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A corrected relativistic collision operator is used to derive a Fokker-Planck equation for the
distribution function of relativistic suprathermal electrons in a weakly relativistic plasma, which is
then solved by a procedure similar to that employed in Connor and Hastie �Nucl. Fusion 15, 415
�1975��. Analytical expressions are derived for the electron distribution function in plasmas with the
electric field close to critical, which is typical of plasmas with grassy sawteeth on the Joint European
Torus. A numerical solution is used for determining the normalization constant, which matches the
relativistic region onto the weakly relativistic region. It is found that the scaling of the runaway rate
with the electric field obtained by Connor and Hastie is a good approximation in spite of their use
of an incomplete form of the collision operator not conserving number of particles. The present
analysis determines the proportionality constant and introduces corrections to the earlier scaling of
the runaway rate with respect to the electric field. The results obtained for the electron distribution
function constitute a basis for studies of experimentally observed phenomena in near-threshold
electric field plasmas with a significant suprathermal electron population. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2219428�

I. INTRODUCTION

It has long been recognized that electric fields generated
during reconnection events in magnetized plasmas may ac-
celerate electrons and ions of the plasma. In tokamaks, the
disruptive instability1 that sometimes terminates the dis-
charge often induces electric fields E well above the critical
value Ec corresponding to the minimum of the friction force
on a relativistic electron. Thus, the critical electric field pa-
rameter �, defined by2

� =
E

Ec
=

4��0
2mec

2

nee
3ln �

E , �1�

satisfies ��1, where ne is the thermal electron density, me

the electron rest mass, e the absolute value of the electron
charge, ln � the Coulomb logarithm, �0 the dielectric con-
stant, and c the speed of light. In Joint European Torus �JET�
plasmas, such fields accelerate electrons up to relativistic en-
ergies generating a runaway electron current exceeding
1 MA.3 These postdisruption relativistic electrons have a
number of remarkable properties among which are runaway
avalanching4 and the production of positrons.5

Another type of reconnection event, the sawtooth
instability,1 does not terminate the plasma, but affects signifi-
cantly the central part of the plasma by redistributing particle
and energy densities and relaxing the central electron tem-
perature. Although the electric fields induced during saw-

teeth, Esaw, may not be as high as those caused by disrup-
tions, they can nevertheless accelerate electrons repeatedly at
each sawtooth crash throughout the discharge.6 Recent obser-
vations of suprathermal electrons during magnetic reconnec-
tion at sawtooth crashes in the T-10 tokamak showed the
appearance of beams of suprathermal electrons with energies
up to 20–100 keV localized around the X point of the
m=1 and m=2 magnetic islands accompanying the
sawteeth.7 Fast electron bremsstrahlung was also found to be
significantly enhanced8,9 in low-density JET plasmas with
short-period, chaotic sawteeth, so-called grassy sawteeth.10

Estimates show that, throughout these discharges, electric
fields induced by each sawtooth crash satisfy ��1, while
the estimated on-axis inductive electric field was close to the
critical field, ��1,8,9 at all times between sawtooth crashes.
Under such conditions on JET, a reconnection electric field
generates a suprathermal electron population repeatedly dur-
ing each sawtooth crash, while the presence of a steady-state,
near-threshold inductive electric field E�Ec prevents a rapid
deceleration of the suprathermal electrons due to Coulomb
collisions between the sawtooth crashes.

To accurately describe suprathermal electrons in such
plasmas, one would need to derive and solve the time-
dependent Fokker-Planck equation for the electron distribu-
tion function at ��1, with ��1 at the times of the saw-
tooth crashes. As a step in this direction the present paper
focuses on a local analysis of the steady-state electron veloc-
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ity distribution function at ��1. A theory of the suprather-
mal electron velocity distribution function in a weakly rela-
tivistic plasma was developed by Connor and Hastie in Ref.
2. However, it was pointed out by Karney and Fisch11 that
the collision operator employed in Ref. 2 does not conserve
the number of particles. Since the number of fast electrons is
exponentially sensitive to the electric field and to plasma
parameters, we have employed the correct relativistic colli-
sion operator in this problem and reassessed the theory pre-
sented in Ref. 2. In the current paper, an approach similar to
that used by Connor and Hastie is employed for describing a
weakly relativistic plasma with a small, dimensionless ex-
pansion parameter quantifying the ratio between critical and
Dreicer electric fields, ED, according to

� =
Ec

ED
=

Te

mec
2 � 1. �2�

Special attention is paid to the case of the grassy sawtooth
discharges on JET where the inductive electric field of the
tokamak is close to the critical electric field, ��1, and the
weakly relativistic parameter is ��10−2. An exact evaluation
of the deceleration/acceleration of suprathermal electrons
generated by sawtooth crashes crucially depends on an accu-
rate description of the cases ��1, ��1, and �−1�1,
which is the focus of the present paper.

The paper is organized as follows. In Sec. II, a relativis-
tic collision operator, derived in Appendix A, is used to ob-
tain the governing Fokker-Planck equation for relativistic
electrons in a weakly relativistic plasma. The solution to this
equation is found analytically, by asymptotic techniques ap-
plied to five separate regions in momentum space, in Sec. III
and in Appendix B. In Sec. IV, the results of the runaway
region are used to calculate the runaway rate,
i.e. the number of runaway electrons generated per unit vol-
ume and unit time. Finally, our conclusions are presented in
Sec. V.

II. FOKKER-PLANCK EQUATION FOR RELATIVISTIC
ELECTRONS IN A WEAKLY RELATIVISTIC
PLASMA

In the presence of an external electric field E, the steady-
state electron velocity distribution function f satisfies the
equation

− eE · �pf = C�f� , �3�

where p is the momentum related to the velocity v through
v= pc /�p2+me

2c2 and C�f� is the collision operator for a
weakly relativistic plasma derived in Appendix A.

By introducing spherical coordinates �p ,� ,	� in velocity
space with momentum p directed along −E, the direction of
electron acceleration, Eq. �3� can be gyro-averaged to yield

eE�

� f

�p
+

1 − 
2

p

� f

�

� = C�f� , �4�

where 
=cos �= p	 / p and p	 =−p ·E / 
E
. Upon using the
collision operator C�f� from Appendix A, Eq. �A24�, and a
critical electric field parameter � defined by Eq. �1�, Eq. �4�
becomes

��

� f

�q
+

1 − 
2

q

� f

�

�

=
�q2 + 1

2q3 �1 + Z − �
2q2 + 1

q2�q2 + 1�� �

�

�1 − 
2�

� f

�


+
1

q2�q2 + 1 − �
�1 − 2q2��q2 + 1

q2 � � f

�q

+ �
�q2 + 1�3/2

q3

�2f

�q2 +
2f

q
. �5�

Here, � is the small expansion parameter defined by Eq. �2�,
q= p /mec is the normalized momentum, Z is the effective
charge number of the plasma ions, and terms of order O��2�
have been neglected. Here, the total particle density has been
normalized to unity in order to be consistent with Ref. 2.
This Fokker-Planck equation is the governing equation for
the electron distribution function, from which its dependence
on momentum and parallel electric field is obtained. The
analysis below will show how a suprathermal electron tail,
peaked around 
=1, i.e., parallel to the direction of electron
acceleration, is formed.

III. SOLUTION OF THE FOKKER-PLANCK EQUATION

In a weakly relativistic plasma with ��1 Eq. �5� can be
solved using asymptotic techniques devised by Kruskal and
Bernstein, who first solved the corresponding nonrelativistic
problem.12 As in their analysis as well as in Ref. 2, different
asymptotic expansions must be used in five different regions
of velocity space.

A. Region I: Nonrelativistic region

In region I, we consider two small quantities, � and q,
satisfying the ordering v=q /���O�1�. Since q2�1 the
nonrelativistic limit of the collision operator can be used. In
this limit the Fokker-Planck Eq. �5� takes the form

�

��
�


� f

�v
+

1 − 
2

v

� f

�

�

=
1

2�3/2v3�1 + Z −
1

v2� �

�

�1 − 
2�

� f

�


+
1

�3/2

1

v2

� f

�v
−

1

�3/2

1

v4

� f

�v
+

1

�3/2

1

v3

�2f

�v2 . �6�

Equation �6� is solved by expanding the solution f I in the
small parameter,

f I = f0 + �f1 + ¯ . �7�

Using this expansion in Eq. �6�, and requiring f0= f0�v� to be
isotropic, gives to order O��−3/2� the equation

�

�v
� f0 +

1

v

� f0

�v
� = 0, �8�

and the solution f0�q�=exp�CI−q2 /2�� is Maxwellian, where
CI is a normalization constant determined by
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ne = �
0

�

f I dq = �
0

�

exp�CI − q2/2��dq + O��� . �9�

An equation for f1, obtained from the O��−1/2� terms of
Eq. �6�, constitutes the Spitzer problem13 and is given by

�

� f0

�v
=

1

2v3�1 + Z −
1

v2� �

�

�1 − 
2�

� f1

�

+

1

v2

� f1

�v

−
1

v4

� f1

�v
+

1

v3

�2f1

�v2 , �10�

and the solution to this equation was solved for large mo-
menta by Cohen.14 However, for the present analysis, which
is taken to order O�1�, the first-order term f1 is not needed.

The expansion �7� in region I breaks down when
�f1� f0, i.e., when q2��1/2, and a new region has to be
considered.

B. Region II: Weakly relativistic region

Since the ordering used in region I breaks down at
q2��1/2, it is convenient to introduce a new variable
u=�−1/4q�O�1� for analyzing this higher momentum region.
In addition to this new variable, one should also use a rela-
tivistic expression for the collision operator. Since
f0�u��exp�−u2 /2��� cannot be expanded as a power series
in ��, the perturbation expansion of Eq. �7� cannot be em-
ployed. Instead, an expansion in �� is applied to the expo-
nent F=lnf II according to

F = �−1/2F�0� + F�1� + �1/2F�2� + ¯ + CII. �11�

Substitution of F and u into the Fokker-Planck Eq. �5� gives,
to leading order, O��−1�,

1

2u3 �1 + Z�� �F�0�

�

�2

= 0 Þ
�F�0�

�

= 0 �12�

and F�0�=F�0��u�. To next order, O��−1/2�, one finds

�F�0�

�u
= − u Þ F�0� = − u2/2. �13�

The equation of the O��0� order can be reduced by the sub-
stitution F�1�=u4 /8+F� to give

1 + Z

2
��1 − 
2�
 �2F�

�
2 + � �F�

�

�2� − 2


�F�

�

� − u

�F�

�u

+ �
u4 = 0, �14�

where a misprint of the first derivative in the 
 term in
Ref. 2 has been corrected. Assuming a series expansion for
F�, the following solution, valid for all 
 except in a bound-
ary layer near 
=−1, is obtained to order O�u−2� for large u:

F��u,
� = a4u4 + a2�
�u2 + ã ln u + a0�
� + O�u−2�

=
�

4
u4 +� 2�

1 + Z
�2�1 + 
 −

9 + Z

2�2
�u2

+
5 + Z

4
ln u +

1

4
ln�1 + 
�

−
1

1 + Z
�




1 d


1 − 
2�4 + 
�5 + Z�

− �9 + Z��1 + 


2
� + b��,Z� + O�u−2� . �15�

The logarithmic term has been incorporated in order to have
consistency between the O�u2� and O�u0� equations at

=1. The minus sign in front of the integral corrects mis-
prints in Refs. 12 and 2.

In summary, the large u solution in region II �neglecting
terms of order O�u−2�� reads

ln f II = F = − u2/2�� + u4/8 +
�u4

4
+� 2�

1 + Z
u2


�2�1 + 
 −
9 + Z

2�2
� +

5 + Z

4
ln u +

1

4
ln�1 + 
�

−
1

1 + Z
�




1 d


1 − 
2�4 + 
�5 + Z�

− �9 + Z��1 + 


2
� + b��,Z� + CI, �16�

where b�� ,Z� is a constant of order O�1�. Here, we have
chosen CII=CI �see also Appendix B�. The constant b�� ,Z�
is obtained by matching the general solution in region II �i.e.,
for u�O�1�� onto the solution in region I as follows. We
introduce h=exp�F�� so that Eq. �14� can be rewritten as a
linear equation,

1 + Z

2

�

�

�1 − 
2�

�h

�

− u

�h

�u
+ �
u4h = 0. �17�

This parabolic, diffusion-type equation, with an anisotropic
term proportional to 
u4, can be solved numerically by the
decomposition

h�u,
� = �
n

gn�u�Pn�
� , �18�

where Pn�
� are the Legendre polynomials. A numerical so-
lution, presented in Appendix B, shows that the asymptotic
analytical solution, Eq. �15�, does not deviate from the nu-
merical solution by more than �20% in the relevant param-
eter range �=0.8–1.2, Z=1–3 in the most important region
at 
=1 for a matching constant b equal to 0.69. The match-
ing of the high-momentum asymptote in Eq. �15� to the nu-
merical solution at 
=1 for u=7 is illustrated in Fig. 1.

Equation �16� shows that the region II ordering breaks
down at u2��−1/2 and a new region must be introduced for
normalized momenta q2�O�1�.
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C. Region III: Relativistic region

In region III, q2�O�1�, the electrons are fully relativis-
tic. It can be seen from comparing the first and third terms of
Eq. �16� that one needs q2��−1 for the critical electric field
to cause a strong deviation of the electron distribution func-
tion from the Maxwellian. This is possible in region III,
which manifests itself as the most sensitive region where a
near-critical electric field plays a crucial role. Region III ei-
ther extends to infinity in q space ���1� in which case only
exponentially few energetic electrons are generated, or its
solution breaks down for ��1, and a region of runaway
acceleration appears for q�1/��−1.

The appropriate expansion for F=ln f III in region III has
the form

F = �−1F�0� + �−1/2F�1� + F�2� + ¯ + CIII, �19�

and substitution into the Fokker-Planck Eq. �5� yields, to
leading order, O��−2�,

�F�0�

�

= 0. �20�

The equation of order O��−3/2�,

�F�0�

�


�F�1�

�

= 0, �21�

is trivially satisfied. Evaluating the next-order equation,
O��−1�,

�

�F�0�

�q
=

�1 + q2

q3 �1 + Z

2
��1 − 
2�� �F�1�

�

�2

+
�q2 + 1�

q2

�F�0�

�q
+

�q2 + 1�3/2

q3 � �F�0�

�q
�2

�22�

at 
=1 gives

F�0� = ���q2 + 1 +
1

�q2 + 1
� − �q2 + 1, �23�

in agreement with Ref. 2. The second term on the right-hand
side of Eq. �23� represents the Maxwellian distribution func-
tion FM

�0�=−�q2+1, while the first term gives the deviation
caused by the electric field.

A suitable equation for �F�1� /�
 is obtained by subtract-
ing Eq. �22� evaluated at 
=1 from itself, leading to

F�1��q,
� = F̃�1��q,
� + F̄�1��q� , �24�

where F̃�1��q ,
� is given by

F̃�1��q,
� = 2� 2�

1 + Z

q2

q2 + 1
�1 − �� − 1�q2�1 + 
 �25�

and F̄�1��q� is determined by the next-order equation,
O��−1/2�,

��

�F�1�

�q
+

�1 − 
2�
q

�F�1�

�

�

=
�q2 + 1

q3 �1 + Z

2
� 
 
− 2


�F�1�

�

+ �1 − 
2�

�2F�1�

�
2 �
+

�q2 + 1

q3 �1 + Z

2
��1 − 
2�2

�F�1�

�


�F�2�

�


+
q2 + 1

q2

�F�1�

�q
+

�q2 + 1�3/2

q3 2
�F�0�

�q

�F�1�

�q
. �26�

At 
=1, this equation relates F̃�1��q ,
� and F̄�1��q� as fol-
lows:

� �F̄�1�

�q
�


=1
= − � �F̃�1�

�q
�


=1
− ���1 + Z�



q

�1 + q2�1 − �� − 1�q2
. �27�

The general solution of F̄�q��1�, for arbitrary values of �, is
obtained by integrating Eq. �27�. We now consider explicit
integrations for the three different cases corresponding to
supercritical, subcritical, and critical electric fields. We start
with the supercritical case ��1.

1. Case �>1

For this case, the electric field is greater than the critical
electric field for runaway electron production. From Eq. �24�
we obtain

� �F�1�

�q
�


=1
= � �F̃�1�

�q
�


=1
+ � �F̄�1�

�q
�


=1
, �28�

and Eq. �25� at 
=1 gives

FIG. 1. Numerical solutions of Eq. �17� �solid lines� and high momenta
analytic asymptotes in Eq. �15� �broken lines� as functions of pitch angle 

for normalized momenta u= �2.25,4 ,7�. The plasma parameters are �=0.9,
Z=2.1. The numerical solution agrees well with the high momentum asymp-
tote for u=7, and over a wide range of typical plasma parameters, the match
at 
=1 for u=7 does not deviate more than �20% for a matching constant
b=0.69.
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� �F̃�1�

�

�


=1
=� �

1 + Z

q2

1 + q2
�1 − �� − 1�q2. �29�

Substituting Eqs. �28� and �29� into Eq. �27� gives

F̄�1��q� = − F̃�1��q,
 = 1� −
1

2
���1 + Z�

� − 1


sin−1
1 −
2

�
+ 2q2�1 −

1

�
�� . �30�

We finally obtain F�1��q ,
� by inserting Eq. �30� into Eq.
�24�, and, using Eq. �25�, we find

F�1��q,
� = 2��1 + 
 − �2�� 2�

1 + Z

q2

q2 + 1
�1 − �� − 1�q2

−
1

2
���1 + Z�

� − 1
sin−1
1 −

2

�
+ 2q2�1 −

1

�
�� ,

�31�

which is in agreement with the result obtained in Ref. 2.
We now use the O��−1/2� equation, Eq. �26�, to obtain

�F�2� /�
. Taking the derivatives of F�0� and F�1�, respec-
tively, with respect to 
 and q, and performing a great deal
of algebra, we find

F�2��q,
� =
�q2

1 + Z

�
 − 1�
�1 + q2

+
1

4
ln�1 + 
� − �




1 d


1 − 
2�
 +
2

1 + Z
·

���
 − 2�q2 + 1 + q2�
�1 − �� − 1�q2�


 
��1 + 
� − �2�1 + 
��
��q2 + 1��q2 + 2� − �q2�q2 + 3��

�1 + q2�3/2 −
�1 + Z�

2

�1 + 


�2
�� + F̄�2��q� . �32�

It is easy to check, using l’Hospital’s rule, that no singularity exists at 
=1. Moreover, note that the integration constant has

been chosen such that F�2��q ,
=1�= 1
4 ln 2+ F̄�2��q�. In order to find F̄�2��q�, we turn to the O��0� equation of the Fokker-

Planck equation in region III, evaluated at 
=1. After an even greater amount of algebra, one obtains

F̄�2��q� =
1

4
�1 + Z

2
��ln��1 + q2 − 1

�1 + q2 + 1
� +

�� − 2���

�� − 1�3/2 ln��� + �� − 1�1 + q2

�� − �� − 1�1 + q2�+
2��1 + q2

�� − 1��1 − �� − 1�q2�� + ln
q

�1 + q2

−
1

4

� + 1

� − 1
ln�1 − �� − 1�q2� . �33�

Substituting Eq. �33� into Eq. �32� finally gives

F�2��q,
� =
1

4
�1 + Z

2
��ln��1 + q2 − 1

�1 + q2 + 1
� +

�� − 2���

�� − 1�3/2 ln��� + �� − 1�1 + q2

�� − �� − 1�1 + q2�+
2��1 + q2

�� − 1��1 − �� − 1�q2�� + ln
q

�1 + q2

−
1

4

� + 1

� − 1
ln�1 − �� − 1�q2� +

�q2

1 + Z

�
 − 1�
�1 + q2

+
1

4
ln�1 + 
� − �




1 d


1 − 
2�
 +
2

1 + Z

���
 − 2�q2 + 1 + q2�
�1 − �� − 1�q2�



��1 + 
� − �2�1 + 
��
��q2 + 1��q2 + 2� − �q2�q2 + 3��

�1 + q2�3/2 −
�1 + Z�

2

�1 + 


�2
�� . �34�

This expression differs from the corresponding Eq. 39 in
Ref. 2 by a factor �1+Z� in the last term and by the fifth term
in Ref. 2 which resulted from the use of an incorrect colli-
sion operator and is consequently not present here.

The CIII constant in Eq. �19� is now obtained by
asymptotic matching of the solution in region III, Eqs. �23�,
�31�, and �34�, for q2�1, to the large u solution in region II,
Eq. �16�, for u→�. The three different contributions from
O��−1�, O��−1/2�, and O��0�, respectively, result in a match-
ing constant

CIII = CI + b��,Z� −
�2� − 1�

�
+

1

2
��1 + Z��

��� − 1�


sin−1
1 −
2

�
� −

�5 + Z�
16

ln � −
�1 + Z�

4

�

� − 1

+
�1 + Z�

4
ln 2 −

�1 + Z�
4

�� − 2���

�� − 1�3/2 ln��� + �� − 1� .

�35�
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From Eq. �34�, it is clear that a singularity exists when

q → qc =
1

�� − 1
, �36�

and it becomes necessary to consider the solution in more
detail in a layer at q=qc �region IV�. Before analyzing the
runaway case ��1 and region IV, we consider the solution
in region III for the subcritical case ��1 and critical case
�=1.

2. Case �<1

For this case, the electric field is below the critical elec-
tric field that determines the runaway production threshold.
However, a suprathermal, but not runaway, tail in the elec-
tron distribution function still develops as was shown in Ref.
2, creating a source for fast electron phenomena, e.g., en-
hanced bremsstrahlung.

The function F�0� is found equal to Eq. �23� and the
equation for F�1� is obtained by changing the sign of ��−1�
in Eqs. �25� and �27�. By performing an analysis similar to
Eqs. �28�–�30�, one obtains

F�1��q,
� = 2��1 + 
 − �2�� 2�

1 + Z

q2

q2 + 1
�1 + �1 − ��q2

−
1

2
���1 + Z�

1 − �


cosh−1
 2

�
− 1 + 2q2� 1

�
− 1��, � � 1.

�37�

In order to find F�2� for the ��1 case, one performs the
same analysis as in Eqs. �32�–�34�, and observes when the
analysis is sensitive to sign��−1�. The resulting F�2� is

F�2��q,
� =
1

4
�1 + Z

2
��ln��1 + q2 − 1

�1 + q2 + 1
�+

�4 − 2����

�1 − ��3/2 tan−1��1 − ��1 + q2

��
� −

2��1 + q2

�1 − ���1 + �1 − ��q2�� + ln
q

�1 + q2

+
1

4

1 + �

1 − �
ln�1 + �1 − ��q2� +

�q2

1 + Z

�
 − 1�
�1 + q2

+
1

4
ln�1 + 
� − �




1 d


1 − 
2�
 +
2

�1 + Z�
���
 − 2�q2 + 1 + q2�

�1 + �1 − ��q2�



��1 + 
� − �2�1 + 
��
��q2 + 1��q2 + 2� − �q2�q2 + 3��

�1 + q2�3/2 −
�1 + Z�

2

�1 + 


�2
��, � � 1. �38�

This new result was not considered in Ref. 2, which can be
explained by the difference in the aims of the analyses; pre-
vious authors were mostly interested in the runaway beam,
while the experimental conditions discussed in the current
paper satisfy the near-threshold subcritical conditions. The
CIII constant is obtained, once again, by asymptotic matching
of the region III solution for low momenta to the region II
solution for momenta going to infinity. It is found that

CIII = CI + b��,Z� −
�2� − 1�

�
+

1

2
��1 + Z��

��1 − ��


cosh−1
 2

�
− 1� −

�5 + Z�
16

ln � +
�1 + Z�

4

�

1 − �

+
�1 + Z�

4
ln 2 −

�1 + Z�
4

�2 − ����

�1 − ��3/2


tan−1
�1

�
− 1�, � � 1. �39�

Note that the solution in this case, ��1, possesses no sin-
gularity in q, i.e., for ��1 region III extends to infinity and
no runaway region exists.

3. Perturbation solution close to �=1

The analysis for ��1 breaks down in an � boundary
layer close to �=1, which can be observed as a rapid quali-
tative change of the solution for ��1 in the limit �→1+.
More quantitatively, by comparing terms in the ��1 solu-
tion, the width of this boundary layer, ��=�−1�0 and
���1, can be estimated. The ordering of the zeroth and
first-order terms breaks down when �see Eqs. �23� and �30��

�−1F�0� � �−1/2F�1� Þ �−1 �
�−1/2

�� − 1
Û �� � � , �40�

where the effective charge Z�O�1� for a tokamak plasma
and q�O�1� in region III have been used, whereas the or-
dering between the first and second-order terms breaks down
when �see Eq. �34��

�−1/2F�1� � F�2� Þ
�−1/2

�� − 1
�

1

�� − 1�3/2 Û �� � �1/2.

�41�

In order to guarantee the validity of the expansion technique,
the most restrictive width must be used, i.e., ����1/2 is
where the solution in region III for ��1 breaks down. This
breakdown will also appear as an unphysical qualitative
change in the runaway rate calculation below.
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A first-order perturbation solution is obtained by making

an ansatz, F̃=F0+��F1, and using the same expansion for
the two unknown zeroth-order �unperturbed� and first-order
�perturbed� terms, F0 and F1, respectively, as for F in the
��1 analysis; see Eq. �19�. The unperturbed solution is ob-
tained by setting ��=0 and performing the same analysis as
was previously outlined for the ��1 case. One finds, to
order O�1� in �, that

F0 = �−1F0
�0� + �−1/2F0

�1� + F0
�2� + CIII,0, �42�

where

F0
�0� =

1
�1 + q2

, �43�

F0
�1� = 2��1 + 
 − �2�� 2

1 + Z

q2

1 + q2 − �1 + Z�1 + q2,

�44�

F0
�2� = �1 + Z

4
��5 + 2q2

3
�1 + q2 + ln� q

1 + �1 + q2�� +
1

2
q2

+ ln
q

�1 + q2
+

q2

1 + Z

�
 − 1�
�1 + q2

+
1

4
ln�1 + 
�

− �



1 d


1 − 
2�
 +
2

�1 + Z�
�1 + �
 − 1�q2�


 
��1 + 
� − �2�1 + 
��
2

�1 + q2�3/2

−
�1 + Z�

2

�1 + 


�2
�� , �45�

and where the unperturbed matching constant is

CIII,0 = CI + b��,Z� −
1

�
+�1 + Z

�
−

�5 + Z�
16

ln �

−
�1 + Z�

4

5

3
+

�1 + Z�
4

ln 2. �46�

The first-order perturbed solution is obtained by linearizing
the collision operator in �� and then solving for F1. One
finds, to order O�1� in �, that

F1 = �−1F1
�0� + �−1/2F1

�1� + CIII,1, �47�

where

F1
�0� = �1 + q2 +

1
�1 + q2

, �48�

F1
�1� =� 2

1 + Z

q2�1 − q2�
1 + q2

�1 + 
 +
2

�1 + Z

3 + 2q2 + q4

1 + q2

−
�1 + Z

6
�1 + q2�3/2, �49�

and where the first-order correction in the matching constant
is

CIII,1 = −
2

�
+

�1 + Z

6��
. �50�

The correctness of the F0
�0� and F1

�0� terms is easily verified by
taking �=1+�� in Eq. �23�. A term F1

�2� was omitted in Eq.
�47� since it would be of order O����, ���1, and therefore
would not contribute to the O�1� analysis.

By comparing terms in Eqs. �43� and �44�, one finds that
the ordering of terms in Eq. �42� breaks down for q��−1/4,
and a new boundary layer should be considered. Therefore,
the treatment of the runaway region below is only valid for
critical field parameters satisfying �1/2��−1�1.

The perturbed solution, together with the ��1 and
��1 solutions, covers the entire � parameter space and the
analysis of region III is thus complete.

Returning to the case ��1, one considers a boundary
layer at q=qc=1/��−1, region IV.

D. Region IV: Runaway source region

Inspecting the solutions of different orders in region III,
one observes that F�0� is the only function that is well-
behaved as q→�, while F�1� and F�2� possess singular be-
havior for q exceeding qc for the supercritical case ��1. In
order to adjust the analysis for q�qc, one considers a bound-
ary layer at q=qc by introducing a new variable

q = qc�1 + �1/3x� �51�

and using the expansion

ln f IV = F = �1/3F�0� + F�1� + �1/3F�2� + ¯ + CIV. �52�

The new independent variable reflects the characteristic
width of the boundary layer determined by

� �F�1�

�q
��� �F�0�

�q
� �

1

�1 − �� − 1�q2�3/2 � �−1/2 �53�

for q�O�1�. The Fokker-Planck Eq. �5� gives to order
O��−2/3�

�1 + Z

2
��� − 1

�
�1 + 
�� �F�0�

�

�2

+
�F�0�

�x
= 0. �54�

This is a nonlinear PDE, to be solved in terms of its bound-
ary values on 
=1 by the method of characteristics.15

In order to find the boundary values for the general so-
lution in region IV, Eq. �52�, one considers a subregion IV�
close to 
=1, where


 = 1 − �1/3�, � � 0 and finite, �55�

and uses again the variable q=qc�1+�1/3x�. A simultaneous
application of Eqs. �51� and �55� to the Fokker-Planck Eq.
�5� gives, to leading order, O��−1�,

�F�0�

��
= 0, �56�

whereas the next-order equation, O��−2/3�, is trivially satis-
fied, and the order O��−1/3� equation is
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�1 + Z���
 �2F�1�

��2 + � �F�1�

��
�2� +

�F�1�

��
� + �� �F�0�

�x
�2

=� �

� − 1
�− � + 2x�1 −

1

�
�� �F�0�

�x
. �57�

Since the inhomogeneous part has only powers of �0 and �1,
one makes the ansatz12

F�1� = P�x� + �Q�x� . �58�

Equating the coefficients in front of equal powers gives

�F�0�

�x
= −�� − 1

�
�1 + Z�Q2, �59�

Q3 +
2x

��1 + Z�
Q +

1

�1 + Z��� − 1�
= 0. �60�

Differentiating Eq. �60� with respect to x and using the result
of a parametric integration of Eq. �59�, one obtains

F�0� = ���� − 1��1 + Z�2Q4

4
−

1 + Z

2
� �

� − 1
Q . �61�

In order to find P�x�, one goes to the next-order equation,
O��0�, of the Fokker-Planck equation and uses the ansatz

F�2� = A�x� + �B�x� + �2C�x� . �62�

After some algebra, it is found that

P = −
�1 + Z�3

8
���� − 1��� − 2�Q6

−
�1 + Z�2

4
� �

� − 1
�� −

7

3
�Q3 −

1

2
ln�2��1 + Z�Q3

−
�

� − 1
� + �� − 2

� − 1
�
1 −

�1 + Z�
4

� �

� − 1
�ln
Q
 .

�63�

Before matching the solution in subregion IV� to the
solution in region III at 
=1, a comment on the signs of x
and Q has to be made. From Eq. �60�, it is observed that as
x→ +�, Q→0 is the only root. Root tracing then shows that,
as x→−�, Q→−�.

The numerical scheme for determining the matching
constant b=b�� ,Z� between regions II and III enables a cal-
culation of the runaway rate to order O�1�. However, the
matching of region IV onto region III then has to be taken to
order O�1�, whereas previous authors2 only took the match-
ing to order O�ln �� �since previously, b�O�1� was un-
known�. Matching the above solution, in subregion IV�, as
x→−�, i.e., when Q→−�, onto the solution in region III as
q→qc, 
→1 determines the constant CIV�. To O��−1�,
O��−1/2�, O�ln �� as well as to O�1�, it is found that

CIV� =
2

�
����� − 1� − � +

1

2
� −

1

2
���1 + Z�

��� − 1� 
�

2
− sin−1�1 −

2

�
�� −

ln �

48�� − 1�


���3Z + 19� − 11 − 3Z + 2�1 + Z��� − 2�� �

� − 1
� + CI + b��,Z� −

�1 + Z�
4

�

� − 1
+

�1 + Z�
4

ln 2

+
1

4
�� − 3

� − 1
−

�1 + Z�
2

���� − 2�
�� − 1�3/2 �ln�1 + Z� −

�1 + Z�
4

ln�1 +�� − 1

�
� +

1

4
�3 + �1 + Z�

���� − 2�
�� − 1�3/2 �ln 2

+
�1 + Z�

8

���3 − ��
�� − 1�3/2 −

1

4
�2

�� + 1�
�� − 1�

+
�1 + Z�

2
�ln � −

�1 + Z�
4

���� − 2�
�� − 1�3/2 ln��� + �� − 1� . �64�

It is now appropriate to return to the analysis of the full
solution in region IV, away from 
=1. From Eq. �54� one
obtains the first-order equation

A�1 + 
�� �F�0�

�

�2

+
�F�0�

�x
= 0, �65�

where

A =
1 + Z

2
�� − 1

�
. �66�

One introduces y=2�1+
 /�A, p=�F�0� /�x, and
q=�F�0� /�y. Equation �65� then takes the form

F�p,q� = p + q2 = 0. �67�

By writing down Charpit’s equations15 for this PDE, with
Cauchy data obtained from the subregion IV� solution at

=1, the characteristic curves of the PDE are found to sat-
isfy

Q3 +
2xQ

��1 + Z�
+

4

�1 + Z�2

1
���� − 1�


 
�1 + 


2
− 1 +

�1 + Z�
4

� �

� − 1
� = 0. �68�

The PDE analysis also finds that
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F�0� =
3

4
���� − 1��1 + Z�2Q4 + �1 + Z��� − 1

�
xQ2,

�69�

which reduces to Eq. �61� for 
=1 using Eq. �60�. Continu-
ing the expansion of the Fokker-Planck equation in the gen-
eral case �
 arbitrary�, F�1� could be determined by the
O��−1/3� equation. However, in order to calculate the run-
away rate, the F�1� term in region IV need not be known.
How the characteristics cover parts of the regions in �x ,
�
space doubly, while some regions are inaccessible to the
characteristics, is discussed further in Refs. 12 and 14.

This ends the treatment of the boundary layer region,
region IV. The solution for q�qc, which will be used to
obtain the runaway flux, is considered next.

E. Region V: Runaway region in the near-critical limit

In order to find the runaway flux one considers the
Fokker-Planck equation, Eq. �5�, to leading order, i.e.,

��
 −
�q2 + 1�

q2 � � f

�q

+ 
��1 − 
2� + 

�1 + Z��q2 + 1

q2 �1

q

� f

�

−

2f

q

=
�1 + Z�

2

�q2 + 1

q3 �1 − 
2�
�2f

�
2 , �70�

where the � terms have been neglected. This equation is a
“two-way” parabolic equation, discussed in Ref. 12. The sign
of ��
− �q2+1� /q2� determines the “direction” of the solu-
tion. For ��
− �q2+1� /q2��0 the solution is determined
“from where it came from,” i.e., in this case from q→�,
where f has to vanish �no sources of runaways there�,
whereas for the opposite sign ��
− �q2+1� /q2��0, a speci-
fication of the source strength at the singularity �q=qc,

=1� is necessary.12,16

In a plasma with a slightly supercritical electric field,
0��−1�1, the characteristic value of q in the runaway
region satisfies q�qc=1/��−1�1. Further simplification
of Eq. �70� is possible under such conditions as follows:

��

� f

�q
+

1 − 
2

q

� f

�

� =

1 + Z

2

1

q2

�

�

�1 − 
2�

� f

�

+

� f

�q
+

2f

q
,

�71�

and an exact analytical solution fV of this equation can then
be found. In order to have a beam-like solution peaked near

=1, one introduces cylindrical coordinates q� and q	,
where

q = �q�
2 + q	

2,


 = q	/�q�
2 + q	

2, �72�

with the two conditions q	 /q��1 and �� /�q�� / �� /�q	��1
for the beam being valid. Thus, Eq. �71� can be written as

�� − 1�
� fV

�q	

=
�1 + Z�

2

1

q�

�

�q�

q�

� fV

�q�

+
q�

q	

� fV

�q�

+
2fV

q	

.

�73�

In terms of the new variables

� =
q�

�q	�1 + Z�/2
; � =

q	�1 + Z�
2

, �74�

one obtains

�2fV

��2 + �1

�
+

� + 1

2
�� � fV

��
− �� − 1��

� fV

��
+ 2fV = 0. �75�

Using separation of variables,

fV = �������� , �76�

leads to

�2�

��2 + �1

�
+

� + 1

2
�� ��

��
+ Cs� = 0, �77�

1

�

��

��
+

Cs − 2

� − 1

1

�
= 0, �78�

where Cs is a separation constant which is determined below.
Equation �78� is easily solved, and

��q	� = C�q	
�2−Cs�/��−1�, �79�

where C� is an integration constant.
To solve Eq. �77�, one makes use of the variable trans-

formation

y = −
�� + 1�

4
�2; ���� = U�y� �80�

and obtains the confluent hypergeometric equation �the
Kummer equation�,

y
d2U

dy2 + �1 − y�
dU

dy
−

Cs

� + 1
U = 0. �81�

The solution, which is bounded when 
y 
 →�, is given by
the confluent hypergeometric function,17

U��� = B1F1� Cs

� + 1
,1;−

�� + 1�
4

�2� , �82�

where B is an integration constant. Connor and Hastie in
Ref. 2 took the special case Cs=�+1. However, this choice
of the separation constant precludes asymptotic matching
and is therefore incorrect, as will be obvious from the analy-
sis
below.

By combining Eqs. �79� and �82�, one obtains the solu-
tion in region V,
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fV =
A

q	
�Cs−2�/��−1� exp�−

�� + 1�q�
2

2�1 + Z�q	

�1F1


�1 −
Cs

� + 1
,1;

�� + 1�q�
2

2�1 + Z�q	

� , �83�

where A is a source strength constant, related to the runaway
electron source at the boundary layer, q=qc. Equation �83� is
a generalization of Eq. 60 in Ref. 2, and is valid for all q in
this case of a near-critical electric field in the plasma. A
condition for fV→0 as q	→� is that

Cs � 2. �84�

That this condition holds in our near-critical electric field
case is verified below.

The constants A and Cs are determined by matching the
solution in region V to the region IV solution in the limit
x→�. The region V solution is expressed in the original
parameters 
=q	 /�q	

2+q�
2 and q=�q	

2+q�
2 , and matching is

performed at 
=1. The region V solution at 
=1 can be
written

FV = ln�fV�
=1 = ln A − �Cs − 2

� − 1
�ln q . �85�

In region V,

q = qc�1 + �1/3x� � qc�
1/3x , �86�

and Eq. �85� can be approximated to

FV � ln A − �Cs − 2

� − 1
��1

3
ln � −

1

2
ln�� − 1� + ln x� ,

x → � . �87�

In the asymptotic matching limit, the solution in region IV
�see Sec. III D� can be approximated to

FIV � −
1

2
ln� �

� − 1
� +

�� − 2�
�� − 1�


�1 −
�1 + Z�

4
� �

� − 1
�ln� �

2�� − 1�x
� + CIV,

x → � . �88�

Matching now the ln x terms determines the separation con-
stant as

Cs = � −
�1 + Z�

4
�� − 2�� �

� − 1
, �89�

whereas the constant terms determine A,

A = exp�CIV +
� − 2

3�� − 1�
�1 −

�1 + Z�
4

� �

� − 1
�ln ��


 � �

� − 1
� ��−3�

2��−1� −
�1+Z�

4
��−2�
��−1�

� �
�−1


� 1

� − 1
� ��−2�

2��−1�
�1−

�1+Z�
4

� �
�−1

�


 �1

2
� ��−2�

��−1�
�1−

�1+Z�
4

� �
�−1

�
. �90�

The requirement Cs�2, Eq. �84�, is equivalent to requiring
the coefficient of the ln 
x
 term in Eq. �88� to be positive,
i.e.,

� − 2

� − 1
�1 −

�1 + Z�
4

� �

� − 1
� � 0. �91�

In the case of a near-critical electric field, �−1�1, the con-
dition �91� is satisfied for any effective charge number
Z�1.

IV. RUNAWAY RATE

The runaway rate SR, the number of runaway electrons
generated per unit volume and unit time, is given by18,19

SR �
�nr

�t
= −

�nb

�t

= ne�rel�− 2���
−1

1

d
�
qc

�

dqq2


���

� fV

�q
+

1 − 
2

q

� fV

�

��

= ne�rel�− 2����
−1

1

d

�q2fV�
qc

� , �92�

where the Fokker-Planck equation has been used. The
region V solution from Sec. III E, which is valid for
�1/2��−1�1, gives the final expression for the runaway
rate,

TABLE I. The runaway rate proportionality constant CR�� ,Z� for plasmas
with critical field parameters �=1.3, 1.4, and 1.5, and with effective charge
numbers Z=1, 2, and 3.

� Z=1 Z=2 Z=3

1.3 11.2 1.67 0.400

1.4 12.2 4.01 1.67

1.5 10.8 5.74 3.47
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SR = ne�th�vth
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, �93�

where the thermal collision frequency, �th

=nee
4ln � /4��0

2me
2vth

3 �vth is the speed of thermal electrons�,
is introduced for comparison to earlier results. The scaling of
the runaway rate with the electric field, given by Connor and
Hastie in Eq. 61 of Ref. 2, is here given by lines three and
four of Eq. �93�,

SR � exp�2

�
����� − 1� − � +

1

2
�

−
1

2
���1 + Z�

��� − 1� ��

2
− sin−1
1 −

2

�
���

−
ln �

16�� − 1����1 + Z� − Z + 7 + 2�1 + Z�


�� − 2�� �

� − 1
�� . �94�

Connor and Hastie, who obtained the runaway rate scal-
ing in Eq. �94� by taking the limit x→� in the inner variable
of the region IV� solution, had a remaining unknown propor-
tionality constant, CR�� ,Z��O�1�. The present analysis,
which is based on a near-critical electric field case for which
asymptotic matching between region IV and region V is pos-
sible, facilitates a determination of this proportionality con-
stant in a critical field parameter range �1/2��−1�1. The
proportionality constant CR�� ,Z� was determined for three
different critical field parameters and with three different ef-
fective charge numbers, and the results are presented in
Table I. The algorithm outlined in Appendix B was once
again used to determine the matching constant b�� ,Z�. From
Table I, one can deduce that the constant CR�� ,Z� is indeed
of order O�1�. However, its value is quite sensitive to plasma
parameters.

As a final remark, we want to point out that � has to be

kept of the order of unity in order to ensure the validity of
the analytical expansion technique here employed. For a
much higher critical field parameter � �one or two orders of
magnitude higher�, the analytical procedure developed here
for matching region IV and region V as well as the runaway
rate expression in region V are no longer valid and the rel-
evant equations should be solved within some different ap-
proach.

V. CONCLUSIONS

In this paper, a relativistic collision operator conserving
the number of particles is derived and used for obtaining the
Fokker-Planck equation that governs the electron velocity
distribution function in the presence of a steady-state electric
field in a weakly relativistic plasma with a finite value of
Te /mec

2. Modifications of the electron velocity distribution
function were found in higher order expansions in the rela-
tivistic parameter �. It is also found that, in spite of an in-
complete form of the collision operator not conserving num-
ber of particles in Ref. 2, the main result concerning the
runaway rate �Eqs. 61 and 62 in Ref. 2 and Eq. �94� in the
present paper� is still valid. Moreover, the previously un-
known proportionality constant has been calculated.

In addition to the analysis carried out in Ref. 2, new
regions E�Ec and E�Ec are considered in the present paper
and the relevant expressions describing the electron velocity
distribution function for a near-threshold electric field case
are obtained. In the weakly relativistic region a numerical
solution enables matching to the high momentum analytical
asymptote. Thus, the form of the electron velocity distribu-
tion function up to the relativistic region, where suprathermal
electrons are present, is accurately described.

A restriction of the present analysis comes from assum-
ing a critical electric field parameter � and an effective
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charge number Z of order unity. The restriction on the effec-
tive charge number is not limiting in the case of tokamak
plasmas, where the effective charge number seldom exceeds
values of about 3. However, for dusty plasmas, e.g., in astro-
physics, the effective charge number does not need to be of
order unity, and therefore one would like to extend the analy-
sis to high values of Z. In any case, critical electric field
parameters larger than unity are of importance in all runaway
production cases.

The results obtained here can be applied to phenomena
associated with suprathermal electrons in hot tokamak plas-
mas, e.g., to the grassy sawteeth experiments on JET as out-
lined in the Introduction of this paper.
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APPENDIX A: RELATIVISTIC COLLISION OPERATOR

In this appendix the relativistic collision operator for
electrons with velocities v colliding off a Maxwellian elec-
tron background with velocities v� is derived. The results are
used in the subsequent analysis of the electron distribution
function presented in the paper.

The collision operator in a relativistic plasma is given by
Beliaev and Budker11 as

C�f� =
�

2ne

�

�p
� U

↔� � f�p�
�p

f��p�� − f�p�
� f��p��

�p�
�d3p�

�A1�

with �=nee
4ln � /4��0

2 and the momentum p=�mecv. Here,
all the primed quantities are related to background plasma
particles while the unprimed quantities correspond to test

electrons. The kernel U
↔

is given by11

cU
↔

= DE
↔

, �A2�

where

D =
����1 − v · v��2

��2��2�1 − v · v��2 − 1�3/2 �A3�

and

E
↔

= ��2��2�1 − v · v��2 − 1� I
↔

− �2vv − ��2v�v� + �2��2


�1 − v · v���vv� + v�v� , �A4�

where the velocity has been normalized to c, so that

�2= �1−v2�−1, and I
↔

is the unitary tensor.
We take f�= f��p�� to be Maxwellian,

f� � e−�mec2/Te = e−c�p2+me
2c2/Te,

with a temperature much smaller than the electron rest mass,
�=Te/mec

2�1, corresponding to a weakly relativistic back-

ground plasma. The kernel U
↔

can be expanded according to

U
↔

= U
↔

�0� +
�U

↔
�0�

�v�
· v� +

1

2

�2U
↔

�0�

�v� � v�
:v�v� �A5�

around v�=0, valid for stationary background particles. One
then obtains

D�v�=0 =
�

��2 − 1�3/2 =
1

�2v3 , �A6�

E
↔�

v�=0 = ��2 − 1� I
↔

− �2vv = �2�v2 I
↔

− vv� , �A7�

so that

cU
↔

�0� =
v2 I

↔
− vv

v3 . �A8�

In order to determine the first-order corrections for finite v�,
one needs to evaluate

�� · �DE
↔

��v�=0 = ��D · E
↔�

v�=0 + D�� · E
↔�

v�=0
, �A9�

where ��=� /�v�. From Eq. �A7�, the tensor E
↔

has no com-
ponent parallel to v and the first term on the right-hand side
of Eq. �A9� vanishes. Using vector algebra, the second term
is equal to

�� · �DE
↔

��v�=0 = D�� · E
↔�

v�=0 = 2v/v3. �A10�

Finally, for the second-order terms in v�, one also needs

��2�DE
↔

��v�=0 = ���2D�E
↔�

v�=0 + 2��D · ��E
↔�

v�=0

+ D��2E
↔�

v�=0. �A11�

After performing some vector algebra, one finds that

��2�DE
↔

��v�=0 =
2

v2 �v4 − 1�
v2 I

↔
− vv

v3 +
4vv

v5 . �A12�

Returning to Eq. �A1�, with the kernel now approximated by
the Taylor expansion around v�=0, one obtains

C�f� �
�

2ne

�

�p
· 
� �U

↔
�0� +

1

2

�2U
↔

�0�

�v� � v�
:v�v��


f�d3p� ·
� f

�p
� − 
 f � �U

↔
�0�

�v�
· v�

� f�

�p�
d3p�� .

�A13�

Here, the normalization is given by
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� f�d3p� = ne �A14�

and, since f� is isotropic �i.e., only diagonal elements con-
tribute�, one obtains

� v�v�f�d3p� = nevt
2 I
↔

, �A15�

with

vt
2 =

1

3ne
� v�2f�d3p�, �A16�

and

� v�
� f�

�p�
d3p� = −� c

Te
v�v�f�d3p� = −

necvt
2

Te
I
↔

. �A17�

After gyro-averaging, one can introduce the pitch-angle op-
erator

L�f� =
1

2

�

�

�1 − 
2�

�

�

,

where 
=v	 /v is the cosine of the pitch angle, and use the
Taylor coefficients, Eqs. �A8�, �A10�, and �A12�, so that the
collision operator can be written in the form

C�f� =
1

p2

�

�p
p2�A�p�

� f

�p
+ F�p�f� +

2B�p�
p2 L�f� , �A18�

with

B�p� =
�p2

2�2me
2c3v3�1 + vt

2v4 − 1

v2 � =
�

2cv
�1 + vt

2v4 − 1

v2 � ,

�A19�

A�p� =
�me

3c2�3

p3 =
�vt

2

cv3 , �A20�

F�p� =
�me

2vt
2c2

Te

�2

p2 =
�vt

2

Tev
2 =

cv
Te

A�p� . �A21�

This form of the collision operator is in agreement with
Karney and Fisch,11 including Eq. �A19� for B�p�, which was
obtained by them with a symbolic algebra package. It is use-
ful to write C�f� in the notation of Connor and Hastie,2 i.e.,
in terms of the normalized momentum

q =
p

mec
= �v =

v
�1 − v2

Û v =
q

�1 + q2
�A22�

and the relativistic collision time

�−1 =
nee

4ln �

4��0
2me

2c3 =
�

me
2c3 . �A23�

By writing the functions in �A19�–�A21� in terms of normal-
ized momentum q, and using vt

2�Te /mec
2=�, one arrives at

the final expression for the collision operator that manifestly
conserves the number of particles,

C�f� =
�1 + q2

�q3 
1 + Z − �
1 + 2q2

q2�1 + q2��L�f�

+
1

�q2

�

�q

�1 + q2�f + �

�1 + q2�3/2

q

� f

�q
� . �A24�

The effects of ions, with an effective charge number Z
and assumed to be infinitely massive �i.e., contributing only
to the pitch-angle scattering term�, have also been included.

APPENDIX B: NUMERICAL SOLUTION
OF REGION II

The numerical scheme for calculating the first-order cor-
rection F� in Eq. �14� is outlined here.

Instead of calculating F� directly, h=exp�F�� is intro-
duced as in Sec. III B. Equation �14� is transformed into a
linear one, Eq. �17�, which suggests a decomposition as in
Eq. �18�. The numerical scheme is obtained by using this
decomposition in Eq. �17�. Using recursion relations and the
orthogonality property of the Legendre polynomials Pn�
�,
one obtains for gn�u� the equation

ugn� +
1 + Z

2
n�n + 1�gn = �u4� n

2n − 1
gn−1 +

n + 1

2n + 3
gn+1� .

�B1�

In order to solve this equation as an initial value problem,
with u acting as a time variable, an initial condition is
needed. Choosing CII=CI, the initial condition becomes
h�0,
�=1, which in terms of the decomposition can be writ-
ten

g0�0� = 1,

gi�0� = 0, i = 1,2, . . . .

Equation �B1� is discretized according to

u�j�gn
�j� − gn

�j−1�

�u
+

1 + Z

2
n�n + 1�gn

�j�

= �u4� n

2n − 1
gn−1

�j� +
n + 1

2n + 3
gn+1

�j� � , �B2�

where •�j� denotes quantities at time step j. This equation
couples different gn’s. However, for a small step size �u, the
decoupled equation

u�j�

�u
gn

�j� +
1 + Z

2
n�n + 1�gn

�j�

=
u�j�

�u
gn

�j−1� + �u4� n

2n − 1
gn−1

�j−1� +
n + 1

2n + 3
gn+1

�j−1�� �B3�

can be used for the numerical scheme. The justification for
this decoupling is easily verified by taking many gn’s �so that
the last ones do not contribute, i.e., remain zero� and noting
that an even smaller step size �u leaves the set of gn un-
changed. �u=10−5 has been used in the present paper.

As was stated in Sec. III B, region II ends where
u2��−1/2. However, since the high momenta asymptote of
the numerical solution has to coincide with the analytical
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solution, Eq. �16�, the numerical solution was pushed to high
values of u. The requirement that h�u ,
��0 for any 
 broke
down for u�2.5, but this numerical error was still only of
the order of 10−4 for u=7. Hence, the matching constant b
could be determined by matching the high momentum as-
ymptote, Eq. �15�, to the numerical solution at u=7—see
Fig. 1.

In order to illustrate the effect on the solution of the
anisotropic term proportional to 
u4, it is useful to plot the
directionality of h�u ,
� for different momenta. The results
are presented in Fig. 2. For momenta below unity in the
weakly relativistic region �region II�, h�u ,
� is still nearly
isotropic in 
 space. However, for u above unity, the solution
becomes strongly peaked in the direction of electron accel-
eration and approaches the high momenta analytic asymp-
tote.

The numerical scheme presented here can be used for

general plasma parameters and the matching constant b
could be determined for different scenarios. With this match-
ing constant determined, the form of the electron distribution
function up to the relativistic region, region III, is accurately
described.
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FIG. 2. A polar plot of normalized function h�u ,
� for normalized momenta
u= �0,1 ,2 ,3 ,4 ,5 ,6 ,7� �solid lines� and the high momentum analytic as-
ymptote, Eq. �15�, for u=7 �broken line�. The plasma parameters are
�=0.9, Z=2.1. The normalized magnitude of h�u ,
� in a direction
�
=cos �, �1−
2=sin �� is given by the distance between the origin and the
plotted line. The plot shows how the low momenta solutions are isotropic as
compared to the high directionality of the high momenta solutions and the
analytic asymptote.
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