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Abstract. A perturbative three-dimensional analysis is presented of Alfvén waves
in a magnetic X-point configuration with a strong longitudinal guide field. The
waves are assumed to propagate in the direction of the X-line, and both the plasma
beta and equilibrium plasma current are taken to be zero. This provides a simple
model of Alfvén wave propagation in the divertor region of tokamak plasmas. It is
shown that the presence of the X-point places constraints on the structure of the
leading-order (shear Alfvén) eigenfunctions. These eigenfunctions, and fast wave
corrections to them, are determined explicitly for two cases. In the first of these
the stream function for the shear Alfvén flow is azimuthally symmetric in the X-
point plane and singular at the X-line; in the second case the stream function is
largely confined to two quadrants in the X-point plane and is non-singular. For
the latter scenario it is shown that coupling of the shear and fast waves is strongly
localized to the vicinity of the separatrix.

1. Introduction
The complex magnetohydrodynamic (MHD) properties of magnetic X-points have
attracted much attention, due to the fact that configurations with this type of
topology are common to many laboratory and natural plasma environments and
play a key role in processes such as magnetic reconnection and mode conversion
of MHD waves. The fast magnetoacoustic wave is of particular importance in this
context since, unlike the shear Alfvén wave, it can carry free magnetic energy into
the X-point itself where it can be efficiently transformed into heat, mass flows or
energetic particles (Craig and Watson 1992; McClements et al. 2004; McLaughlin
and Hood 2004; McKay et al. 2007). The shear wave is also of interest, however,
since, except for the special case in which there is no longitudinal field B‖ and
no variations in that direction, the presence of an X-point causes the shear and
fast waves to be coupled (Bulanov and Syrovatskii 1980). Bulanov et al. (1992)
studied this coupling analytically for the case of an X-point with zero equilibrium
current but finite B‖, variations in the longitudinal direction being neglected. They
showed that the coupling is associated with the formation of singular structures in
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the current density near the X-point separatrix. McClements et al. (2006) solved
the initial value problem of a fast wave being driven up by a shear wave for the
case in which B‖ is smaller than B⊥, the field in the X-point plane, taking into
account resistivity and electron inertial effects; again, variations in the longitudinal
direction were neglected.
In this paper we extend the analyses of previous authors to three dimensions

by allowing for the possibility of wave propagation in the longitudinal (guide-field)
direction. This extension is motivated in part by the fact that a current-free X-
point with a longitudinal guide field provides a simple model of the divertor region
of tokamak plasmas (Farina et al. 1993): the magnetic field at the divertor X-
point separatrix is purely toroidal, and the plasma current density in its vicinity
is close to zero. However, MHD perturbations to tokamak plasmas are generally
not axisymmetric and thus, in the cylinder approximation that we are adopting,
it is appropriate to allow longitudinal propagation. Myra et al. (2000) investigated
the effect of a tokamak divertor X-point on MHD and two-fluid instabilities, but
restricted their MHD analysis to the shear Alfvén branch. We include fast wave
physics in our model, assume the tokamak ordering B‖�B⊥ and take the limit of
zero plasma pressure, which is appropriate for the relatively cool divertor region of
tokamak plasmas. It is possible that an improved understanding of the coupling
of ideal MHD modes close to the boundary of divertor tokamaks can shed light
on edge-localized phenomena observed in such devices, such as the production of
filament structures (Kirk et al. 2006). Our analysis may also have applications
to internal magnetic islands in tokamaks (Donné et al. 2005) and to X-point
configurations in space plasmas, for example in the solar corona (McClymont and
Craig 1996).
After defining our equilibrium configuration in Sec. 2, we present in Sec. 3 a

perturbative analysis of the cold plasma ideal MHD equations for that equilibrium,
using as the perturbation parameter λ ≡ B⊥/B‖. We obtain in the process a general
solution for the eigenmode structure of Alfvén waves propagating transverse to the
plane of a current-free X-point. Our results are summarized and discussed in Sec. 4.

2. Equilibrium field
To determine the mode structure of shear Alfvén waves around a magnetic X-point
we begin by considering a uniform equilibrium field

BE = B‖ẑ, (1)

where B‖ is a constant and ẑ is the unit vector in the z-direction. Transverse
incompressible (shear Alfvén) waves propagating along ẑ are described by functions
f(x, y, z±cAt)where c2

A = B2
‖ /μ0ρ0 , with μ0 being the permeability of free space and

ρ0 the equilibrium plasma density, which is assumed throughout this paper to be
uniform. Although the actual plasma density in the vicinity of a tokamak divertor
X-point is far from uniform, the density gradients are relatively unimportant for
Alfvén modes, whose frequencies greatly exceed those of drift waves under typical
tokamak conditions. It should be noted that for the equilibrium defined by (1) the
dependence of shear Alfvén wave solutions f on x and y is completely arbitrary
except for the requirement that the flow perturbation Ṽ(0) be divergence free, i.e.
∂Ṽ

(0)
x /∂x + ∂Ṽ

(0)
y /∂x = 0.
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We now consider the effect of adding a current-free X-point field to this equilib-
rium:

BE = B‖ẑ+
B⊥
r0

(yx̂+ xŷ), (2)

where B⊥, r0 are constants and x̂, ŷ denote unit vectors in the x- and y-directions.
The (x, y) components of the equilibrium field can be obtained from the flux function

ψE =
B⊥
2r0

(y2 − x2). (3)

We take the limit B⊥/B‖ ≡ λ�1 and write the total equilibrium field in the non-
dimensional form

bE = b(0) + λb(1) , (4)

where bE = BE /B‖, b
(0) = ẑ and b(1) = (yx̂ + xŷ)/r0 . Throughout this paper

superscripts (0) and (1) denote the zeroth- and first-order quantities, respectively.

3. Perturbative analysis
In the limit of zero plasma pressure and equilibrium flow the linearized ideal MHD
momentum and induction equations are

∂Ṽ
∂t

=
1

ρ0μ0
(∇ × B̃) × BE , (5)

∂B̃
∂t

= ∇ × (Ṽ× BE ), (6)

where B̃ and Ṽ are the perturbations to the magnetic field and fluid velocity. Before
proceeding further with these equations, we normalize the space coordinates x, y
and z to r0 , B̃ to B‖, Ṽ to cA and t to r0/cA. We also express the velocity and field
perturbations as power series in λ:

Ṽ = Ṽ(0) + λṼ(1) + λ2Ṽ(2) + · · · , (7)

B̃ = B̃(0) + λB̃(1) + λ2B̃(2) + · · · . (8)

We now proceed to substitute (7) and (8) into the dimensionless forms of (5) and
(6), equating terms in powers of λ.

3.1. Zeroth-order equations

Using (4) into (5) and (6), and equating terms that are independent of λ, we obtain

∂Ṽ
(0)

∂t
=

(
∇ × B̃

(0)) × b(0) , (9)

∂B̃
(0)

∂t
= ∇ ×

(
Ṽ

(0) × b(0)). (10)

It is apparent from the z-component of (9) that Ṽ
(0)
z is a constant of the motion:

we set Ṽ
(0)
z = 0 for convenience. The z-component of (10) is

∂B̃
(0)
z

∂t
= −

(
∂Ṽ

(0)
x

∂x
+

∂Ṽ
(0)
y

∂y

)
. (11)
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Since, in zeroth order, we are seeking incompressible (shear Alfvén) wave solutions,

it is appropriate to assume that ∇ · Ṽ(0)
= 0: since Ṽ

(0)
z = 0 it follows from (11) that

B̃
(0)
z is a constant of the motion, which we also set equal to zero. The remaining

components of (9) and (10),

∂Ṽ
(0)
x

∂t
=

∂B̃
(0)
x

∂z
, (12)

∂Ṽ
(0)
y

∂t
=

∂B̃
(0)
y

∂z
, (13)

∂B̃
(0)
x

∂t
=

∂Ṽ
(0)
x

∂z
, (14)

∂B̃
(0)
y

∂t
=

∂Ṽ
(0)
y

∂z
, (15)

then describe wave propagation at unit velocity in the longitudinal direction.

3.2. First-order equations

Equating coefficients of λ in the momentum and induction equations, we obtain

∂Ṽ
(1)

∂t
=

(
∇ × B̃

(0)) × b(1) +
(
∇ × B̃

(1)) × b(0) ,

∂B̃
(1)

∂t
= ∇ ×

(
Ṽ

(0) × b(1)) + ∇ ×
(
Ṽ

(1) × b(0)).
With Ṽ

(0)
z = B̃

(0)
z = 0, the components of these equations are

∂Ṽ
(1)
x

∂t
− ∂B̃

(1)
x

∂z
+

∂B̃
(1)
z

∂x
= x

(
∂B̃

(0)
x

∂y
− ∂B̃

(0)
y

∂x

)
, (16)

∂Ṽ
(1)
y

∂t
− ∂B̃

(1)
y

∂z
+

∂B̃
(1)
z

∂y
= y

(
∂B̃

(0)
y

∂x
− ∂B̃

(0)
x

∂y

)
, (17)

∂Ṽ
(1)
z

∂t
= −x

∂B̃
(0)
y

∂z
− y

∂B̃
(0)
x

∂z
, (18)

∂B̃
(1)
x

∂t
− ∂Ṽ

(1)
x

∂z
= x

∂Ṽ
(0)
x

∂y
− Ṽ (0)

y − y
∂Ṽ

(0)
y

∂y
, (19)

∂B̃
(1)
y

∂t
− ∂Ṽ

(1)
y

∂z
= y

∂Ṽ
(0)
y

∂x
− Ṽ (0)

x − x
∂Ṽ

(0)
x

∂x
, (20)

∂B̃
(1)
z

∂t
+

∂Ṽ
(1)
x

∂x
+

∂Ṽ
(1)
y

∂y
= 0. (21)

The zeroth-order equations for Ṽ and B̃ are recovered when the forcing terms on
the right-hand sides of (16)–(21) are neglected. Differentiating (16) and (17) with
respect to time, using (14) and (15) to eliminate B̃

(0)
x and B̃

(0)
y , we obtain a pair of
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coupled second-order equations for Ṽ
(1)
x and Ṽ

(1)
y :

∂2 Ṽ
(1)
x

∂t2
− ∂2 Ṽ

(1)
x

∂z2 − ∂2 Ṽ
(1)
x

∂x2 − ∂2 Ṽ
(1)
y

∂x∂y

=
∂

∂z

(
2x

∂Ṽ
(0)
x

∂y
− x

∂Ṽ
(0)
y

∂x
− Ṽ (0)

y − y
∂Ṽ

(0)
y

∂y

)
, (22)

∂2 Ṽ
(1)
y

∂t2
− ∂2 Ṽ

(1)
y

∂z2 − ∂2 Ṽ
(1)
x

∂x∂y
− ∂2 Ṽ

(1)
y

∂y2

=
∂

∂z

(
2y

∂Ṽ
(0)
y

∂x
− y

∂Ṽ
(0)
x

∂y
− Ṽ (0)

x − x
∂Ṽ

(0)
x

∂x

)
. (23)

It is appropriate at this stage to introduce two new variables, χ(1) and Λ(1) , defined
respectively as the divergence of Ṽ(1) in the X-point plane and the longitudinal
component of the first-order vorticity:

χ(1) ≡ ∂Ṽ
(1)
x

∂x
+

∂Ṽ
(1)
y

∂y
, (24)

Λ(1) ≡ ∂Ṽ
(1)
x

∂y
− ∂Ṽ

(1)
y

∂x
. (25)

Differentiating (22) with respect to x, (23) with respect to y and summing, we
obtain

∂2χ(1)

∂t2
− ∇2χ(1) =

∂

∂z

(
−x

∂2 Ṽ
(0)
y

∂x2 + x
∂2 Ṽ

(0)
x

∂x∂y
− y

∂2 Ṽ
(0)
x

∂y2 + y
∂2 Ṽ

(0)
y

∂x∂y

)
. (26)

Similarly, differentiating (23) with respect to x, (22) with respect to y and subtract-
ing, we obtain

∂2Λ(1)

∂t2
− ∂2Λ(1)

∂z2 =
∂

∂z

(
−x

∂2 Ṽ
(0)
y

∂y∂x
+ 2x

∂2 Ṽ
(0)
x

∂y2 − 2
∂Ṽ

(0)
y

∂y
− y

∂2 Ṽ
(0)
y

∂y2

)

+
∂

∂z

(
−2y

∂2 Ṽ
(0)
y

∂x2 + y
∂2 Ṽ

(0)
x

∂y∂x
+ 2

∂Ṽ
(0)
x

∂x
+ x

∂2 Ṽ
(0)
x

∂x2

)
. (27)

We now assume that all perturbed quantities have a variation in z and t of the
form exp[i(kz z − ωt)]. Recalling that the zeroth-order flow Ṽ(0) is divergence-free,
we also introduce a stream function A(x, y) for this flow:

Ṽ (0)
x =

∂A

∂y
exp[i(kz z − ωt)], (28)

Ṽ (0)
y = −∂A

∂x
exp[i(kz z − ωt)]. (29)

It is straightforward to verify that (27) then takes the form

−(ω2 − k2
z )Λ(1) = 2ikz

[(
x

∂

∂y
+ y

∂

∂x

)
∇2

⊥A + 2
∂2A

∂x∂y

]
, (30)
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where

∇2
⊥ ≡ ∂2

∂x2 +
∂2

∂y2 .

Fourier analysis in z and t of the leading-order equations (12)–(15) leads to the
shear Alfvén wave dispersion relation, which in our dimensionless units takes the
form ω = kz . Considering specifically solutions of the above equations that satisfy
this dispersion relation, we infer from (30) that for kz �0 the stream function A
must satisfy the equation(

x
∂

∂y
+ y

∂

∂x

)
∇2

⊥A + 2
∂2A

∂x∂y
= 0. (31)

As discussed at the beginning of this section, a shear wave propagating in the
z-direction in a strictly uniform plasma may be ascribed a completely arbitrary
structure in the (x, y)-plane. The above compatibility relation indicates that this
arbitrariness is removed by introducing an X-point to the field topology.
In a similar fashion, Fourier analysis in z and t of (26) leads to the equation

(
ω2 − k2

z

)
χ(1) + ∇2

⊥χ(1) = ikz

(
y

∂

∂y
− x

∂

∂x

)
∇2

⊥A. (32)

Applying again the dispersion relation ω = kz , this reduces to

∇2
⊥χ(1) = ikz

(
y

∂

∂y
− x

∂

∂x

)
∇2

⊥A. (33)

We note also that Fourier analysis in z and t of (16)–(21) yields

−iωṼ (1)
x − ikz B̃

(1)
x +

∂B̃
(1)
z

∂x
= −x

(
∂2A

∂y2 +
∂2A

∂x2

)
, (34)

−iωṼ (1)
y − ikz B̃

(1)
y +

∂B̃
(1)
z

∂y
= y

(
∂2A

∂x2 +
∂2A

∂y2

)
, (35)

−iωṼ (1)
z = ikz

(
−x

∂A

∂x
+ y

∂A

∂y

)
, (36)

−iωB̃(1)
x − ikz Ṽ

(1)
x = x

∂2A

∂y2 +
∂A

∂x
+ y

∂2A

∂x∂y
, (37)

−iωB̃(1)
y − ikz Ṽ

(1)
y = −y

∂2A

∂x2 − ∂A

∂y
− x

∂2A

∂x∂y
, (38)

−iωB̃(1)
z + χ(1) = 0. (39)

3.3. Solutions

To find solutions of the above equations it is convenient to Fourier transform them
in x and y: specifically, we define the Fourier transform f̂(kx, ky ) of a general
function f(x, y) by the expression

f̂(kx, ky ) =
∫∫

f(x, y) exp[−i(kxx + kyy)]
dx√
2π

dy√
2π

.
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It is straightforward to establish that in (kx, ky )-space (31) takes the form(
ky

∂

∂kx
+ kx

∂

∂ky

)
Â(kx, ky ) = −2

kxky

k2
x + k2

y

Â(kx, ky ), (40)

while the compressibility equation (33) is transformed to

(
k2

x + k2
y

)
χ̂(1) = iω

(
kx

∂

∂kx
− ky

∂

∂ky

)(
k2

x + k2
y

)
Â. (41)

Note that χ̂(1) and Λ̂(1) are related to the Fourier transformed (x, y) velocity
components by

χ̂(1) = ikxV̂x
(1)

+ iky V̂y
(1)

,

Λ̂(1) = iky V̂x
(1) − ikxV̂y

(1)
,

and hence

V̂x
(1)

= −i
kx

k2
x + k2

y

χ̂(1) − i
ky

k2
x + k2

y

Λ̂(1) ,

V̂y
(1)

= −i
ky

k2
x + k2

y

χ̂(1) − i
kx

k2
x + k2

y

Λ̂(1) .

It follows from (30) that imposition of the dispersion relation ω = kz implies that
Λ(1) is indeterminate. We can, however, determine the first-order compressibility
χ(1) as follows. Putting kx = k⊥ cos θ, ky = k⊥ sin θ, we find that (40) becomes(

sin 2θk⊥
∂

∂k⊥
+ cos 2θ

∂

∂θ

)
Â(k⊥, θ) = −sin 2θÂ(k⊥, θ), (42)

while (41) reduces to

χ̂(1) = cos 2θ
1
k⊥

∂

∂k⊥
(k2

⊥Â) − sin 2θ
∂Â

∂θ
. (43)

Introducing u = cos 2θ, these equations reduce further to(
k⊥

∂

∂k⊥
− 2u

∂

∂u

)
Â(k⊥, u) = −Â(k⊥, u), (44)

χ̂(1)(k⊥, u) = iω

[
u

1
k⊥

∂

∂k⊥
(k2

⊥Â) + 2(1 − u2)
∂Â

∂u

]
. (45)

The general solution of (44), which can be readily determined via the method of
characteristics, can be written in the form

Â(k⊥, u) =
1
k⊥

H(k2
⊥u) =

1
k⊥

H(k2
⊥ cos 2θ), (46)

where H is an arbitrary function. Thus, taking the inverse Fourier transform and
setting x = r cos ϕ, y = r sin ϕ, we deduce that the general solution for the zeroth-
order stream function is

A(r, ϕ) =
1
2π

∫ ∞

0

∫ 2π

0
H(k2

⊥ cos 2θ) exp[ik⊥r cos(θ − ϕ)] dk⊥ dθ. (47)
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It should be noted that any choice of H that yields finite values for the perturbed
field and velocity components in at least part of the domain is physically acceptable.
For the case H = 1 (47) gives

A(r, φ) =
∫ ∞

0
dk⊥ J0(k⊥r) =

1
r
, (48)

where J0 is the Bessel function of the first kind of order zero. It is straightforward
to verify that this solution satisfies (31). The zeroth-order flow is then given by (28)
and (29):

Ṽ (0)
x = − sinϕ

r2 exp[ikz (z − t)], Ṽ (0)
y =

cos ϕ

r2 exp[ikz (z − t)]. (49)

The zeroth-order streamlines are thus circles centred on the X-line. From (14)
and (15) we find that the zeroth-order field perturbations are given by B̃

(0)
x =

−Ṽ
(0)
x , B̃(0)

y = −Ṽ
(0)
y . Both the flow and the field have a singularity at the X-line,

arising from the fact that the assumed Fourier spectrum of the stream function
does not fall off sufficiently rapidly with perpendicular wave number to prevent
the double integral in (47) from diverging in this limit. The zeroth-order current
j(0) = ∇ × B(0)/μ0 is also singular at the X-line, with j

(0)
z diverging as 1/r3 .

For H = 1 we find from (45) that

χ̂(1) =
iω cos 2θ

k⊥
, (50)

and hence it follows that

χ(1) =
iω

2π

∫ ∞

0

∫ 2π

0
cos 2θ exp[ik⊥ cos(θ − ϕ)] dk⊥ dθ

= −iω cos 2ϕ

∫ ∞

0
J2(k⊥r) dk⊥

= − iω cos 2ϕ

r
, (51)

where J2 is the Bessel function of the first kind of order two. The first-order
compressibility thus has the same azimuthal angle dependence as the equilibrium
azimuthal magnetic flux ψE , given by (3). We note from (36) and (39) that the
first-order z-components of the flow and field also have this azimuthal structure:

Ṽ (1)
z = B̃(1)

z = −cos 2ϕ

r
. (52)

The fact that these quantities are finite indicates that the wave is no longer polarized
in the plane perpendicular to the propagation direction: this, together with the fact
that the wave is compressible to first order, is to be expected, since the presence of
an X-point is known to cause coupling of the shear and fast Alfvén waves (Bulanov
et al. 1992).
The singularity at r = 0 in the above solution can be avoided by choosing a

different function H in (46). For example, we may set

H =

{
exp[−k2

⊥ cos 2θ], cos 2θ > 0,

0, cos 2θ < 0.
(53)
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It is straightforward to show that the imaginary part of the double integral in (47)
vanishes, so that

A(r, ϕ) =
1
π

∫ ∞

0

∫ π/4

−π/4
exp[−k2

⊥ cos 2θ] cos[k⊥r cos(θ − ϕ)] dk⊥ dθ. (54)

We can reduce this expression to a single integral as follows. The integrand is
evidently an even function of k⊥ and therefore we can write

A(r, ϕ) =
1
2π

∫ ∞

−∞

∫ π/4

−π/4
exp[−k2

⊥ cos 2θ] cos[k⊥r cos(θ − ϕ)] dk⊥ dθ. (55)

The k⊥ integration can then be performed analytically, and (55) reduces to

A(r, ϕ) =
1

2
√

π

∫ π/4

−π/4

exp[−(r2/4) cos2(θ − ϕ) sec 2θ]√
cos 2θ

dθ. (56)

Putting r = 0, we find that this integral converges and has the value

A =
Γ(5/4)
Γ(3/4)

� 0.74, (57)

where Γ is the gamma function. Indeed the integral converges for all values of r and
ϕ, and can be readily computed numerically for r�0. It is of interest to plot the
contours of A in the (x, y)-plane, since they represent the streamlines of the zeroth-
order flow. These contours are plotted in the upper frame of Fig. 1; the lower frame
of this figure is a surface plot of A. A striking contrast is immediately apparent
between streamlines in the quadrants π/4 < ϕ < 3π/4, 5π/4 < ϕ < 7π/4 and those
in the other two quadrants. In the former the streamlines are essentially circles
centred on the X-line, as in the previous solution, whereas elsewhere the streamlines
are convex towards the X-line: A falls off with distance from the X-line much more
rapidly along the x-axis than it does along the y-axis. However, the streamlines in
the different regions connect smoothly onto each other at the separatrix. Adopting
the current-free X-point configuration as a simple model of the divertor region of
a tokamak plasma, it is natural for us to identify the quadrant π/4 < ϕ < 3π/4
as the confined plasma region. The fact that A is finite but evanescent in the two
adjoining quadrants (i.e. outside the region of confined plasma, in the tokamak
divertor picture) can be interpreted as a manifestation of wave tunnelling through
the separatrix. It is apparent from Fig. 1 that the strongest flows occur in this
region, close to the X-line.
Using (36) we can also compute Ṽ

(1)
z for this solution. As noted previously,

this quantity can be regarded as a measure of the fast wave amplitude since it
is identically zero for a shear wave propagating in the z-direction. After some
reduction we obtain

Ṽ (1)
z (r, ϕ) = − r2

8
√

π

∫ π/4

−π/4

(cos 2ϕ + cos 2θ) exp[−(r2/4) cos2(θ − ϕ) sec 2θ]
cos3/2 2θ

dθ.

(58)

As in the case of (56), the integral in this expression converges for all r, ϕ: the
contours of Ṽ

(1)
z are plotted in the upper frame of Fig. 2, with solid (broken)

curves representing positive (negative) values of this quantity. The lower frame
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Figure 1. Contour (top) and surface (bottom) plots of A(x, y), i.e. streamlines of the
zeroth-order flow, when H = exp(−k2

⊥ cos 2θ) for cos 2θ > 0, H = 0 for cos 2θ < 0. The fine-
scale structure apparent in the contours close to the separatrix is a computational artefact.

of Fig. 2, which is a surface plot of Ṽ
(1)
z , clearly shows that the absolute value of

this quantity is strongly peaked in the vicinity of the separatrix, although it also
increases with distance from the X-line and vanishes at this point. Thus, the shear
wave is most strongly coupled to the fast wave on the separatrix far from the X-line.
Elsewhere, the Ṽ

(1)
z eigenfunction has a rather complex structure, with O-points in
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Figure 2. Contour (top) and surface (bottom) plots of Ṽ
(1)

z (x, y) when H = exp(−k2
⊥ cos 2θ)

for cos 2θ > 0, H = 0 for cos 2θ < 0. In the contour plot solid and dashed curves indicate
respectively Ṽ

(1)
z < 0 and Ṽ

(1)
z > 0. The fine-scale structure apparent in the contours close

to the separatrix is again a computational artefact.
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the quadrants π/4 < ϕ < 3π/4, 5π/4 < ϕ < 7π/4 and secondary X-points in the
other two quadrants.

4. Conclusions and discussion
We have presented a linear analysis of Alfvén waves propagating along the X-line
of a magnetic X-point configuration with a strong longitudinal field, in the limit
of vanishing plasma beta and equilibrium plasma current. This scenario provides a
simplified description of Alfvén wave propagation in the divertor region of tokamak
plasmas. The presence of the X-point means that the structure of the leading-order
(shear Alfvén) eigenfunction is not arbitrary: we have obtained a general solution
for the stream functionA describing the leading-order flow, and evaluated explicitly
both this solution and fast wave corrections to it for two illustrative cases. In the
first of these A is azimuthally symmetric in the X-point plane and singular at the
X-line, while in the second case A is finite everywhere and largely confined to two
quadrants in the X-point plane, one of which can be regarded as representing the
confined plasma region in a tokamak. For this second scenario we have shown that
strong coupling of the shear and fast waves occurs close to the separatrix far from
the X-line. Bulanov et al. (1992) also found that the separatrix plays a key role in
the coupling of the two modes.
The singularity at the X-line in the case of the azimuthally symmetric solution

for the leading-order flow (A = 1/r) is of course unphysical, but it is very likely
that it could be removed by extending the model to include non-ideal MHD effects,
such as the Hall term in the induction equation, (6). It is worth noting that the
characteristic length scale below which the Hall term becomes important, namely
the ion skin depth c/ωpi (c being the speed of light and ωpi the ion plasma frequency),
is typically a few centimetres for tokamak plasmas, and is thus not negligibly small
compared to the macroscopic length scale of the system (∼1 m). With this caveat,
and the further caveat that the neglect of equilibrium current is less well-justified
in the interior of a tokamak plasma than it is at the edge, the A = 1/r solution
could have applications to the X-points of magnetic islands. It may be significant
in this context that high-frequency (∼400–500 kHz) density fluctuations, possibly
indicative of fast wave activity, have been detected using pulsed radar reflectometry
close to the X-points of islands in the TEXTOR tokamak (Donné et al. 2005). The
solution with non-azimuthally symmetric A, on the other hand, is more likely to
have applications to divertor X-points.
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