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Abstract.
This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal

peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma.
Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling
mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence;
the balance that is struck between these two effects determines the radial extent (rE ) of the ELM
relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the
plasma surface and hence there is a ‘deterministic scatter’ in the results that has an accord with
experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this
in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with
experiment. Predictions of trends with the edge safety factor and collisionality are also made.
Keywords: Tokamak, peeling mode, relaxation, current sheet, ELM.
PACS: 52.55.Fa, 52.55.Tn

INTRODUCTION

It is now a routine observation that tokamaks undergo the so-called ‘L-H’ transition
during which the plasma outer region develops localised steep gradients in both current
density and pressure [1]. Subsequently, quasi-cyclic disturbances of the plasma edge
called Edge Localised Modes (ELMs) are seen to develop [2, 3]. ELMs are repetitive
disturbances in the outer region of tokamak plasmas that are influential in determining
present and future tokamak performance. The explosive transient heat power flux on to
external structures that is associated with ELMs raises critical issues for tokamak design,
and in particular for the plasma facing components of the main vacuum chamber wall
and divertor in the ITER device [4]. The ideal magnetohydrodynamic (MHD)‘peeling’
and ‘ballooning’ instabilities, driven by these edge current density and pressure gradi-
ents, have often formed the basis of theoretical explanations of ELMs [2, 5, 6]. Codes
which seek to integrate these stability considerations into a systematic predictive model
have also been developed [7–10].

In the following sections we first give some brief general arguments concerning
the relative characteristics and importance of ballooning and peeling modes. This is
followed by a discussion of the development of relaxation theory as applied to annular
plasmas. We then outline a theory of the ELM instability [11] that uses a combination
of peeling and relaxation ideas, and demonstrate how predictions from the model can be
applied to experimental data.
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PEELING-BALLOONING MODES

Ballooning modes are pressure driven instabilities localised to regions of unfavourable
curvature by toroidal coupling. A simple argument that equates the pressure gradi-
ent (−d p/dr) energy available for toroidal magnetic curvature instability drive (∼
−(1/R0)d p/dr with R0 the major radius) with the counteracting energy required for
field line bending (∼ k2

‖B
2
0 with k‖ the parallel wave number and B0 the toroidal field)

leads to an order of magnitude estimate of the pressure gradient required for ballooning
as

α = −2(μ0R0q2/B2
0) d p/dr = O(1) , (1)

where q is the well-known safety factor. Ballooning stable regions are then often plotted
in an ‘s−α’ diagram, where the shear s = (r/q)dq/dr [12]. Peeling modes, on the other
hand, are edge current driven, flute like in nature and cylindrical in origin. Indeed, in the
cylindrical limit, a plasma with edge current density Ja that is in the same direction as
the total plasma current Ip is ideal MHD peeling unstable [13](see the comment under
Eq. (6)). The peeling mode can also be described as an edge localised ideal kink [13]
driven by the differential torque formed by the non-zero Ja being immediately adjacent
to the current-free vacuum region. This torque reinforces the initial perturbation if Ja
is in the same direction as Ip. A further ingredient in a localised peeling mode is the
existence of a plasma resonance (where the pitch of the perturbation equals that of
the equilibrium) just outside the plasma-vacuum P/V interface. In any actual toroidal
equilibrium configuration, the prevalent instability can be an admixture of the two, as
numerical investigations with codes such as ELITE have demonstrated [14]. In fact,
depending on the plasma shaping, and current/pressure profile investigated the most
restrictive modes are typically hybrid peeling-ballooning modes with moderate toroidal
mode number (n∼ 10) [15].

The equilibrium pressure gradient, as well as being the direct drive behind ballooning
modes, can also be seen to have a diverse role in mediating peeling-ballooning modes.
This is due to the fact that in toroidal magnetic geometry some plasma particles en-
counter mirror fields and cannot circulate freely - the so-called trapped particles. In
particular, trapped particles in the presence of a pressure gradient give rise to the well-
known ‘bootstrap’ current

μ0JB ∼ −2
ε1/2

Bθ
μ0

d p
dr

=
B0
R0

α
ε1/2q

, (2)

with ε the torus aspect ratio. This current, which is especially pronounced at the location
of the steep pressure gradients to be found in the edge pedestal region of an H-mode
plasma, must be taken into account in any equilibrium calculation. The subsequent effect
on ballooning stability can then be seen from the following simple argument. Ampère’s
law can be written

μ0J =
B0
R0

1
r

d
dr

(
r2

q

)
=

B0
R0

(2− s)
q

, (3)
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and if we ask that this current be provided entirely by the bootstrap effect then Eqs. (2)
and (3) give

α = ε1/2(2− s) . (4)

Now, low shear equilibria are generally less prone to ballooning [16] and in the large
aspect ratio s−α diagram, ballooning instability disappears completely for s < 0 [17].
Equation (4) shows that this inequality occurs whenever

α > 2ε1/2 , (5)

which is a modest requirement on the pressure gradient. These simple arguments show
that whilst plasma pressure is the direct drive behind ballooning instabilities, self-
consistent equilibria incorporating the accompanying bootstrap current will display a
reduced local shear and tend to diminish the ballooning unstable domain.

As already remarked, the peeling mode is not driven by pressure and would operate
even in a pressure-less cylindrical plasma. Nevertheless, when considering the toroidal
stability problem, pressure will exert an influence on the mode via toroidal coupling. In
fact, the stability condition for peeling modes (in the case of a large aspect ratio circular
plasma) is given by [18, 19]

α
{

r
R0

(
1− 1

q2

)
+ s

dΔsh
dr

−Ft
sR0
2r

}
> sqR0

Ja
B0

. (6)

Here the left hand side of the inequality expresses the effect of toroidicity on the peel-
ing mode, and if it is absent we are left with the result referred to above concerning the
relative sign of the edge and total plasma current. The quantity Δsh is the well-known
equilibrium Shafranov shift, and Ft is a quantity related to the fraction of trapped parti-
cles. The pressure gradient terms on the left hand side of Eq. (6) represent, respectively,
the stabilising effect of favourable average curvature (Mercier), a stabilising contribution
from the Pfirsch-Schlüter currents (∝ dΔsh/dr) and a destabilising contribution from the
(Ft dependent) bootstrap. The first two effects would typically serve to stabilise peeling,
while the third indicates that the mode will be more unstable as the plasma collisionality
decreases. This stability criterion applies to a ‘limiter’ plasma; however most observa-
tions of H-mode occur when the plasma is surrounded by a divertor field with single or
double null X-points. In this case a separatrix is induced and the question of the effect
of this on peeling modes arises. This is a long-standing analytical problem, although a
recent numerical study has strongly suggested that the peeling mode can be stabilised by
the presence of a separatrix [20]. We will return to this point in the Discussion section.

RELAXED STATE PLASMAS AND SKIN CURRENT FORMATION

Plasma instabilities release available magnetic potential energy; as such it is natural
to enquire what the final end state of such a process might be. A formulation of this
problem that involved identifying a constraint characterising the behaviour of a highly
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conducting plasma, namely the global magnetic helicity, was given by Taylor [21]. The
minimum magnetic energy state obtained obeyed

∇×B = μB, μ uniform, (7)

and had the unusual property that for μa ∼ O(1) (in a perfectly conducting cylinder of
radius a) the edge toroidal field became negative, thus explaining the remarkable defin-
ing characteristic of a Reversed Field Pinch (RFP)[22] plasma. The theory subsequently
offered explanations for the occurrence in an RFP of helical current limiting equilib-
ria at high μa, the interesting behaviour of the applied volts/plasma current curve in the
Multipinch experiment, and led to ideas concerning non-inductive current drive (helicity
injection) [23, 24].

Simply having magnetic energy available does not imply that the relaxed state is
actually accessible. The RFP is ‘blessed’ with a range of resistive MHD modes which
ensure that it is a true relaxing plasma system. For instance, the very existence of the
zero in the toroidal field implies a dense set of rational surfaces on which many tearing
modes can develop [25]. Also, as the poloidal field is of the same order as the toroidal
field, the average curvature is everywhere unfavourable and the resistive ‘g’ mode can
similarly be destabilised [26].

The tokamak, with a dominant toroidal field and μa∼O(ε), has none of these modes
generally available, possibly contributing to its present ability to outperform other con-
finement devices. Nevertheless, when the central safety factor q0 drops below unity in a
tokamak (due to current diffusion) the well-known internal kink mode stability limit is
crossed [12], and furthermore the average curvature again becomes unfavourable. It has
been suggested that the combination of these two instabilities could lead to a Taylor re-
laxation and provide an explanation of the ever-present core sawtooth fluctuations [27].
Another potential location of MHD instability is of course the tokamak plasma edge
where the peeling/ballooning modes as described above are located. This is particularly
true in the H-mode where steep equilibrium gradients and ELMs are encountered. These
facts provide the motivation for the ELM model [11, 28] we outline in the next section.

We will be arguing that relaxation only takes place across a region where instabilities
are active, and will only cease when all possible modes are stable in the new relaxed
equilibrium. The formulation of such a model will obviously require an extension of
the original Taylor calculation for the RFP, which assumed that the relaxation occurred
everywhere. Accordingly, we may anticipate that discontinuities in the magnetic field
(i.e. current sheets) will arise across any boundaries between relaxed and non-relaxed
plasma regions 1. This observation, in the context of highly conducting laboratory
plasmas, is not new, and has been made by e.g. Moffatt [30] and Spies et al.[31]. The
idea is indeed very familiar in astrophysics, where Parker [32, 33] showed that the
appearance of magnetic discontinuities were inevitable in equilibrium plasmas with a
given fixed topology. The idea has found particular application in solar physics, where
the subsequent dissipation of current sheets formed by photospheric foot-point motion
is used to explain coronal heating.

1 This also holds true for the final state of the well-known Kadomtsev sawtooth model [29]
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A PEELING RELAXATION ELMMODEL

The ELM model we now outline (see Refs [11, 28] for full details) takes the onset of a
toroidal peeling mode as the initiating event of an ELM and does not concern itself with
ballooning. For this reason, the model is best thought of for the moment as applying
to ‘type III’ ELMs. This is because the type III regime observed experimentally occurs
when the plasma has just entered the H mode of operation and the pressure gradient
can often be seen to be below the critical value required for ballooning instability. We
could also imagine the model to apply whenever Eq. (5) is satisfied and the plasma is
ballooning stable.

At first sight it does not appear promising to relax an outer plasma region and then
look for peeling stability. This is simply because a relaxed (flattened) current profile
would have a larger edge current density Ja (at least for equilibrium current profiles
that are monotonic decreasing as the edge is approached, see Fig. (1)), and this is the
very factor that drives peeling instability. However, as we have discussed above, there
will also be a skin current Ka generated by the relaxation, and this will have a separate
effect on peeling mode stability. Now, increasing Ja would normally be associated with
increasing Bθa and hence a decreased qa in the plasma. It follows that the jump in q
across the P/V interface is positive and Ka will generally be negative. It turns out
that this has a stabilising effect on peeling, and a balance between the stabilising and
destabilising effects is struck when the relaxation has extended a finite distance into the
plasma. It is this fact that we will exploit to determine the model ELM widths.

Extended Taylor calculation

We must first consider the extended relaxed state calculation that is required. The
relaxed state will occupy an annular region that extends from the P/V surface at r = a
in to an as yet undetermined inner radius rE . As in the Taylor formulation we will require
the magnetic energy in this region to be minimised subject to its total helicity being
conserved. In the tokamak ordering the equilibrium toroidal field (and its total flux)
remains unchanged, and so only poloidal field energy is involved. Because an annulus
has a different topology to a cylinder that includes the origin, we will have to invoke
one other invariant to close the system. It is natural to invoke the total poloidal flux
Ψθ =

∫
Bθ dr =

∫ a
rE

(r/q)dr as this plays an analogous role to the toroidal flux in this
geometry. With due consideration to the multiply connected nature of the topology [24]
it transpires that the helicity is given by

K =
∫

V
A.BdV ∝

∫ a

rE

r
q

(
r2− r2

E
)

dr . (8)

Now we must minimise

Wθ =
1

2μ0

∫
V

B2
θ dV ∝

∫ a

rE
(r3/q2)dr , (9)
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subject to conservation of both K and Ψθ . This is a standard problem in the calculus of
variations, so with λ1,2 Lagrangian multipliers

Wθ −λ1K−λ2Ψθ ∝
∫ a

rE

[
r3

q2 −λ1
r
q

(
r2− r2

E
)−λ2

r
q

]
dr (10)

has to be made stationary, with solution

q f (r) =
r

Cr +D/r
(11)

in rE < r < a (the superscript f denotes the final relaxed profile while C,D are constants
to be determined). As may have been anticipated, Eq. (11) simply gives a uniform current
density as the relaxed state.

System equations

When the relaxation starts and pressure is removed from the outer plasma, then
toroidal coupling is lost (α → 0 in Eq. (6)) and the underlying torque balance
∇× (J×B) = 0 is essentially cylindrical and given by the well-known ‘tearing’
equation for the poloidal flux ψ(= rbr)

d
dr

(
r

dψ
dr

)
− m2ψ

r
=

m
F

μ0
dJ
dr

ψ , (12)

where

F =
Bθ
r

(m−nq) = m
B0
R0

(
1
q
− n

m

)
. (13)

The standard perturbation spatial dependence ∼ exp i(mθ + nφ) is assumed, where m
and n are the mode poloidal and toroidal wave numbers respectively.

Now as discussed above, we must allow for the existence of skin currents located at
both r = a and r = rE . These occur simply because we are taking the fields outside the
annulus to be unaffected by the relaxation and so inevitably there will exist discontinu-
ities in the equilibrium Bθ (and hence q) at these locations. Figure (1) gives a schematic
of the post-ELM model configuration. The boundary conditions on Eq. (12) follow from
requiring (a) that the tangential stress is continuous and (b) that the total magnetic field
have no normal component in the perturbed boundaries, i.e. that the perturbed material
surfaces remain flux surfaces. Condition (a) can in principle be formulated by integrat-
ing Eq. (12) across the interfaces. However, care must be taken as the right hand side
involves both a step in F and a step and skin current in J! In fact, we may first multiply
Eq. (12) by F [28] and then integrate to find that at r = rE and a

[[
F2 d

dr

( ψ
rF

)]]+

−
= 0 , (14)
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J(r)

Post−ELM
current profile

skin current
Post−ELM

r
FIGURE 1. A schematic of the post-ELM current profile.

where [[. . .]] denotes a radial ‘jump’. Condition (b) requires that the quantity ψ/F is
continuous across r = rE and r = a.

All the components for deriving a controlling set of equations are now in place and
as the algebra proceeds, various quantities representing the physical quantities involved
arise. These are

Δ j =
(

1
q j
− n

m

)
, (15)

a dimensionless expression of the ‘distance’ between a radial position j and the reso-
nance where n = mq (for peeling modes a resonance characteristically occurs just out-
side the P/V interface and so Δa would be a small positive real number [34]),

I = R0μ0J/B0

=
1
r

d
dr

(
r2

q

)

(16)

relating the toroidal current density to the safety factor q,

K j =
R0

aB0
μ0I js =

[[
1
q

]] j+

j−
, (17)

where I js is the surface skin current density (the surface current per unit poloidal length,
see e.g. Ref [35]), and

Δ
′
j =

[[(
r
ψ

dψ
dr

)]] j+

j−
, (18)

the well-known jump in the perturbed poloidal flux radial derivative which is central to
MHD stability analysis [25]. (The notation Δ′ is standard and it should be stressed that
Δ′ is not related to the Δ defined in Eq. (15)). The system finally reduces to the following
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two coupled equations that will be used to determine the unknown radius rE (once an
initial q-profile is specified, this is the only unknown quantity).

Δa

[
ΔaΔ

′
a + Ia

]
+Ka

[
(Ka−2Δa)

(
Δ
′
a +m−1

)
+2

n
m
− Ia

]
= 0 , (19)

ΔE−
[
ΔE−Δ

′
E + IE−− IE+

]
+

+ KE

[
(KE +2ΔE−)

(
Δ
′
E +m+1

)
+2

n
m
− IE+

]
= 0 . (20)

The subscripts a and E in Eqs. (19) and (20) refer to the radial positions r = a and r = rE .
These two radii are coupled by the relationship between Δ′a and Δ′E

Δ
′
E = −2m

(
Δ′a +2m

)
(
gΔ′a +2m

) . (21)

where g = 1− (rE/a)2m. In deriving these equations we have taken solutions ψ ∼ r±m;
this is a good approximation for m >> 1 (which is generally true for ELMs), and is
exact in the relaxed and vacuum regions. If we choose a mode with Δa = 0 for an initial
smooth equilibrium, then Eq. (19) gives the same marginal stability condition as the
pressure-free Eq. (6), namely Ja = 0.

It is useful to point out that the left hand side of Eq. (19) is directly proportional to
−δW [36, 37], the well-known ideal MHD energy functional.

Results for a simple initial q-profile

To provide some illustrative results we take a simple initial monotonic q-profile

qi = q0 +(qa−q0)r2, 0≤ r ≤ 1 ,

= qar2, r ≥ 1 . (22)

Equation (19) shows instability of the initial profile (for large m) if Ia > 2mΔa, and
this condition yields (for a fixed (q0,qa)) a sequence of unstable (m,n) pairs. For each
member of this sequence we can solve Eqs. (19), (20) and (21) anticipating a real
positive solution for the unknown ELM width dE = (a− rE)/a. (In fact examination
of Eq. (19) shows that, at least for small dE , the term involving the edge current will
give a destabilising term ∼ dE while the skin current, Ka, term gives a stabilising term
∼ d2

E). Figure (2) shows an example of one such calculation (q0,qa) = (1,4.587)), while
Fig. (3) gives the corresponding dE plotted against n for all the initially unstable (m,n)
pairs that this choice of (q0,qa) provides. For this particular case Fig. (3) shows that
the maximal dE corresponds to the smallest n value, though this is not necessarily true
in general. We may next compute the maximal dE values (and their associated (m,n)) as
we vary qa, holding q0 fixed at unity. The result is shown in Fig. (4). Corresponding to
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�ΔW�a.u.�

FIGURE 2. An example of locating a marginal radial position dE for the ELM model. Here
(q0,qa,m,n) = (1.0,4.587,23,5) and there is a zero of δW at dE = 0.0702.

100 200 300 400 500
n

0.02

0.04

0.06

dE

FIGURE 3. Marginally stable model ELM widths plotted against unstable n numbers for a fixed
(q0,qa) = (1.0,4.587). The largest dE corresponds to the zero of δW in Fig. (2).

each of the maximal dE values of Fig. (4) is an n value, and this is plotted against qa in
Fig. (5).

An immediate impression gained from Figs. (3) to (5) is the seeming ‘scatter’ in
the results, which is perhaps surprising as the initial profile chosen is a smooth well-
behaved function. The scatter can be traced to the evaluation of the Δ quantities of
Eq. (15). The discrete nature of the m/n when m and n are restricted by periodicity
requirements to be integer means that the Δ quantities exhibit highly detailed structure.
The ‘scatter’ apparent in Fig. (4) is in fact due to the discreteness of the plot, as is
demonstrated in Fig. (7) where we show a high resolution version of Fig. (4) for a smaller
qa range. We see that the actual curve is comprised of multiple overlapping regions. It
is tempting to ascribe the reported experimental scatter in many ELM measurements
to just this effect - the actual ELM size depends critically on the ‘distance’ of the
plasma edge qa to a rational approximation. Figure (6) gives an experimental plot of
the measured saturated ion current from a MAST edge probe, acquired during ELM
activity, which demonstrates the scattered nature of much ELM data. We can find a
smooth envelope that approximates to the maximal dE of Fig. (4) by expanding the
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3 4 5 6 7 8
qa

0.1

0.2

0.3
dE

FIGURE 4. The maximal marginal dE , plotted against initial edge qa value. The dashed curve gives an
analytic approximation for dE (max) in the case n = 1 (see Eq. (23)).

3 4 5 6 7 8
qa

5

10

15

20
n

FIGURE 5. The toroidal mode numbers n that give the maximal marginal dE values of Fig. (4), plotted
against the initial edge qa value.

entire set of determining equations (Eqs. (19) to (21)) and assuming small dE . Two cases
present themselves depending on the ordering of Ia. We take Ia ∼O(1) and perform the
maximisation of dE analytically to find

d2
E(max) = − 3

4n
I2
a

(aI ′a)
(23)

(′ ≡ d/dr), and this curve is shown for n = 1 as the dashed line in Fig. (4). The actual
width of an ELM disturbance is perhaps not a well defined experimentally measurable
quantity. However, the energy losses associated with an ELM are better documented.
Armed with our predictions of ELM widths we may use the assumed trigger, namely a
toroidal peeling mode with stability criterion given by Eq. (6), and proceed to calculate
the model ELM energy losses. Equation (6) yields a critical pressure gradient p′a and let
us take the pressure profile to be flat in the plasma core (= p0), descending to zero over
a distance δ = −p0/p′a. Taking dE from Fig. (4) and assuming pressure is lost in this
outer width, we may calculate ΔWELM/WPED(∼ d2

E/δ ), where ΔWELM is the (pressure)
energy lost in an ELM and WPED is the total plasma energy assuming that the equilibrium
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FIGURE 6. The saturated ion current from a MAST edge probe.
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FIGURE 7. High resolution detail of the maximal dE against qa of Fig. (4).

pressure is p0 everywhere [38]. Figure (8) shows the result of such a calculation where
we have taken typical MAST values [38] and assumed a collisional edge plasma (Ft = 0
in Eq. (6)). Characteristic values of a few percent are indicated, and this agrees well with
the reported MAST experimental data [38].

As the plasma becomes less collisional the presence of the Ft term in Eq. (6) implies
that the marginally stable edge pressure gradient (α) increases. Therefore, we may
expect that ELM energy losses from a less collisional plasma would be higher. This
trend has been reported (at least for type I ELMs) in the JET experiment [39].

DISCUSSION

We have presented a model for (type III) ELMs based on ideas derived from peeling
mode and relaxation theory. With no fitted parameters, it is shown that the balance that
is struck between a destabilising increase in edge current and the stabilising formation
of an edge current sheet produces ELM widths (and hence plasma ELM losses) that
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3 4 5 6 7 8
qa

0.02

0.04

0.06

�WELM�WPED

FIGURE 8. Normalized ELM energy loss ΔWELM/WPED of the initial parabolic q profile (Eq. (22))
against edge safety factor qa (q0 = 1). Parameters of a characteristic MAST plasma [38] have been taken,
with an aspect ratio of 1.5 and a highly collisional edge (Ft = 0 in Eq. (6)).

are in good general agreement with experimental observations. Results from the model
exhibit a sensitivity to the precise position of the edge plasma with respect to low
order rational approximations, leading to a seeming ‘scatter’. Arguing from the toroidal
peeling stability criterion, losses become larger with decreasing collisionality.

An objection to this model is the recent result [20] that n = 1 ideal MHD peeling
modes appear to be stabilised by the presence of a separatrix, and are replaced by a
‘peeling-tearing’ counterpart. An argument that could be used to support this result
is that as a separatrix is approached, the safety factor q will tend to infinity and so a
resonant surface is then present in an ideal plasma, producing the stabilisation. In fact,
the infinity in q is approached logarithmically and so the new resonance is very close to
the separatrix, perhaps making the argument vulnerable to the presence of small error
fields. Also, the modes discussed in Ref. [20] are mainly limited to having zero edge
current, and the drive for them comes from edge current gradients. These modes are not
considered in this paper.

Our model has only been applied to a simple monotonic q-profile. It is well known
that in H-mode, the neo-classical bootstrap current driven by the steep edge pressure
gradient will strongly affect the shape of the equilibrium current density profile [40], and
the effect of this on the model predictions needs to be investigated. However, it has been
shown that self-consistent incorporation of the bootstrap current into the equilibrium
reduces magnetic shear and hence the ballooning mode instability domain.

The surface negative current sheet produced by the relaxation process in this model
will itself be inevitably resistively unstable. We may speculate that the explosive filament
structures observed on MAST [41] to accompany an ELM are a concomitant of the break
up of this current sheet.
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