge range

N � number of time slots with ELMs ~number of
bins in Fig. 2b!.

An example of the number of ESVs per time slot is
shown in Fig. 2b. The dashed line is the mean value of
ESVs. The solid line corresponds to the decision value
using K � 0.5. It is important to note that the value
K � 0.5 can be used for the detection of the time interval
with ELMs in a large range of discharges without any
problem. In fact, this value has been used in all the dis-
charges that we have tested in Sec. IV.

To finish, it should be noted that the same global
interval is determined with and without the Haar wavelet
transform for dimensionality reduction. The difference is
the computational time. With an initial waveform of
131 072 samples, UMEL takes 378.9 s in the regression
process. However, the time for the wavelet transform at
level 5 of decomposition ~4096 samples remain! plus the
regression estimation is 6.32 s.

III.B. Location Phase

After establishing the global temporal interval with
ELMs, the next phase of the method is the temporal lo-
cation of individual ELMs.

The location capability of this phase relies on the
combination of the information provided by the Da emis-

sion and the diamagnetic energy. Every single ELM is
located if a diamagnetic energy drop is found very close
~within 5 ms! to a Da peak. Because typically the Da

waveform has a better signal-to-noise ratio, the ELM
location process begins searching for the typical peaks in
this signal. After determining the time instant of maxi-
mum amplitudes in the Da waveform, simultaneous drops
in the diamagnetic energy should appear.

The location phase consists of four steps: Da peak
location, Da peak combination, diamagnetic energy di-
vision, and combination of information.

Step 1: Da Peak Location

The first step of the ELM location requires the loca-
tion of peaks in the Da signal. It must be emphasized that
the identification of peaks as the points above a certain
threshold is not enough because ELMs have different
amplitudes. The main advantage of using UMEL resides
in the fact that UMEL looks for samples that do not fit a
smooth regression, independently of amplitudes.

UMEL is applied to the Da temporal slice deter-
mined in the phase described in Sec. III.A. Again, the
regression parameters are estimated according to Eqs. ~6!,
~7!, and ~9! ~Fig. 3, step 1!. The ESVs appear in the most
difficult areas to fit smoothly because high gradients are
present. Although the regression estimation can seem a
straight line in Fig. 3, it is not true. The regression pro-
cess carried out by UMEL adapts the fit to the low-
frequency shape of the Da waveform. All Da samples
outside the e-tube become ESVs, and they define the
peak location.

Step 2: Da Peak Combination

The second step concentrates all the ESVs of each
peak into a single one. The selected point is the Da sam-
ple with the highest amplitude ~Fig. 3, step 2! and whose
time instant is denoted by tD. This combination is re-
quired to represent each individual peak by a single
sample.

Fig. 2. Detection of the ELM temporal slice.
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Step 3: Diamagnetic Energy Division

Once the tD time instants have been determined, the
stored diamagnetic energy signal is divided into small
temporal segments around the time of each Da peak
~Fig. 4, step 3!. These temporal slices must be short

enough to recognize drops within 5 ms. The possibility of
considering the interval @tD � 5, tD � 5# ~the times are in
milliseconds! is not a good selection mainly with regard
to the right limit. It is necessary to ensure the identifica-
tion of the drop in the right side without possible confu-
sion from signal noise. To this end, it has been empirically

Fig. 3. Location method steps 1 and 2. This corresponds to shot 75742 of JET. The recognition of peaks independent of amplitudes
should be emphasized. All the regression parameters ~regularization parameter, e-tube width, and kernel parameter! are
obtained from each signal itself.

Fig. 4. Location method steps 3 and 4. This corresponds to shot 75742 of JET.
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determined that 30 ms is enough for a clear recognition
of drops. Therefore, the interval to look for the diamag-
netic energy drop is @tD � 5, tD � 30# .

Step 4: Combination of Information

The last step of the location phase requires identify-
ing the drop in the above interval. Again, the selection of
a certain threshold to define a drop is not a practical cri-
terion because of the presence of changing amplitudes.
Once again, UMEL is used as an event locator to discover
the samples in the diamagnetic energy waveform that do
not fit smoothly. Thus, a SVR is performed over each in-
terval @tD � 5, tD � 30# ~Fig. 4, step 4!. If ESVs do not
appear, the method determines that an ELM is not present,
and therefore the peak in the Da waveform has been gen-
erated by a different physical mechanism.

As in the Da case, it is necessary to identify the
energy drop by a unique sample. The temporal coordi-
nate of this sample will be the temporal location assigned
to the ELM. As shown in Fig. 4, UMEL determines the
samples outside the e-tube. The one having the maxi-
mum amplitude inside the above interval determines the
temporal location of the ELM. The accuracy of the pre-
diction is the sampling period of the signal.

IV. A CASE STUDY

We have applied the ELM location method to a data-
base of more than 1200 JET discharges in the range 73337
to 78156. A total number of 226 751 ELMs have been
recognized and located in their respective discharges.

Table I shows the values of all parameters used in
Sec. III. These values have been chosen to maximize the
performance of the method within the considered dis-
charge range, and it should be noted that the values could
change for different discharges. However, they seem to
be robust enough taking into account the big set of dis-
charges that have been considered.

Because of the lack of a large ELM database to test
the performance of the ELM location method, we have
performed a manual search of individual ELMs in 20
JET discharges in the above range. This extremely te-
dious search has allowed obtaining a success rate of 95%
in the recognition of ELMs with the automatic method
based on UMEL.

Figure 5 and Table II show the number of ELMs
located and the ELM period. The most common period is
between 0.02 and 0.03 s with 61 373 ELMS.

V. CONCLUSIONS AND FUTURE WORK

We have introduced an automatic method to locate
and identify ELMs. This method uses the combination
of information of the Da emission and the stored diamag-

netic energy to determine the exact temporal location
of every single ELM. It uses UMEL as the event locator
~a universal event locator based on the information
retrieved by a SVR! to discover peaks in the Da emission
independently of the amplitudes. UMEL is applied again
around the time instant of every Da peak to discover a
corresponding drop in the stored diamagnetic energy. If
this drop is found, the method recognizes the presence of
an ELM.

The method has been applied to a large set of JET
discharges creating a database of ELMs with their tem-
poral location. This database will allow other methods
and techniques that study the ELM behavior to have avail-
able a dataset of high statistical weight. Automatic ELM
classification systems, such as the one introduced in Ref. 1,
can be applied to a large ELM database to classify the
types of ELMs: type I, type III, compound, and so on.

The fact of using just the same software ~UMEL! to
process all the signals ~Da and stored diamagnetic

TABLE I

Parameter Values for ELM Location

Parameter Value

Preprocessing phase
Da wavelet descomposition level 5
K value for ELM temporal slice

detection 0.5
UMEL Kc value for ELM

temporal slice detection 1
UMEL Ke value for ELM

temporal slice detection 10
UMEL Ks value for ELM

temporal slice detection 20

Location phase
Step 1

Da wavelet decomposition level 2
UMEL Kc value for Da peak

location 1
UMEL Ke value for Da peak

location 8
UMEL Ks value for Da peak

location 50
Step 3

Size of diamagnetic energy
temporal segments ~s!

@Da peak � 0.005,
Da peak � 0.03#

Step 4
UMEL Kc value for diamagnetic

energy event location 100
UMEL Ke value for diamagnetic

energy event location 1
UMEL rbf kernel parameter sk

for diamagnetic energy event
location 100 000

Da and diamagnetic energy peak
maximum distance ~s! 0.005
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energy! is crucial in our automatic method. A unique
software function to perform the regression estimations
has been necessary. The method does not need to locate
the Da peaks or to locate the drops in the energy wave-

form with different software; i.e., the method is indepen-
dent of the structural form of the signals. Even more, the
software is also the same in spite of different amplitudes
of a signal from shot to shot. The “universal” character of
our technique is the essential feature to take advantage of
in the automatic location of ELMs.

However, automatic validation methods should be
developed in order to fully test the results generated by
the location method based on UMEL.
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Fig. 5. Distribution of the temporal intervals of the located
ELMs.

TABLE II

Number and Temporal Interval of the Located ELMs

Period
~s!

Number
of ELMs

Period
~s!

Number
of ELMs

,0.01 3 200 0.01 to 0.02 56 550
0.02 to 0.03 61 373 0.03 to 0.04 30 100
0.04 to 0.05 19 809 0.05 to 0.06 11 409
0.06 to 0.07 68 00 0.07 to 0.08 4 000
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