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E Havlı́čková1, W Fundamenski2, F Subba3, D Coster4, M Wischmeier4

and G Fishpool1

1 EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
2 Imperial College of Science, Technology and Medicine, London, UK
3 Dipartimento Energia, Politecnico di Torino, Torino, Italy
4 Max-Planck Institut für Plasmaphysik, EURATOM Association, Garching, Germany

E-mail: eva.havlickova@ccfe.ac.uk

Received 9 January 2013, in final form 22 March 2013
Published 9 May 2013
Online at stacks.iop.org/PPCF/55/065004

Abstract
A 1D code modelling scrape-off layer (SOL) transport parallel to the magnetic field (SOLF1D)
is benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for two
different collisionalities. Based on this comparison, SOLF1D is then used to model the effects
of divertor leg stretching in 1D, in support of the planned Super-X divertor on MAST. The aim
is to separate magnetic flux expansion from volumetric power losses due to recycling neutrals
by stretching the divertor leg either vertically (∇B‖ = 0 in the divertor) or radially (B ∝ 1/R).

(Some figures may appear in colour only in the online journal)

1. Introduction

The divertor geometry is one of the important aspects
influencing the scrape-off layer (SOL) performance [1]. As
conventional divertor concepts might be insufficient to handle
power exhaust in future devices, novel magnetic configurations
such as Snow-Flake divertor or Super-X divertor (SXD) are
considered [2, 3]. In SXD, which is investigated here, a
reduction of plasma temperatures in the divertor and energy
fluxes to the targets is gained by magnetic flux expansion
induced by stretching the divertor leg to larger radius and
reducing poloidal magnetic field in the divertor. Secondly,
longer connection length L‖ and closed design of the divertor
support power removal caused by plasma–neutral interaction
and radiation.

As part of preparations for the planned SXD on MAST
[4], numerical investigations of effects associated with long-
legged divertor geometry are undertaken using SOL transport
codes. In this paper, 1D studies carried out with the SOLF1D
code are presented, while 2D effects have been simulated
using the SOLPS code coupled with the Monte Carlo code
EIRENE [5], and will be presented in detail in a separate
paper. The 1D model enables a separation of the effects

of magnetic flux expansion induced by ∇‖B from cooling
by plasma–neutral interaction (both functions of the divertor
length) by prescribing any parallel/radial dependence of the
magnetic field. Such an approach is flexible enough to enable
a large number of scans, contrary to robust 2D codes, where
each simulation would require a new equilibrium and the
preparation of a new grid. However, the 1D approach is limited
in terms of the determination of sources/sinks in the divertor
due to atomic processes, which are governed by 2D transport
of neutral species in the divertor. The 1D code therefore
uses an approximation for these sources and compares it with
SOLPS simulations perfomed for two configurations with
different divertor leg lengths. These two simulations provide
a baseline for the scaling of upstream cross-field transport and
recycling divertor sources with increasing L‖. Alternatively,
a 1D neutral model in SOLF1D could be used to describe the
recycling sources self-consistently; however, still excluding
2D processes.

In order to link results of the 1D and 2D codes, the plasma
transport model in SOLF1D is first benchmarked with the
SOLPS5.0 model [6], section 3. The code comparison is
discussed in detail as several discrepancies are identified. In
the following section, 1D effects of the long-legged divertor
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are discussed based on SOLF1D results. Finally, the first
complete documentation for the SOLF1D code is provided in
the appendix.

2. Model description

2.1. SOLF1D model for MAST

SOLF1D is a one-dimensional code solving plasma transport
equations along the magnetic field line (s‖) in the SOL between
two targets. Braginskii-like equations in SOLF1D which are
defined in [7] have been generalized to take into account
the parallel gradient of the magnetic field ∂B/∂s‖, while it
is assumed that the magnetic field does not change in time
∂B/∂t = 0. This is done in conformity with generalized fluid
equations for parallel transport documented in [8, 9] or [10].
Here, a brief description of the model needed for the code
benchmark is provided, while more complete documentation
of the SOLF1D model can be found in the appendix.

The set of equations solved in the code includes the
continuity and momentum equations for plasma density n and
parallel ion velocity u‖, and energy equations for electron and
ion temperatures Te and Ti:

∂n
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∂
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We assume that the electron density is equal to the ion one
ne = ni = n. Further, zero net parallel current is assumed
j‖ = 0 (u‖,e = u‖,i) together with the generalized Ohm’s
law for the electron momentum enE‖ = −∂pe/∂s‖ + R‖,e,
where E‖ is the parallel electric field and Re (Re = −Ri)

are the thermal and friction forces. Sn, Su, SE
e and SE

i
are sources due to collisions with neutrals and cross-field
transport sources. Qe and Qi is the heating due to electron–ion
collisions, q‖,e = −κe∂(kTe)/∂s‖ and q‖,i = −κi∂(kTi)/∂s‖
are the electron and ion heat fluxes, pe and pi is the electron and
ion static pressure and δpi = −η‖B−1/2∂/∂s‖(B1/2u‖) reflects
the anisotropic part of the pressure tensor for ions (electrons
are assumed Maxwellian δpe = 0).

Boundary conditions at the targets are based on the
sheath theory and include the Bohm criterion for the ion
speed u‖ = cs and energy fluxes controlled by sheath heat
transmission factors Q‖,e = δenkTecs and Q‖,i = δinkTics.
Q‖ denotes the total energy flux, Q‖,e = 5/2nkTeu‖ + q‖,e

and Q‖,i = 5/2nkTiu‖ + 1/2minu3
‖ + q‖,i + u‖δpi. The

sound speed is defined as cs = √
k(Te + Ti)/mi. The sheath

heat transmission coefficients are fixed to constant values of
δe = 5.0 and δi = 3.5. The density at the target is obtained by
an extrapolation.

2.2. SOLPS equations and their reduction to 1D

The SOLPS model is based on the Braginskii equations
[6] solved in the poloidal geometry, i.e. assuming toroidal
symmetry. The conservation equations are written in
curvilinear coordinates coinciding with the magnetic topology.
The equations solved in SOLPS are documented in [6]. Here,
SOLPS5.0 without drifts activated is used. We also assume
that j‖ = 0 and the potential equation is not followed. Parallel
transport is described by the Braginskii model with the use
of viscous and heat flux limiters. Note that the change from
the default Balescu to Braginskii transport coefficients and
setting j‖ = 0 has no visible effect on the solution for
the MAST-U cases presented in section 3, while it assures
a consistency with the 1D model. In addition, there is no
impurity present in the simulation. The plasma temperature
at the outer target is increased by 30% in comparison with
a simulation including C sputtering and assuming constant
chemical sputtering rate of 1% and physical sputtering yield
calculated from the Roth–Bogdansky formula (this simulation
is not shown here). SOLPS equations in [6] can be simplified
into the following form
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with ux = bxu‖+bzu⊥ and anomalous radial transport reflected
in the radial velocity as uy = −(Dn/nhy)∂n/∂y, bzu⊥ =
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with an additional parallel viscosity driven by the ion heat flux
q‖,i = −κ‖,ibx∂Ti/hx∂x which is not included in the standard
Braginskii model,
3
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It can be shown that equations (5)–(8) reduce into 1D
equations similar to equations (1)–(4), see below. In the
code, the equations are discretized using the finite volume
method. For example, the finite volume form of the continuity
equation (5) assuming steady state is

�Fn
x + �Fn

y = S(n)V , (9)

where on the left side, we sum the particle fluxes Fn
x and Fn

y

entering and leaving the cell across the cell boundaries, and
the right side represents the total particle net source in s−1 on
the cell with volume V .

The poloidal flux Fn
x across the cell face is calculated as

Fn
x = nu‖ABx/B, where A = 2πRh is the radial area of

the cell perpendicular to the poloidal direction with the radial
size of the cell h across the flux tube. Because SOLPS does
not use a staggered grid for all flow variables, the Rhie–Chow
interpolation method [11] is employed to take the cell-centre
values of the parallel velocity u‖ on the cell faces where fluxes
are calculated. The cell volume is defined as V = 2πRh�x.
Following from equation (9), the poloidal part of the flux
divergence can be translated as

�Fn
x

V
= 1

A

�

(
nu‖A

Bx

B
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= 1
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(
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B
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Using (i) Bz ∝ 1/R and (ii) hBx/Bz = const along the flux
tube, and replacing �x by (Bx/B)�s‖, this further yields
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equivalent to the divergence term of a 1D equation

B

�
(nu‖

B

)
�s‖

= Sn (12)

consistent with the one solved in SOLF1D, equation (1). The
radial part of the flux divergence �Fn

y /Vcell from equation (9)
appears as a source term in the equation parallel to the magnetic
field (12), Sn = S(n) − �Fn

y /V .
Boundary conditions in SOLPS for quantities at the target

are not exactly identical to those in SOLF1D. In SOLPS,

the density is calculated assuming zero gradient at the target
(a comparison with SOLF1D shown later in figure 6). The
parallel ion velocity is set to the sound speed as in SOLF1D,
u‖ = cs, using the same definition for cs. The target energy
fluxes are prescribed as Qin

‖,e = 3/2nkTeu‖ + q‖,e = γenkTecs

and Qin
‖,i = 3/2nkTiu‖ + q‖,i = γinkTics with γe = 4.0

and γi = 2.5 as SOLPS solves the internal energy equation
instead of the typical conservative form of the energy balance
(hence the index in), i.e. the ion kinetic and viscous parts of the
energy flux are not included in the boundary condition (see the
difference between the codes in figure 6). We used different
notation for the sheath heat transmission coefficients than in
section 2.1 to take account of different values of the coefficients
in SOLPS versus SOLF1D due to different definitions of the
sheath energy fluxes.

3. Benchmark of codes

For benchmarking the codes, two converged SOLPS solutions
were selected. Both are for MAST-U, H-mode plasmas, in
connected double null magnetic configuration, the first one
for the Super-X divertor (SXD) geometry, the second one
for the conventional divertor (CD) geometry (figure 1 left).
These cases have been studied in [12]. The input power is
Pinp = 1.7 MW (the power crossing the core boundary) and
the density at the core boundary is ncore = 2.8 × 1019 m−3.
Transport coefficients are D⊥ = χ⊥ = 1 m2 s−1 in the
SOL, D⊥ = χ⊥ = 2 m2 s−1 in the core, but reduced to
D⊥ = 0.2 m2 s−1 and χ⊥ = 0.5 m2 s−1 in the pedestal (a region
extending 2 cm inside and 0.5 cm outside the separatrix) to
enforce a transport barrier. A flux tube used for the comparison
is close to the separatrix (the radial distance from the separatrix
is approximately �rsep ≈ 0.5 mm at the outboard midplane)
and it is the flux tube with maximum energy flux at the target.
On the right side of figure 1, the magnetic field along this flux
tube between the top and bottom targets is shown, with a larger
drop in SXD as expected from the extension of the divertor to
larger radius.

Sources from EIRENE due to plasma–neutral collisions
and sources from SOLPS due to radial transport are used as an
input for SOLF1D, together with the magnetic field variation
along the flux tube. The sources are displayed in figures 2
and 3. The energy balance on the flux tube is dominated by the
radial transport in the upstream SOL and below the X points.
The contribution from the electron cooling due to plasma–
neutral interaction close to the targets is small compared with
the radial transport, but it is stronger in the SXD case than in
the CD case. The particle sources are in contrast dominated
by the ionization of recycled neutrals in front of the targets,
and this recycling source is again stronger in the SXD case
(larger divertor volume and the connection length, closed
divertor, more collisions, smaller temperatures). The radial
particle sources are comparable in magnitude and show the
same pattern—a source at the stagnation point and a sink below
the X points due to transport from the SOL to the private flux
region.
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Figure 1. On the left, two divertor geometries used for benchmarking the codes—conventional divertor and SXD. The grid is top/bottom
symmetric and the flux tube selected for benchmarking, shown in red, is located at �rsep ≈ 0.5 mm at the outboard side between top and
bottom targets. On the right, the magnetic field along the flux tube is shown for the two divertor configurations.
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Figure 2. SOLPS modelling of SXD geometry—sources of particles, momentum and energy along a flux tube located close to the separatrix
between the top and bottom outer targets. Two types of sources are shown—sources due to transport radially across the flux tube S⊥ and
sources due to recycling calculated in EIRENE Ssoll.
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Figure 3. SOLPS modelling of CD geometry—sources of particles, momentum and energy along a flux tube.

3.1. Standard model

Solutions of SOLF1D and SOLPS on a flux tube from figure 1,
which is in the SXD geometry, and using the sources from

figure 2, are compared in figure 4, showing very good
agreement between the codes. A similar level of agreement
is achieved also for the CD geometry, apart from flux tubes
located very close to the separatrix at �rsep � 1 mm. These

4
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Figure 4. A flux tube in the SXD grid from figure 1—comparison of SOLF1D and SOLPS solutions.
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Figure 5. A flux tube in the CD grid from 1—comparison of SOLF1D and SOLPS solutions. (a) The standard SOLF1D model as described
in section 2.1, (b) the SOLF1D model using the SOLPS definition of the boundary condition for Ti.

flux tubes are the subject of further attention in order to
identify the origin of the mismatch. An example of the least
satisfactory result (using the sources from figure 3) is presented
in figure 5. Discrepancies up to 20% are observed, with the
largest disagreement in the ion temperatures (compare black
versus green). The main reason for the disagreement in Ti

is a different boundary condition used in the codes for Ti,
equation (13) in SOLF1D versus equation (14) in SOLPS

5/2nkTiu‖ + 1/2minu3
‖ + q‖,i + u‖δpi = 3.5nkTics, (13)

3/2nkTiu‖ + q‖,i = 2.5nkTics, (14)

see sections 2.1 and 2.2. Figure 5 shows that if we use the same
boundary condition in SOLF1D as the one defined in SOLPS,
a perfect match of Ti is obtained (compare black versus red),
however a disagreement in n and Te is still present.

Several checks were carried out to identify the cause of the
remaining disagreement, including a test of the grid resolution
(the SOLF1D solutions in figures 4 and 5 are spatially
converged), a check of boundary conditions, a comparison
for simplified cases reducing physics of the model, a test of
inaccuracy due to the 2D numerical discretization in SOLPS,
which will be described below.

3.2. Boundary conditions

Figure 6 shows plasma quantities at the target with different
boundary conditions used in the codes. As it is more
complicated to change boundary conditions in SOLPS, the
easiest way to benchmark the codes is to modify those in

SOLF1D. Therefore, for further comparisons below, boundary
conditions in SOLF1D are fixed to the SOLPS ones, i.e. the
boundary condition for Ti complies equation (14) and the
boundary condition for n complies ∇‖n = 0 at the target.

3.3. Reduced model

For the same case (the flux tube in the CD geometry in figure 5),
figure 7 shows the best agreement we can achieve between the
codes. Here, we use the same boundary conditions in SOLF1D
as in SOLPS for all quantities and we reduce the equations of
the model to identify possible problematic terms. We test the
continuity, momentum and energy solvers one by one, i.e. the
density shown in figure 7 is obtained by fixing the velocity and
temperature in SOLF1D to the SOLPS profiles so that only the
continuity solvers are tested, and similarly the temperature and
velocity profiles in figure 7 are obtained with fixing the other
quantities. (i) A comparison of the densities (left) shows a fair
agreement at the targets, while in the upstream SOL, SOLF1D
gives 18% smaller density than SOLPS for the same particle
source from figure 3 and the magnetic field from figure 1. (ii)
The ion temperatures agree well everywhere on the flux tube,
while the flat electron temperature predicted in SOLF1D is
approximately 11% lower (case a). This trend remains even
if we neglect the viscous heating and the energy exchange
between electrons and ions (case b). (iii) The parallel ion
velocities disagree by 35% (case a), however a perfect match
is obtained if the viscous flux is neglected (case b). Indeed,
SOLPS takes into account an additional viscous flux driven
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Figure 7. A flux tube in the CD grid—comparison of SOLF1D and SOLPS solutions for a reduced model. (i) Benchmark of density solvers
only (left). (ii) Benchmark of temperature solvers only (middle)—(a) full model, (b) reduced model neglecting viscous heating and
electron–ion equipartition. (iii) Benchmark of velocity solvers only (right)—(a) full model, (b) reduced model neglecting viscous fluxes.

by ∇‖q which is not included in SOLF1D, see section 2.2.
Based on this benchmark, it is considered to include such term
in SOLF1D as well. Apart from the viscous term, no other
differences in physics of the models have been identified.

3.4. Numerical discretization

The persisting disagreement in the density and temperature
profiles is likely caused by the numerical discretization. In
figures 5 and 7, the SOL is in the sheath-limited regime. This
generally means that the particle transport, equation (9), is
governed by the divergence of the flux, while in the high-
recycling regime (figure 4), it is the recycling source that
dominates. The recycling source is calculated in EIRENE and
it is treated in the same way in both codes as a net source. The
origin of the disagreement in figure 7 therefore comes most
likely from the way the flux divergence is calculated and how
this term is discretized on the grid. This problem is masked in
figure 4 in high-recycling conditions.

As far as the discretization of the magnetic topology
is concerned, it was shown in section 2.2 that the SOLPS
equations are identical to the 1D equations solved in SOLF1D,
if the condition of constant poloidal magnetic flux on the
discretized flux surface is fulfilled. Figure 8 (left) indicates that
the poloidal magnetic flux hBx/Bz is constant in the divertor,

however, it oscillates by approximately 12% above the average
value around X points. A similar level of discrepancy can
be expected in the comparison of SOLPS/SOLF1D solutions.
We can eliminate this numerical error by comparing SOLF1D
with a 1D version of SOLPS, assuming B = const along the
flux tube. Such comparison has been done previously in [13].
Identical solutions were obtained, see figure 8 (middle and
right), but only when the grid resolution in SOLPS was doubled
from 100 to 200 grid points, and approximately 6% error in the
density solution in SOLPS was detected for 100 grid points.
Note that SOLPS does not typically run on more than 100
poloidal cells, which is the case also here. Figure 9 compares
solutions from SOLF1D and 1D SOLPS directly for 400 grid
points. At high grid resolution, the continuity and momentum
solvers are identical and the electron temperatures agree as
well.

In addition to an inaccuracy in the discrete magnetic
topology, figure 8 shows an inaccuracy of the discretized
equations which can be suppressed by refining the grid. The
different sensitivity of the codes to the grid resolution can be
explained by different numerical schemes used in the codes
to treat the flux divergence and the different methods to solve
the discretized system of equations. The numerical technique
of SOLF1D is described in the appendix. SOLPS is based
on the Patankar hybrid scheme and uses the velocity–pressure
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are compared independently of the temperature solver with temperatures fixed to 60 eV. The electron and ion temperatures for a reduced
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coupling approach. While SOLF1D uses a staggered grid,
SOLPS stores u‖ at the cell centres and uses an interpolation
method to calculate fluxes at the cell faces. Indeed, differences
(largest around the stagnation points) are seen when switching
from the cell-faced to cell-centred version of SOLPS [14].
A numerical error can also result from the evaluation of the
flux divergence as the fluxes in and out of the flux tube have
very similar and large values. Table 1 briefly summarizes this
section.

4. 1D effects of long-legged divertor

4.1. Analysis of sources on a flux tube

Power losses and particle sources in the SOL are affected by the
interaction of plasma with neutral species, which is typically
dominant in the divertor. The power and particle SOL balance
depends on the collisionality regime where the recycling at
the targets competes with the cross-field transport dominant
in the upstream SOL. If the target fluxes are of interest, it
is useful to analyze sources in the SOL as they drive the
flow and their integral along the SOL gives the target flux
directly. In figures 2 and 3, sources of particles, momentum and
energy are shown on a flux tube in CD and SXD, separated as
recycling (Scoll) and cross-field (S⊥) sources S = S⊥ +Scoll. In
these figures, both conduction-limited and sheath-limited SOL

Table 1. Steps towards agreement in quantities solved by SOLF1D
and SOLPS codes. (1) The standard SOLF1D model results in up to
20% different solution with respect to SOLPS. (2) The SOLF1D
model using boundary conditions as defined in SOLPS results in
agreement in Ti (the reason for the discrepancy—the kinetic heat
flux is not included in the SOLPS boundary conditions for Ti). (3)
Models assuming zero viscous flux agree in u‖ (the reason for the
discrepancy—SOLPS takes into account an additional heat flux
driven viscosity not included in SOLF1D). (4) A comparison in 1D
with high grid resolution results in agreement in ne and Te (the
reason for the discrepancy—the poloidal magnetic flux in SOLPS
varies along the flux tube and/or the SOLPS solution is spatially
converged for N � 200 grid points only).

n u‖ Te Ti

1 ✗ ✗ ✗ ✗ Standard SOLF1D model
2 ✗ ✗ ✗ ✓ SOLF1D model using BC

as defined in SOLPS
3 ✗ ✓ ✗ ✓ Models assuming zero viscous flux
4 ✓ ✓ ✓ ✓ Comparison of models in 1D with

high grid resolution

display dominant particle source at the targets due to ionization
(Sn

coll), compared with the cross-field transport source (Sn
⊥)

which is strong around the stagnation point and below X points.
While the magnitude of Sn

⊥ does not change much between CD
and SXD, Sn

coll is a factor of 3 larger (note the different scale for
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Table 2. (top) Integral particle and energy sources on a flux tube of
the CD and SXD configurations (the flux tube with maximum target
energy load connecting the outer targets). Sn is determined by Sn

coll,
which increases 4× with increased L‖. Although SE

coll,e changes 4×,
SE is mainly determined by SE

⊥ , which has weaker dependence on
L‖, as well as SE

coll,i which changes by factor of 0.6. Note that the
flux tube on the outer side represents well the 2D picture, as the total
change of particles by collisional processes in the entire grid volume
is by factor of 3, the electron energy is reduced by factor of 3 and
the change in the ion energy is of factor of 0.6. (bottom) As a
consequence of mass and energy conservation on the flux tube, the
integral sources represent the target particle and energy
fluxes �‖ and Q‖ through expressions Bt

∫
Sn/Bds‖ = 2�‖,

Bt

∫
SE/Bds‖ = 2Q‖ where Bt is the magnetic field at the target.

This is found by the integration of equations (1), (3) and (4).

CD SXD∫
Snds‖ (m−2 s−1) 5.0 × 1023 1.8 × 1024 3.5∫
Sn

⊥ds‖ (m−2 s−1) −9.1 × 1021 −3.5 × 1023 38.5∫
Sn

collds‖ (m−2 s−1) 5.1 × 1023 2.1 × 1024 4.2∫
SEds‖ (kg s−3) 4.6 × 107 6.9 × 107 1.5∫
SE

⊥,eds‖ (kg s−3) 3.5 × 107 6.2 × 107 1.8∫
SE

⊥,ids‖ (kg s−3) 1.7 × 107 1.7 × 107 1.0∫
SE

coll,eds‖ (kg s−3) −2.2 × 106 −8.7 × 106 4.0∫
SE

coll,ids‖ (kg s−3) −3.7 × 106 −2.3 × 106 0.6

Bt

∫
Sn/Bds‖ (m−2 s−1) 5.0 × 1023 1.6 × 1024 3.2

Bt

∫
SE/Bds‖ (kg s−3) 8.0 × 107 4.7 × 107 0.6

Bt (T) 0.8 0.4 0.5

Q‖ (kg s−3) 3.9 × 107 2.5 × 107 0.6
Q‖,e (kg s−3) 2.0 × 107 1.7 × 107 0.9
Q‖,i (kg s−3) 1.9 × 107 8.3 × 106 0.4
�‖ (m−2 s−1) 2.2 × 1023 8.3 × 1023 3.7

Sn
⊥ and Sn

coll). The energy source, on the other hand, is in both
cases dominated by the radial transport, therefore enhanced
electron cooling in SXD does not have a big impact on the
power balance in the investigated regime (attached plasma). A
detailed analysis of sources in the two topologies is given in
table 2, where integral sources along the flux tube (representing
target fluxes) are calculated, clearly identifying the dominant
terms and the terms that change the most with the expanded
divertor leg.

4.2. Stretching the flux tube

As the particle and power balance on a flux tube in the outer
SOL from figure 3 (table 2) seems to represent well the balance
in the entire outer SOL (see a comment in table 2), we use the
1D approach to estimate the change in target parameters that
occurs due to stretching the flux tube in the divertor. We start
with the short divertor configuration (figure 5) and expand the
flux tube in two directions (figure 10 left) labelled as (a) and
(b). The magnetic field along the flux tube corresponding to
these two directions is plotted in figure 10 on the right (blue)
and compared with the original CD case from figure 5 (black)
and the SXD case from figure 4 (red).

Particle and energy sources in the expanded divertor are
not self-consistently modelled in 1D, as it would only give
a rough approximation of the 2D transport. Instead, they
are approximated by a parametric dependence on the divertor

length Ldiv, using sources calculated by EIRENE for CD at
L‖ ≈ 15 m. The radial and recycling sources are treated
separately. We assume that S⊥, which is largest in the upstream
SOL and below the X points, does not change during stretching
and it is zero in the newly created region. Further, we define
a divertor region (figure 10 left—the shaded region between
the nose of the baffle and target) where we replace Scoll by
its average value in this region Scoll. This does not change
the target flux, but simplifies the treatment of sources during
stretching of the divertor leg. For the recycling source, we
employ two methods: (1) While expanding the flux tube,
we assume that

∫
Scoll is constant and Scoll in the divertor

is replaced by its average value Scoll. (2) We assume that
the uniformly distributed source in the divertor Scoll is kept
constant, i.e. the integrated source (or sink)

∫
Scoll grows with

Ldiv. Method (1) assumes that the sources due to plasma–
neutral interaction do not increase for increased divertor length,
and is only used to separate the effect of toroidal magnetic
flux expansion. Method (2) is more realistic as it incorporates
plasma–neutral cooling and increased ionization source for
increased Ldiv. A comparison with sources from SOLPS
for SXD (table 2) shows the suggested approximation of the
sources is reasonable.

4.3. Target parameters as function of L‖

The different treatments of the sources in the flux tube,
(1) versus (2) described above, and different directions of
stretching the flux tube, (a) versus (b) from figure 10, give
a combination of four scans, each shown in figure 11.

(1a)—black—-For the case of the vertical stretching
(no additional flux expansion in the divertor), the target
quantities do not change and both the particle and energy
fluxes remain the same with increasing Ldiv (Bt

∫
Sn/Bds‖ and

Bt
∫

SE/Bds‖ do not change with constant magnetic field in
the divertor). (1b)—red—The radial stretching (the magnetic
field drops in the divertor as B ∝ 1/R) leads already to a
large reduction of temperatures and energy fluxes. This case
shows the effect of magnetic flux expansion solely. (2a)—
blue—With more recycling in the divertor, i.e. larger particle
source due to ionization and larger cooling (the recycling
sources scale with the divertor volume), the temperature drop is
much steeper even without magnetic flux expansion, compared
with the case (1a), however, we see less effect on the energy
fluxes than from the flux expansion alone in the previous
case. (2b)—green—The most beneficial, in terms of Q‖
reduction, is the combination of both effects, which results
in a substantial drop of temperature and a moderate drop
of energy fluxes, however, also in higher collisionality and
increased density and particle flux under attached conditions.
The approximation (2b) predicts a transition to detachment at
approximately L‖ ≈ 25 m, i.e. SXD at L‖ ≈ 28 m would be
detached.

4.4. Approximation of sources in 1D code

Although the approximation above for the sources captures
well the trends, it does not recover exactly the SOLF1D/SOLPS
simulation for SXD in the 1D scan. This is because too
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Figure 11. Parameters at the target calculated by SOLF1D as functions of the connection length, based on scans involving stretching of the
divertor region as described in the text. (1a) Constant integral sources in the flux tube (i.e. sources in the divertor are reduced proportionally
to the increased divertor length), constant magnetic field in the divertor (see figure 10(a)). (1b) Constant integral sources, varying magnetic
field (figure 10(b)). (2a) Sources in the divertor multiplied by the divertor length, constant magnetic field in the divertor. (2b) Sources in the
divertor multiplied by the divertor length, varying magnetic field. (3b-i) Sources in the divertor varied as S ∝ Lα

div, the magnetic field as in
case (b). (3b-ii) Sources in the divertor varied as S ∝ Ldiv, the magnetic field as in case (b). (cd-sxd) Sources in the divertor varied as
S ∝ Lα

div, the magnetic field as in SXD case. The cases (3b) and (cd-sxd) will be defined later in section 4.4.

strong a dependence of the recycling sources on Ldiv was
assumed. In SXD, where Ldiv is 8×, longer, the ionization
source and cooling in the divertor is only 4× stronger, while the
approximation (2) assumes a linear relationship. Therefore,
the methods (1) and (2) are extreme cases and the actual SXD
SOLPS simulation is somewhere in between.

If we want to approximate the sources to describe the
transition from CD to SXD quantitatively, we have to pay
attention to those components that are dominant. From table 2,
the key source terms to drive fluxes are

∫
Sn

coll for particles
and

∫
SE

⊥ for energy, although the change of
∫

SE
coll,e cannot

be neglected as
∫

SE
coll,e grows with collisionality and L‖ and

will be important at larger L‖. In addition, table 2 shows an
increase of the radial electron energy source in SXD. Because
this source dominates over the collisional cooling occurring

in the divertor in both CD and SXD, this has an effect on the
evaluation of the target energy flux. Comparison of figures 2
and 3 shows that the sink of electron and ion energy below
the X point into the private flux region is smaller in SXD
and the amplitude of the electron energy source is larger.
The increase in the radial energy source in SXD is consistent
with stronger parallel electron energy transport governed by
conduction, induced by steeper temperature gradients in SXD
(SE

⊥,e ≈ SE
‖,e ≈ −κekTe/L∇Te , LSXD

∇Te
< LCD

∇Te
), i.e. the same

flux comes radially into the flux tube from the main plasma, but
there is less flux leaving the flux tube in SXD as a consequence
of a stronger parallel loss, therefore the source is stronger.

Thus, based on the results from SOLPS in table 2, we
define a third method (3), an intermediate case, so that we fit
the CD and SXD cases accurately and extrapolate to larger L‖.
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Table 3. The definition of cases considered in the analysis—the
treatment of the sources and the magnetic field in the expanded
divertor. Sdiv = ∫

Scoll is the integral source in the divertor region of
the length Ldiv and S0 is its reference value for the conventional
divertor of the length L0. The coefficients γ in the cases (3) and
(cd-sxd) are chosen from fitting the SXD case.

scan (1a) Sdiv = S0 Bdiv = const
scan (1b) Sdiv = S0 Bdiv ∝ 1/R
scan (2a) Sdiv = S0Ldiv/L0 Bdiv = const
scan (2b) Sdiv = S0Ldiv/L0 Bdiv ∝ 1/R
scan (3a-i) Sdiv = S0(Ldiv/L0)

γ Bdiv = const
scan (3b-i) Sdiv = S0(Ldiv/L0)

γ Bdiv ∝ 1/R
scan (3b-ii) Sdiv = S0γLdiv/L0 Bdiv ∝ 1/R
scan (cd-sxd) Sdiv = S0(Ldiv/L0)

γ Bdiv as in SXD

We assume that
∫

Sn
coll and

∫
SE

coll,e are such functions of the
divertor length Ldiv, that both CD and SXD cases in table 2
are matched. We keep

∫
SE

i unchanged, but the amplitude of
SE

⊥,e increases with Ldiv as in SXD. This approximation is then
used to predict target parameters for larger Ldiv beyond SXD.
To interpolate between the CD and SXD cases, we assume a
power dependence

∫
S ∝ L

γ

div (i), and we also examine a linear
dependence (ii). A complete list of scans is given in table 3.

Figure 11 shows the intermediate case (3), in which the
sources best fit the CD and SXD simulations, in addition to
the previous cases (1) and (2). On the other hand, method (2)
leaves space for additional cooling, e.g. via impurity radiation
which is not taken into account here. For the case (3) in
figure 11, only radial stretching (b) is considered and 2 different
fits, (i) and (ii), are assumed. The magenta case shown as
(cd-sxd) is the direct interpolation between CD and SXD, using
the dependence (i). This case almost copies the case (3b-i)
where the divertor leg is stretched radially (the B dependence
is shown by the blue curve on right-hand side of figure 10), with
the only difference of assuming directly the magnetic field and
geometry of SXD (the red curve in figure 10). The last magenta
point at L‖ ≈ 28 m therefore directly corresponds to targets
parameters found in SXD by SOLF1D/SOLPS, while the CD
case is at L‖ ≈ 15 m.

Cases (3b-i) and (3b-ii) represent an extrapolation from
SXD to a divertor at larger radius, with different functions
used to interpolate between CD and SXD. These cases lie
between the limiting cases (1b) and (2b), and for the initial
condition of Te,sep both lead to a reduction of Te approximately
as Te ∝ L−2.6

‖ . At L‖ ≈ 28 m, Te is still above the detachment
limit of 5 eV, for which L‖ ≈ 45 m is needed. At L‖ < 45 m,
the reduction of the energy fluxes achieved in cases (3b-i) and
(3b-ii) does not exceed the reduction caused by the magnetic
flux expansion solely in case (1b). It is interesting to see that
Q‖,e at L‖ < 30 m is unchanged. The reason for this is, that
in spite of stronger volumetric power losses with increased
L‖, reducing the target energy flux, the parallel electron heat
flux, governed mainly by the source due to the cross-field
transport, is enhanced as well (stronger ∇‖Te at increased
L‖). These two effects compete and the collisional cooling
starts to show a strong effect only at large L‖ (L‖ > 45 m)
in this density regime, as shown in (3b-i). Note that different
extrapolations (i) or (ii) lead to similar n and T in the divertor,

while the prediction of Q‖ for large L‖ is more sensitive to the
dependence of the collisional source on L‖.

4.5. Comparison with two-point model

In figure 12, the reduction of the electron temperature and
the increase of the density at the target are compared with a
two-point model prediction. As in figure 11, a scan using the
SXD magnetic field is shown (magenta) with an extrapolation
that extends the divertor even further radially (3b-i, yellow).
In addition, a scan assuming the vertical stretching instead of
the radial one is plotted (3a-i, grey). The case (3a-i), where
Te falls as Te ∝ L−1.3

‖ , shows steeper temperature drop than

predicted by the two-point model for this case (Te ∝ L
−4/7
‖

and ne ∝ L
6/7
‖ ). The cases (cd-sxd) and (3b-i), in contrast,

show weaker dependence than a modified two-point model
taking into account the dependence on the target radius Rt

(Te ∝ R−2
t L

−4/7
‖ and ne ∝ R2

t L
6/7
‖ , see [15]). The two-

point model predicts approximately 2× smaller Te in SXD
(at L|| ≈ 28 m) than SOLF1D/SOLPS.

4.6. Parallel profiles for different divertor lengths

Figure 13 shows parallel profiles for the scans from figure 11.
In the first row (1a), the SOL is in the sheath-limited regime
and no reduction of temperatures is observed. In the second
row (1b), the target temperatures are reduced through the
magnetic flux expansion (at the target Q‖ ∝ nkT cs), but
the electron temperature profiles remain flat (small parallel
heat conductivity at large Te). In the third row (3b-i), the
conduction-limited SOL is accessed by increased plasma–
neutral cooling in the divertor accompanied by a drop of
the plasma temperature at the target and an increase of the
density. The last case displays profiles for the case (cd-sxd)
from figure 11 where the target parameters at L‖ ≈ 28 m
(cyan) coincide directly with the solution for SXD from figure 4
(green).

4.7. Scan at lower temperature

As MAST-U SOLPS simulations cannot yet be quantitatively
compared with experiment, a benchmark simulation is carried
out for available MAST discharges. For similar radial
heat conductivities as used in this paper, SOLPS tends to
overestimate the plasma temperatures at the separatrix. While
in the H-mode simulation Te,sep ≈ 100 eV with no Te drop
towards the targets (sheath-limited), the experimental value is
typically Te,sep ≈ 50 eV and at the target Te,t ≈ 20 eV. Because
the volumetric power losses in the SOL are stronger for larger
collisionality, the temperature (or input power to the flux tube)
is a relevant parameter influencing our analysis. While the
scan in figure 11 remains useful for prediction of the target
parameters for large L‖ at high temperatures, we repeat the
same analysis for temperatures that are more likely to occur in
the early stages of MAST-U. The scan in figure 14 is based on
a SOLPS simulation for the CD case with lower input power
to the SOL. Although Te drops by a factor of 2, the SOL is
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Figure 12. Parameters at the target calculated by SOLF1D compared with the two-point model. (3a-i) Constant magnetic field in the
divertor, sources in the divertor vary as S ∝ Lα

div and match the sources in CD and SXD at L|| ≈ 15 m and L|| ≈ 28 m. (3b-i) As in figure 11,
i.e. the magnetic field in the divertor drops as B ∝ 1/R, sources in the divertor go as S ∝ Lα

div. (cd-sxd) As in figure 11, the magnetic field
and sources change as in SXD, therefore plasma parameters at L|| ≈ 15 m coincide with the CD values and at L|| ≈ 28 m with the SXD
values. For comparison, the two-point model without/with Rt dependence is shown in black/green.

still in the sheath-limited regime, with a slight gradient in Te

towards the target.
At lower temperatures (Te ≈ 50 eV at the target in

CD), method (2b) results in the transition to detachment at
L‖ ≈ 20–25 m (the method with strong cooling in the divertor).
Method (3b-i) leads to detached conditions (Te below 5 eV) at
L‖ ≈ 29 m (the method that approximates best the transition
from CD to SXD as simulated by SOLPS), i.e. at lower
temperature, we need a shorter L‖, by approximately 15 m, to
detach. Also volumetric power losses are stronger, showing
their impact on reducing the target loads below the drop
observed from flux expansion alone at L‖ ≈ 25–30 m.

Full parallel profiles in the stretched divertor leg are
shown in figure 15 which can be compared with the high-
temperature scan in figure 13. The first row is the reference
case (1a) where no drop of target temperatures or fluxes is
observed. The electron temperatures have only small gradients
towards the target compared to ions with smaller parallel heat
conductivity (κ ∝ m−1/2), but larger gradients compared to
the previous case in figure 13 (κ ∝ T 5/2). The second row
(1b) shows the reduction of temperatures with flux expansion.
Here, not only the target Te drops with reduced energy flux,
but also larger Te gradients towards the target develop as the
parallel electron conductivity drops. Additional ionization and
collisional cooling in the divertor in the third row (3b-i) lead to
a further drop of the target temperatures down to detachment
at L‖ ≈ 30 m. The bottom row shows how SOLF1D/SOLPS
simulations of CD (black) and SXD (green) fit into the 1D scan,
where recycling sources are for simplicity uniformly spread in
the divertor. At L‖ ≈ 15 m and L‖ ≈ 28 m, the scan (red
and cyan) recovers accurately the target values found in CD
and SXD.

As in section 4.5, the temperature drop and density
increase are compared with the two-point model in figure 16.
While the temperature drop is much stronger in the simulation
for the case when the divertor is extended vertically (grey)
than predicted by the two-point model (black), the decay to
low temperatures in case of the radial stretching (yellow) is
not far from the two-point model (green), although based on
different physics.

The last comment is related to—(i) cooling due to
sputtered impurity, (ii) drift effects—two effects which are not
included in the analysis, but which can be tested in SOLPS.
If carbon sputtering is taken into account (with the chemical
sputtering yield of 1%), the expected effect on L‖ at which
the transition to the detachment occurs is not large. The
temperature at the target is reduced by approximately 2 eV
thanks to the impurity cooling for a case close to the detachment
and one would gain approximately 2 m of the connection
length, i.e. the detachment is expected at L‖ ≈ 27 m with
the impurity cooling in comparison to previous L‖ ≈ 29 m
without carbon.

Drift effects have not been tested in the frame of this
paper, however, they have been studied for MAST separately
in [16]. The key role is played by the poloidal E × B drift,
which in a connected double null configuration results in an
asymmetry of the plasma parameters in the top and bottom
divertors. For the direction of the drift towards the lower outer
plate, the temperatures at the lower outer plate are increased,
while they are reduced at the upper outer target with respect
to a symmetric situation without drifts. In [16], the change in
Te varies between 0% and 50% at the outer targets, while the
largest effect is found in the inner lower divertor, where Te can
be reduced by up to a factor of 6. In our analysis in figure 14,
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Figure 13. Parallel profiles of plasma quantities on a flux tube between upper and lower outer targets for an expanded divertor leg: (i) case
(1a) from figure 11. (ii) Case (1b) from figure 11 (increasing flux expansion). (iii) Case (3b-i) from figure 11 (increasing flux expansion and
the strength of recycling sources). In black, profiles for the CD geometry (as in figure 5). In red, a solution for the CD geometry with the
recycling sources at the target replaced uniformly by the average value in the divertor. In blue, magenta, green and orange, solutions for the
expanded divertor. (iv) Case (cd-sxd) from figure 11 (changing flux expansion and the strength of recycling sources as in SXD). In black,
profiles for the CD geometry (from figure 5). In blue, magenta and cyan, profiles for the expanded divertor. The last profile with L|| = 28 m
coincides at the targets with the solution for the SXD geometry (from figure 4) shown in green.

the asymmetry resulting from the drift effects would cause
that the predicted L‖ at which the transition to the detachment
occurs would be longer in the bottom divertor, while an earlier
transition (at shorter L‖) would be found at the top target.
In [17], the effect is quantified for SXD in MAST-U for low
target temperatures of approximately 4 eV. One can see a drop
of the peak Te at the top from 4 to 1.8 eV and only a little rise
of Te at the bottom from 4 to 4.8 eV. With the change in the

target temperature of few eV caused by the drifts, one should
not expect the effect of the drifts on estimated L‖ to be larger
than 5 m.

5. Conclusions

In order to use the SOLF1D code to predict conditions at
the target for a long-legged divertor, the code has first been
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10 20 30 40 50
0

20

40

60
Target el. temperature

L
||

T
e [e

V
]

10 20 30 40 50
0

20

40

60
Target ion temperature

L
||

T
i [e

V
]

10 20 30 40 50
0

0.5

1

1.5

2
x 10

20 Target density

L
||

n 
[m

−
3 ]

10 20 30 40 50
0

5

10
x 10

6Target el. energy flux

L
||

Q
||,

e [W
m

−
2 ]

10 20 30 40 50

0

5

10
x 10

6Target ion energy flux

L
||

Q
||,

i [W
m

−
2 ]

10 20 30 40 50
0

1

2

x 10
24Target particle flux

L
||

nu
|| [m

−
2 s−

1 ]

10 20 30 40 50
0

5

10

15

20

25
Upstream collisionality

L
||

ν*

scan (1a)
scan (1b)
scan (2a)
scan (2b)
scan (3b−i)
scan (cd−sxd)

Figure 14. Parameters at the target calculated by SOLF1D as functions of the connection length for lower temperatures. The scans involve
stretching of the divertor region as described in the text. (1a) Constant integral sources in the flux tube (i.e. sources in the divertor are
reduced proportionally to the increased divertor length), constant magnetic field in the divertor (see figure 10(a)). (1b) Constant integral
sources, varying magnetic field (figure 10(b)). (2a) Sources in the divertor multiplied by the divertor length, constant magnetic field in the
divertor. (2b) Sources in the divertor multiplied by the divertor length, varying magnetic field. (3b-i) Sources in the divertor varied as
S ∝ Lα

div, the magnetic field as in case (b). (cd-sxd) Sources in the divertor varied as S ∝ Lα
div, the magnetic field as in SXD case.

benchmarked with SOLPS. The comparison shows a good
agreement for the collisional SOL and a satisfactory agreement
for the sheath-limited SOL, with discrepancies partly caused
by numerical errors related to the discretization of SOLPS
equations on a 2D grid and partly by an inaccurate conservation
of the poloidal magnetic flux on the flux surface, once
discretized on the grid. These discrepancies are, however, not
critical (up to 20%) and might be reduced by a higher resolution
of the 2D grid. It has also been found that the SOLPS boundary
condition for Ti at the divertor plate (omitting the kinetic part
of the ion flux) leads to approximately 20% lower Ti compared
with SOLF1D.

Based on the successful benchmark of SOLF1D with
SOLPS for two divertor geometries (the conventional and
Super-X divertor), an extrapolation to larger L‖ is carried out.
The effect of magnetic flux expansion on the reduction of
the target temperature and energy flux is separated from the
effect of power losses due to atomic processes. This is done
by stretching the divertor leg in either radial (B ∝ 1/R) or
vertical (no additional flux expansion) directions. For a given
initial value of Te,sep ≈ 112 eV, Te in front of the target drops
from 110 to 25 eV between the conventional divertor geometry
(L‖ ≈ 15 m) and SXD (L‖ ≈ 28 m), and for L‖ ≈ 45 m
(when the divertor leg is extended in the radial direction), Te is
further reduced to 6 eV. The temperature is reduced equally by
the magnetic flux expansion and the plasma–neutral collision
effects in this collisionality regime (nsep ≈ 9 × 1018 m−3,
Te,sep ≈ 112 eV, Pinp ≈ 1.7 MW) and the Te drop in SXD
is twice slower than predicted by the two-point model.

Q‖ drops from 38.6 MW m−2 (CD) to 25.1 MW m−2

(SXD) under attached divertor conditions and for L‖ ≈ 45 m,

an additional drop to 11.7 MW m−2 is predicted. The dominant
effect responsible for the reduction of Q‖ at the target is the
magnetic flux expansion, while the volumetric power loss in
the divertor starts to play a role at large L‖ only (L‖ ≈ 45 m),
unless the radiation is increased at lower L‖ by other means
(e.g. increased density, impurities). The reason is the small
importance of the collision-based power losses at small L‖ in
our case with respect to the energy source due to upstream
cross-field transport. Moreover, the simulation shows that
in a near-separatrix flux tube, the cross-field energy source
increases from CD to SXD (due to larger parallel ∇T and
stronger parallel heat transport), explaining why Q‖,e does
not drop in SXD (the stronger cross-filed source cancels the
effect of stronger flux expansion and cooling). It is therefore
desirable to increase the collisionality (i.e. radiation power
losses) and reach detachment in order to achieve a further drop
of Q‖ via recombination and a reduction of �‖ at the same
time.

Current MAST experiments show a smaller value of
Te,sep than the temperatures found in simulations, therefore we
extrapolate the behaviour in target parameters at large L‖ for
a lower temperature as well. This adds one more parameter in
our analysis (the collisionality) and appears to be relevant as the
volumetric power losses in the SOL become more important.
Compared with the previous scan at Te,sep ≈ 112 eV, we gain
approximately 15 m of the connection length. The target
temperature drops from Te ≈ 49 eV in the short divertor
configuration (nsep ≈ 9 × 1018 m−3, Te,sep ≈ 58 eV, Pinp ≈
0.84 MW), down to the detachment limit at L‖ ≈ 25–30 m,
hence SXD would be just around the detachment limit. A
stronger reduction of Q‖,e due to collisional cooling in this
case is obvious.
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Figure 15. Parallel profiles of plasma quantities on a flux tube between upper and lower outer targets for an expanded divertor leg at low
temperatures: (i) Case (1a) from figure 14. (ii) Case (1b) from figure 14 (increasing flux expansion). (iii) Case (3b-i) from figure 14
(increasing flux expansion and the strength of recycling sources). In black, profiles for the CD geometry. In red, a solution for the CD
geometry with the recycling sources at the target replaced uniformly by the average value in the divertor. In blue, magenta, green and
orange, solutions for the expanded divertor. (iv) Case (cd-sxd) from figure 14 (changing flux expansion and the strength of recycling sources
as in SXD). In black, profiles for the CD geometry. In blue, magenta and cyan, profiles for the expanded divertor. The last profile with
L|| = 28 m coincides at the targets with the solution for the SXD geometry shown in green.

Out of scope of the 1D analysis is the assessment of the
poloidal flux expansion and the effect of the target tilting—
additional channels for reducing the energy flux deposited at
the target, which can be expressed in terms of the parallel
flux as Qt = Q‖(Bpol/B)tsinβ, β is the tilting angle and
(Bpol/B)t relates to the local pitch angle. From equilibrium
and SOLPS calculations for the two divertor configurations of
MAST-U, CD and SXD (where the poloidal magnetic field in

the divertor is reduced by additional divertor coils), the poloidal
flux expansion accounts for a factor of 2 decrease in the target
energy load.
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Appendix. SOLF1D model

A.1. Generalized equations

The model is based on the following equations for the plasma
density n, parallel ion velocity u‖ and electron and ion
temperatures Te and Ti

∂n

∂t
+ B

∂

∂s

(nu‖
B

)
= Sn, (15)

∂

∂t
(minu‖) + B

∂

∂s

(
minu2

‖
B

)
+ B

3
2

∂

∂s

(
B− 3

2 δpi

)

= − ∂

∂s
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u, (16)
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e (17)
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nkTi +

1

2
minu2

‖

)

+B
∂
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[
1

B

(
5

2
nkTiu‖ +

1

2
minu3

‖ + q‖,i + u‖δpi

)]

= − u‖
∂pe

∂s
+ Qi + SE

i (18)

assuming quasineutrality (ne = ni), no net parallel current
(j‖ = 0) and ambipolarity (u‖,e = u‖,i). We further

assume the generalized Ohm’s law for electron momentum
enE‖ = −∂pe/∂s + R‖,e which leads to the cancellation of
terms with thermal forces R‖,e = −R‖,i and parallel electric
field E‖ in the momentum and energy equations and the
substitution by ∂pe/∂s term, see equations (1)–(4).

A.2. Relation to Braginskii model

The set of equations is consistent with Braginskii equations,
see [8]. The divergence of the velocity vector u in the three-
dimensional continuity equation of Braginskii (or analogically
the energy flux vector in the energy equation) is replaced by

∇ · u → ∂u‖
∂s

− u‖
B

∂B

∂s
= B

∂

∂s

(u‖
B

)
, (19)

leading to equation (15). We obtain the new operator in
(19) by expanding the velocity as u = u‖b + u⊥ and using
∇ · B = 0 where b = B/B. The component perpendicular
to the magnetic field will appear as a source term on the right-
hand side of the one-dimensional equation.

The momentum equation, equation (16), is the parallel
component of Braginskii momentum equation. Braginskii
viscosity tensor π ≡ P − pI yields

π = δpi
(

3
2bb − 1

2I
)
, (20)

if following definitions are used P ≡ p‖bb + p⊥(I − bb),
p ≡ (p‖ + 2p⊥)/3 and δpi ≡ p‖ −p. The parallel component
of the viscous term in Braginskii momentum equation is then
equivalent to

b · ∇ · π = ∂δpi

∂s
− 3

2

δpi

B

∂B

∂s
= B

3
2

∂

∂s

(
B− 3

2 δpi

)
. (21)

15



Plasma Phys. Control. Fusion 55 (2013) 065004 E Havlı́čková et al

In order to complete the description of the model, a closure
of the equations is required (i.e. expressions for the viscous
momentum flux δpi and the thermal heat fluxes q‖,e and q‖,i)
and all transport coefficients and source terms arising due to
plasma–neutral interactions must be defined.

A.3. Parallel ion viscosity

The parallel viscous flux is written as

δpi ≈ −η‖

(
∂u‖
∂s

+
u‖
2B

∂B

∂s

)
= −η‖B− 1

2
∂

∂s

(
B

1
2 u‖

)
. (22)

Note that the form of equation (22) is again consistent with
Braginskii parallel viscous momentum flux, if we replace
∇ · u by equation (19) in individual components of Braginskii
viscosity tensor. We can use the classical Braginskii parallel
viscosity

η‖ = ηcl = 0.96nkTiτi (23)

or employ viscous flux limiters in order to satisfy all
collisionality regimes. The collision time τi is defined as

τi = 3
√

mi(kTi)
3
2

4
√

πnλe4
= 2.09 × 1013 T

3
2

i

nλ

√
mi

mp
sec (24)

in SI units and Boltzmann constant is k = 1.6 × 10−19 J eV−1

[18]. The Coulomb logarithm λ is generally a function of the
density and temperature, see e.g. [19] or [20].

If we follow the derivation of the parallel and
perpendicular pressure equations as done for example in [8]
or [10], we can obtain more general equation for the parallel
viscous flux δpi which defines a parallel viscosity limiter
through

η‖ = ηcl

1 + �η

, �η = ηcl∇‖u‖
4
7nkTi

− ηclu‖∇‖B
BnkTi

. (25)

Equation (25) reduces to the expression (23) in the limit of
high collisionality. In widely used 2D transport codes such as
SOLPS or EDGE2D, only the ∇‖u‖ term is taken into account,
with the ion viscous flux limiter as an optional parameters in
the code, but typically βu = 0.5 (≈4/7) being a good choice in
steady-state inter-ELM modelling of the low-recycling SOL.

A.4. Parallel heat conductivity

From higher-order moment equations, approximate expres-
sions for the heat flux can be obtained. We calculate the heat
flux using classical Spitzer-Härm heat conductivities

q‖,e = −κe

∂

∂s
(kTe), κe = κcl,e = 3.2

nkTeτe

me
, (26)

q‖,i = −κi

∂

∂s
(kTi), κi = κcl,i = 3.9

nkTiτi

mi
, (27)

and define the electron collision time as

τe = 3
√

me(kTe)
3
2

4
√

2πnλe4
= 3.44 × 1011 T

3
2

e

nλ
sec. (28)

Kinetic corrections in the form of heat flux limiters can
be used. SOLF1D allows to modify the thermal heat flux both
for the electrons and ions as

q‖ =
(

1

q‖,lim
+

1

q‖,cl

)−1

(29)

which limits the heat flux to a maximum acceptable value
q‖,lim = αnvthkT , where vth is the thermal speed, and imposes
a limit for the heat conductivity which would otherwise diverge
for large temperatures. From equation (29), a corrected
expression for the heat conductivity can be formulated as

κ = κcl

1 + �κ

, �κ = κcl∇‖T
αnvthT

. (30)

The electron and ion heat flux limiters αe and αi are again
optional parameters of the model. As a result of kinetic studies,
values of the heat flux limiters are observed in the range 0.03 �
α � 0.6 with poloidally averaged values α ≈ 0.15 ± 0.05
(depending on the collisionality) and for the viscosity limiter
it is β ≈ 0.5 ± 0.1 [21]. At high collisionalities, no limiting
is required and some authors mention a heat flux enhancement
contrary to limiting [22]. The limiters strongly vary in time,
e.g. during ELMs or turbulent transport, by several orders of
magnitude [21] and the latest comparison of SOLF1D with the
kinetic code BIT1 has shown that assuming constant heat flux
limiters during the ELM crash is not adequate [23].

A.5. Model of neutrals

Atomic species are treated as a fluid and their transport is
described by 1D continuity and momentum transfer equations

∂n0

∂t
+

∂

∂s
(n0u0) = Sn

0 , (31)

∂

∂t
(m0n0u0) +

∂

∂s

(
m0n0u

2
0

) = −∂p0

∂s
+ m0S

u
0 (32)

with the density and momentum sources/sinks Sn
0 balanced

by corresponding ionic sinks/sources in the plasma fluid
equations. The closure is made using an assumption about
the energy of neutrals. Neutral species are assumed to
thermally equilibrate with ions due to dominant charge-
exchange processes and therefore considered to have the
temperature locally equal to the ion temperature T0 = Ti

everywhere in the SOL.
The 1D model of neutrals provides a simple way

to incorporate the main aspects of the SOL for different
collisionalities and to describe high-recycling conditions.
While the 1D description is reasonable for plasma, 2D
modelling of neutrals would be more appropriate, especially
if the ionization mean free path is long enough for neutrals
to propagate deeper in the SOL. In such case, 1D model can
lead to overestimation of neutral concentration on the flux tube
or eventually result in instable solutions. 2D codes such as
SOLPS are usually coupled with Monte Carlo EIRENE and
there has been an evidence that the kinetic treatment is certainly
required for precise quantitative calculations (see e.g. [24]).
Both plasma and neutral models in SOLF1D are currently
being benchmarked with PIC simulations performed with BIT1
code for different collisionalities and results will be published
shortly.

16



Plasma Phys. Control. Fusion 55 (2013) 065004 E Havlı́čková et al
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Figure 17. Collision rates used in the SOLF1D code. The
recombination rate is displayed for densities n = 1 × 1018 m−3,
n = 1 × 1019 m−3 and n = 1 × 1020 m−3.

A.6. Collision and source terms

The energy exchange between electron and ions due to
collisions is described as

Qi = −Qe = 3me

mi

nk

τe
(Te − Ti). (33)

The sources Sn, Su, SE
e and SE

i in equations (15)–(18) comprise
cross-field sources of plasma, momentum (here neglected)
and energy and collision terms (the interaction of plasma
with neutrals) describing changes of the mass, momentum
and energy due to processes of ionization, charge exchange,
excitation and recombination. They are defined as

Sn = n0n〈σv〉ION − n2〈σv〉REC + Sn
⊥, (34)

Su = n0nu0〈σv〉ION + n0n(u0 − u‖)〈σv〉CX − n2u‖〈σv〉REC,

(35)

SE
e = −n0n〈σv〉IONkIH − n0nkQH + SE

⊥,e, (36)

SE
i = n0n〈σv〉ION

[
3
2kT0 + 1

2m0u
2
0

]
+n0n〈σv〉CX

[
3
2k(T0 − Ti) + 1

2m0(u
2
0 − u2

‖)
]

−n2〈σv〉REC
[

3
2kTi + 1

2m0u
2
‖
]

+ SE
⊥,i . (37)

IH is the ionization potential (IH = 13.6 eV for hydrogen
ions), QH is the cooling rate due to excitation and 〈σv〉ION,
〈σv〉CX and 〈σv〉REC are collision rates for ionization, charge
exchange and recombination which are, in general, functions
of the density and temperature, see figure 17.

A.7. Numerical solution

The equations in SOLF1D are solved numerically in variables
n, u‖, Te and Ti, i.e. equations (15)–(18) are modified as

∂n

∂t
+ B

∂

∂s

(
B−1nu‖

) = Sn, (38)

min
∂u‖
∂t

+
1

2
min

∂

∂s
(u2

‖) − B
3
2

∂

∂s

[
B−2η‖

∂

∂s

(
B

1
2 u‖

)]
(39)

= − ∂

∂s
(pe + pi) + miS

u − miu‖Sn,

Table 4. Boundary conditions of the SOLF1D model.

Quantity Boundary condition

n Extrapolation

u‖ u‖ = cs ≡
√

k(Te + Ti)

mi
Te Q‖,e = δenkTecs

Ti Q‖,i = δinkTics

n0 �0 = −R�‖

u0 u0 = vth ≡
√

kT0

m0

3

2
nk

∂Te

∂t
+

3

2
nk

∂

∂s
(Teu‖) − B

∂

∂s

[
B−1κe

∂

∂s
(kTe)

]
(40)

= 1

2
nkTe

∂u‖
∂s

− 3

2
kTeS

n + Qe + SE
e +

nkTeu‖
B

∂B

∂s
,

3

2
nk

∂Ti

∂t
+

3

2
nk

∂

∂s
(Tiu‖) − B

∂

∂s

[
B−1κi

∂

∂s
(kTi)

]
(41)

= 1

2
nkTi

∂u‖
∂s

+ η‖

(
∂u‖
∂s

)2

− 3

2
kTiS

n

+
1

2
miu

2
‖S

n − miu‖Su + Qi + SE
i

+
nkTiu‖

B

∂B

∂s
+

η‖u‖
B

∂B

∂s

∂u‖
∂s

+
η‖u2

‖
4B2

(
∂B

∂s

)2

,

and solved in a similar form

a
∂f

∂t
+ b

∂

∂s
(f v) + c

∂

∂s

[
d

∂

∂s
(ef )

]
= S1 + f S2. (42)

The SOLF1D code was written as a simple and fast
alternative to existing 2D codes, considering the attention to
the numerical aspects less important. That is why the model
is solved using traditional numerical methods of second order
both in time and space. The system of nonlinear equations is
solved by an algorithm based on the finite difference method.
The equations are discretized on a non-uniform staggered grid
using traditional numerical schemes and solved by a mixed
explicit/implicit time integration. We use an exponential grid
with refined spacing in the boundary regions where large
gradients of plasma quantities can occur in high-recycling or
detached regimes. The convective terms of the fluid equations
are converted to finite difference expressions by the second-
order upwind scheme and the diffusive terms are discretized
by the Crank–Nicholson scheme. The time stepping is based
on the second-order splitting method (see e.g. [25]). Nonlinear
terms are treated explicitly, while linear terms are updated
to a new time level implicitly. Resulting systems of linear
equations are solved by the Progonka and Matrix Progonka
methods described in [26, 13].

A.8. Boundary conditions

At both ends of the computational region (target plates),
boundary conditions are applied (see table 4), including Bohm
criterion for the parallel ion velocity (Dirichlet boundary
condition) and standard expressions for the sheath energy
fluxes using constant sheath energy transmission factors (the
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condition for the flux is linearized and translated into Newton
boundary condition for the temperature). A pumping at the
target and neutral recycling is included using the recycling
coefficient and recycled neutrals are assumed to propagate
from the targets with the thermal speed at the temperature
T0 = Ti (neutrals leaving the wall are assumed to equilibrate
fast with plasma ions due to charge exchange). The density is
extrapolated from the neighbouring points to the boundary.
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