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Abstract
Two methods for calculating tearing mode stability are described in this paper. A fast method
using the recently improved T7 code (Ham et al 2012 Plasma Phys. Control. Fusion 54
025009) and a new method based on the MARS-F MHD stability code (Liu et al 2000 Phys.
Plasmas 7 3681) which constructs the tearing mode solution from calculated basis functions in
the full geometry of the problem. The effects of plasma toroidicity and cross-sectional shaping
on tearing mode stability are investigated using both of the methods; the resultant stabilizing
effects are in reasonable agreement over the range of parameters investigated. The
parameter-space explored includes JET-like and ITER-like plasma shaping. While T7 can be
used for rapid calculations and parameter scans, the MARS-F construction technique produces
the more accurate value of the tearing mode stability index.

(Some figures may appear in colour only in the online journal)

1. Introduction

Tearing instabilities change the magnetic topology of a
tokamak plasma, introducing magnetic islands where there
were nested flux surfaces. In most cases when a tearing
mode is formed the confinement is significantly degraded
because transport across such islands is significantly enhanced
[1]. Furthermore, tearing mode growth can lead to plasma
disruptions. Thus, optimizing tokamak operation requires the
identification of tearing mode stable regimes.

In the presence of plasma flow, tearing mode stability in
a torus can be characterized by a single quantity, �′

m,n, for
each rational surface, where m = nq(r). In this paper, we
investigate two different methods for calculating �′. (A brief
review of currently available codes for calculating �′ was
recently given in [2].) We then use these two methods to
develop an understanding of the sensitivity of tearing mode
stability to aspect ratio, elliptic and triangular plasma cross-
sectional shaping and safety factor profile and to appreciate the
respective merits and limitations of the two approaches. The
role of plasma pressure is the subject of continuing research.

The tearing mode formalism, where the plasma is
separated into interior regions, near to the rational surfaces,
and exterior regions, away from the rational surfaces, can

be used to build sophisticated models of the plasma at low
computational cost. The exterior region is modelled using ideal
magnetohydrodynamics (MHD) which is not computationally
heavy. The narrow interior region can include extra physical
effects such as resistivity, viscosity, inertial and kinetic effects.
The interior and exterior solutions are matched using �′ to
determine stability. The numerical effort is thus focused on
thin layers rather than the whole plasma.

The first method for calculating �′ uses the recently
improved T7 code [2, 3]. This code is very fast and so can be
run a large number of times to explore the effect of changing
quantities such as plasma shape. The T7 plasma equilibrium
is based on a large aspect ratio and small shaping expansion
so its application to finite values of these quantities may be
limited. However, trends in increasing or decreasing stability
should be robust.

We use the MARS-F code [4], which solves the resistive
MHD equations in full toroidal geometry with no ordering
assumptions, for the other method of calculating the pressure-
free �′. MARS-F has been extensively used in the resistive
wall mode stability study [5] and recently in plasma response
calculations [6]. There are two solutions for the tearing mode
eigenfunction when expanded around the rational surface in
the pressure-free case. One behaves linearly with distance
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from the rational surface and is known as the ‘small’ solution,
the other behaves as a constant and is called the ‘large’
solution. The first MARS-F method directly calculates
the small solution with an innovative choice of boundary
conditions. A ‘response’ solution is also calculated which
is combined with the small solution to produce a solution
satisfying the correct boundary conditions and hence the �′.
This method uses no large aspect ratio assumption and so
should provide a more accurate calculation of �′.

Although not a problem for T7, including pressure has
a profound effect in resistive MHD codes like MARS-F
because of the screening at the rational surface due to a
negative pressure gradient with favourable average curvature,
the ‘Glasser effect’ [7]. This screening effect means that the
resonant harmonic tends to zero at the rational surface for all
boundary perturbations so that the basis functions described
above cannot be calculated. Overcoming this problem is the
subject of ongoing research.

In a previous paper we investigated the effects of
strong toroidal coupling on the tearing mode stability, both
analytically and numerically using the T7 code [2]. In
particular, we examined the stability of both the conventional
and hybrid scenarios. In this paper we seek to explore the
effects of finite shaping on the tearing mode stability of these
plasmas at zero pressure. The effects of infinitessimal shaping
yield a result of the form

�′ = �′
cyl + c1ε

2 + c2E
2 + c3T

2 + · · · , (1)

where ε, E and T represent the inverse aspect ratio, a/R,
elliptic and triangular shaping defined in the appendix.
However, this infinitessimal approach neglects higher order
terms in these parameters. Such results were presented in [3]
using the T7 code for particular q profiles using infinitessimal
values of these parameters so that the expansion is fully
justified. However, in this paper we are able to scan finite
values of them and produce plots that allow the sensitivity
of the tearing mode to these variables, including higher order
terms, to be understood better.

Here, we only study cases where q > 1 throughout the
plasma. When there is a q = 1 surface in the plasma, the
particular nature of the m = n = 1 internal mode can produce
an order one effect on �′ [2, 8, 9], in some cases even producing
a pole in �′.

The plasma equilibrium will be discussed in section 2.
An explanation of the methods used by the MARS-F code to
calculate pressure-free �′ will be given in section 3 along with
a comparison with T7 at large aspect ratio and finite shaping
cases. The response of �′

2,1 to safety factor and aspect ratio
will be explored using T7 in the following section. Finally, we
discuss our results in the conclusions.

2. Plasma equilibrium

The safety factor profile is assumed to have the form

q(r) = q0(1 + λr2ν)1/ν, (2)

where r is the radial coordinate and q0 is the minimum value
of the safety factor, λ and ν are parameters which change the

shape and edge value of the safety factor, qa . We use three
values of ν which correspond to the three values used by Furth
et al [10] in their study of tearing stability in a cylinder. They
describe a peaked current profile, ν = 1, a rounded current
profile, ν = 2, and a flattened profile, ν = 4. The minimum
safety factor is generally assumed to be q0 = 1.2 and the edge
safety factor is qa = 3.5, although we consider the effect of
varying these for specific ε, κ and δ. The relationship of κ and δ

to the expansion parameters used in the T7 equilibrium, E and
T is given in the appendix. We will only consider pressure-free
equilibria in this paper.

The T7 code currently uses a large aspect ratio
approximation for its equilibrium. Although in most cases the
code can run with a higher inverse aspect ratio, the expansion
underlying T7 is further from its region of validity. In principle,
the region of validity of T7 could be extended by introducing
the expansion in poloidal harmonics of a numerically generated
equilibrium, rather than the existing analytic expressions. The
equilibria for MARS-F is calculated in a fully consistent
manner with the safety factor profile as an input.

The plasma elongation is varied from κ = 1 to κ = 1.9
which includes JET-like values (κ ∼ 1.8) and ITER-like values
(κ ∼ 1.9). Plasma triangularity is varied from δ = 0 to δ = 0.5
which again include the JET-like value (δ ∼ 0.25) and the
ITER-like value (δ ∼ 0.5) [11]. The JET-like shaping values
is used as the default. Finally, we assume that there is a perfect
wall at the plasma edge.

3. Pressure-free ∆′ using MARS-F

There are several different approaches to calculating �′ for a
given equilibrium; for example, a resistive MHD code can be
used to calculate the tearing mode growth rate from which �′

can be deduced using an appropriate dispersion relation [12].
Another method of calculating �′ involves producing basis
functions which are then themselves combined to satisfy the
appropriate boundary conditions and evaluated at certain points
to give �′ [13]. For example, two basis functions are required
for an equilibrium with one rational surface. The first basis
function, the ‘small’ solution ψs (where ψ denotes a vector of
M poloidal harmonics and M is the total number of harmonics
considered), is defined to have zero amplitude at the rational
surface, ψs(rs) = 0, and for the resonant harmonic to have unit
gradient, ψ ′s

m(rs) = 1, where m is the resonant harmonic. The
first derivatives of all the non-resonant harmonics are required
to be zero at the rational surface, ψ ′s

j �=m(rs) = 0, where j =
1 . . . M . These boundary conditions then allow the ideal MHD
equations to be solved numerically from the rational surface to
the wall. Each harmonic of the small solution will then have
a resulting amplitude at the wall, ψ s

j (a). The second basis
function, the ‘response’ solution ψR, is calculated by imposing
a zero amplitude boundary condition at the magnetic axis on
all the harmonics, ψR(0) = 0, and the values of the small
solution at the wall, ψR(a) = ψs(a), so that subtracting it from
the small solution yields a solution satisfying wall boundary
conditions. The harmonics are allowed to reconnect across
their resonant surfaces. The small and response solutions are
then combined to produce a solution, ψ(r) = ψR(r) − ψs(r),

2



Plasma Phys. Control. Fusion 54 (2012) 105014 C J Ham et al

that respects all the required boundary conditions. The �′ for
a pressure-free equilibrium is then defined as

�′ ≡
[
rψ ′

m

ψm

]
rs

(3)

where [f (x)]y ≡ f (y+δ)−f (y−δ) for δ small, and ψm is the
perturbed poloidal flux of the resonant harmonic and this can
be straightforwardly calculated from the final solution vector
ψ. This approach can be readily generalized to calculate �′ in
the presence of multiple rational surfaces.

The MARS-F code [4] solves the resistive MHD equations
in full toroidal geometry using finite elements. The elements
can be packed around the rational surfaces to ensure that
the behaviour in the resistive layer is resolved for accurate
calculation.

3.1. MARS-F construction method

This method constructs the small and response solutions as
described above which are combined to calculate �′ with no
large aspect ratio approximation. So far, this method has only
been implemented for the pressure-free case because of the
Glasser effect, as discussed above.

Given that MARS-F is a finite element code the small
solution cannot be directly calculated. In fact, the small
solution must be calculated using a number of steps. A perfect
conductor is assumed to occupy the region from the magnetic
axis to the particular rational surface. The response of each
harmonic to an external forcing, described below for the case
of one rational surface, is then calculated and the result is
called a ‘primary’ basis function, φj (r). This is carried out
by setting the boundary condition of all harmonics to be zero
at the rational surface, φj (rs) = 0, and all harmonics, except
the j th, to be zero at the plasma edge, φ

j

i �=j (a) = 0, where
i = 1...M . One harmonic in turn is given unit amplitude at the
plasma edge, φ

j

j (a) = 1 and the response calculated in each
case. These primary basis functions, each with a different
harmonic forced at the boundary, can then be combined to
produce a single function which is the small solution

M∑
j=1

αjφ
j (r) = ψs(r), (4)

where αj are determined by satisfying the boundary conditions
for the small solution, which are ψs(rs) = 0, ψ ′s

m(rs) = 1,
where m is the resonant harmonic and ψ ′s

j �=m(rs) = 0, where
j = 1 . . . M .

Figure 1 plots the m = 4 primary basis function, i.e. the
situation with a rigid perfect conductor from the magnetic axis
to the rational surface and all but the m = 4 harmonic being
zero at the outer boundary. Figure 2 shows a magnified version
of figure 1 around the rational surface. The equilibrium for this
case is pressure-free, has a circular cross section, inverse aspect
ratio ε = 0.1, minimum safety factor q0 = 3.6 and toroidal
mode number n = 1. Seven poloidal harmonics have been
used in this calculation.

Figure 3 shows that the derivatives of the harmonics, as
they approach the rational surface, are robustly constant. This
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Figure 1. The harmonics of b1 = qb.∇ψp/(B · ∇φ) ∝ ψ̃p across the
minor radius, where φ is toroidal angle and ψp is poloidal flux. All
boundary conditions at the rational surface and at the wall are set to
zero except for the m = 4 harmonic at the wall which is set to unity.
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Figure 2. As figure 1 but zoomed in around the rational surface.

allows the set of solutions to be combined to produce a small
solution. The amplitude of all the harmonics of the small
solution can be calculated at the plasma edge.

Figure 4 shows the ‘response’ which has been calculated
with the same wall boundary conditions as the amplitudes of
the harmonics of the small solution at the wall. The small
and response solutions can then be subtracted to produce the
full solution which respects all the boundary conditions. The
exterior �′ can now be calculated directly. This calculation
has not resorted to a large aspect ratio approximation at any
point.

If the equilibrium has several rational surfaces, for a given
value of the toroidal mode number n, then there is no longer a
single number which characterizes tearing stability, but there
are relations between the tearing stability indices of each of
the rational surfaces; however in the presence of flow they
are distinct, a separate quantity �′

m,n holding at each rational

3
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Figure 4. The ‘response’ solution for the problem. This combined
with the ‘small’ solution will satisfy the boundary conditions at the
magnetic axis and at the wall.

surface. A full solution basis function is calculated for each
rational surface. The details of this are discussed in [3].

3.2. Comparison between MARS-F method and T7

The results from the MARS-F method have been compared
to T7 results for a circular cross section plasma with inverse
aspect ratio ε = 0.2. The equilibrium safety factor has
q0 = 1.2, qa = 3.5 and ν = 2 and so it has two rational
surfaces for n = 1. Figure 5 shows the safety factor profiles
for ν = 1, ν = 2 and ν = 4 with q0 = 1.2 and qa = 3.5.
We seek to calculate the tearing stability at the m = 2, n = 1
surface i.e. �′

2,1. The tearing mode at the q = 3 surface is
usually stable and so we will not generally consider it. The
MARS-F results are plotted as ‘×’ in figure 6 and the T7 results
are plotted as a solid line. The T7 and MARS-F results follow
the same trend and agree to around 5%. The lack of agreement

Figure 5. Safety factor q(r) against minor radius, for q0 = 1.2,
qa = 3.5 and ν = 1 (solid line), ν = 2 (dotted line) and ν = 4
(dashed–dotted line).
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e

∆
 2,

1
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Figure 6. �′
2,1 against increasing inverse aspect ratio ε calculated

with T7 (solid line), and MARS-F Method-I (‘×’) for a plasma with
a circular cross section (κ = 1.0, δ = 0.0) and zero pressure with
q0 = 1.2, qa = 3.5 and ν = 2. The cylindrical value is shown by a
dotted line.

is because T7 uses a large aspect ratio approximation for its
equilibrium. The MARS-F results were also checked against
the tearing mode growth rate method [12] and differed by less
than 1% for calculations up to inverse aspect ratio, ε = 0.3 and
the case for ε = 0.15 agrees to 0.1%. The slight difference is
due to the aspect ratio expansion that is used to calculate the
dispersion relation. The tearing mode growth rate results were
checked for convergence in Lundquist number, mesh size and
the number of harmonics used.

The MARS-F and T7 code results will differ more as
inverse aspect ratio and shaping effects are increased, however
the codes should exhibit the same trends with aspect ratio
and shaping. Figure 7 shows the effect on tearing stability
of increasing the plasma elongation, κ , calculated using T7.
The elongation has been varied from κ = 1 to κ = 1.9 which

4
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Figure 7. �′
2,1 against increasing elongation κ calculated using T7

for a plasma with ν = 1 (solid line), ν = 2 (dotted line) and ν = 4
(dashed–dotted line) for a plasma with JET-like shaping (δ ≈ 0.25)
and zero pressure with q0 = 1.2 and qa = 3.5. The ‘×’ have been
calculated with MARS-F for ν = 2.

includes the ITER-like value (κ ≈ 1.9). The three plots all
show that increasing κ acts to stabilize the tearing mode when
the q-profile is invariant. Four equilibria with ν = 2 and
increasing elongation have been calculated using the MARS-F
code Method-I (‘×’ in figure 7). These results contain full
aspect ratio effects and so do not agree closely with the T7
results; however, they do follow the same trend.

Figure 8 shows the effect on tearing stability of increasing
the plasma triangularity, δ, calculated using T7. The
triangularity has been varied from δ = 0 to δ = 0.5 which
includes the ITER-like value (δ ≈ 0.5). The three plots all
show that increasing δ without pressure acts to stabilize the
tearing mode for the chosen q-profile. There is a very small
destabilizing effect for small values of δ and ν = 2, 4, however
this is at an ignorable level within the approximations of T7.
Calculation for four equilibria with ν = 2 and increasing
triangularity have been made using the MARS-F code (‘×’
in figure 8). Again, these results contain the full aspect ratio
effects and do not agree closely with T7; however, they do
confirm the magnitude and trend of the T7 results.

4. Scans in other equilibrium quantities

Now that the T7 and MARS-F results have been compared
in circular and shaped cross sections we will investigate the
effects of other equilibrium properties on the tearing mode
stabiility using T7 because of its suitability for large parameter
scans. The same basic equilibrium given in section 3.2 will be
used in all the following cases, with just the quantity under
investigation varied.

Figure 9 shows the effect on �′
2,1 of changing the inverse

aspect ratio from 0.01 to 0.4. It can clearly be seen that
increasing inverse aspect ratio is stabilizing for tearing modes.
This is in agreement with Fitzpatrick et al [3].
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Figure 8. �′
2,1 against increasing triangularity δ calculated using T7

for a plasma with ν = 1 (solid line), ν = 2 (dotted line) and ν = 4
(dashed–dotted line) for a plasma with JET-like shaping (κ ≈ 1.8)
and zero pressure with q0 = 1.2 and qa = 3.5. The ‘×’ have been
calculated using MARS-F for ν = 2.
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Figure 9. �′
2,1, calculated using T7, against increasing inverse

aspect ratio ε with ν = 1 (solid line), ν = 2 (dotted line) and ν = 4
(dashed–dotted line) for a plasma with JET-like shaping (κ ≈ 1.8,
δ ≈ 0.25) and zero pressure with q0 = 1.2 and qa = 3.5.

Figure 10 shows the effect on tearing stability of increasing
the minimum safety factor calculated using T7. The minimum
safety factor has been varied between q0 = 1.15 and 1.5. The
three plots all show that increasing q0 acts to destabilize the
tearing mode. This might be expected since as q0 is increased,
rs is smaller which means the aspect ratio at the rational surface
is larger and the cross-sectional shaping at the rational surface
is smaller. These changes both have a destabilizing effect on
the tearing mode.

Figure 11 shows the effect on tearing stability of increasing
the edge safety factor calculated using T7. The edge safety
factor has been varied between qa = 3.2 and 4.0. The
three plots all show that increasing qa acts to destabilize
the tearing mode. Again, this might be expected because
rs has decreased and the consequences for aspect ratio and

5
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Figure 10. �′
2,1, calculated using T7, against increasing q0 for a

plasma with ν = 1 (solid line), ν = 2 (dotted line) and ν = 4
(dashed–dotted line) for a plasma with JET-like shaping (κ ≈ 1.8,
δ ≈ 0.25) and zero pressure with q0 = 1.2 and qa = 3.5.
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Figure 11. �′
2,1, calculated using T7, against increasing qa for a

plasma with ν = 1 (solid line), ν = 2 (dotted line) and ν = 4
(dashed–dotted line) for a plasma with JET-like shaping (κ ≈ 1.8,
δ ≈ 0.25) and zero pressure with q0 = 1.2 and qa = 3.5.

cross-sectional shaping are destabilizing. It is interesting to
note that the magnetic shear is constant at the rational surface
in this scan as qa increases, but decreases as q0 increases in
figure 10.

The consequences of changing the shape of the safety
factor profile on tearing mode stability are unclear because it
is difficult to disentangle the competing effects. At a given
value of q0 each of the curves has a different location of
the rational surface and magnetic shear and cross-sectional
shaping at the rational surface. Figures 10 and 11 both have
points where the ν = 2 and ν = 4 curves cross. This may
be a physically accurate picture and due to the interaction of
stabilizing and destabilizing effects as q0 or qa are varied. The
effects of the approximations made within T7 may also vary
with these parameters so some caution should be exercised
when interpreting the fine details of these results.

5. Discussion and conclusions

Two methods for calculating the tearing mode stability index,
�′, have been described here. The first method uses the
T7 code which allows fast calculations of �′, and the
more time consuming second method uses basis functions
constructed by MARS-F to calculate �′ without any aspect
ratio approximation.

The effect of shaping on tearing mode stability for three
current profiles; peaked, rounded and flattened, as used by
Furth et al [10], has been investigated using these two methods
for calculating �′. The values of elongation and triangularity
considered include typical values for JET (κ ≈ 1.8, δ ≈ 0.25)
and ITER (κ ≈ 1.9, δ ≈ 0.5). A number of effects are
clear; increasing inverse aspect ratio, plasma elongation or
triangularity are stabilizing for the tearing mode when the
q-profile is held invariant, whereas increasing q0 or qa are both
destabilizing. These results are similar to the fixed boundary
results in Fitzpatrick et al [3] where an expansion for small
values of plasma shaping was calculated using T7. Hender et al
[14] also found that plasma shaping had a stabilizing influence
on tearing modes in the zero pressure case when the q-profile
was held constant. It is difficult to compare these results with
experiment. A change to the boundary shape of the plasma
produces a number of effects on the plasma which are difficult
to disentangle. However, there is some experimental evidence
from ASDEX-Upgrade [15] and TCV [16] that plasma shaping
does act to stabilize tearing modes.

T7 is based upon a large aspect ratio, small shaping
equilibrium expansion and so the absolute values of results
at finite values of these parameters may be in doubt. The
MARS-F method does not use any large aspect ratio or small
shaping approximations. Nonetheless, the comparison of T7
with MARS-F results shows that the T7 trends are correct
and the magnitude is close to the MARS-F values. However,
experience with the T7 code has shown spurious results for
�′ can occur if the equilibrium parameters are pushed too far.
These appear as large excursions in �′ in narrow regions of
parameter space and serve as warnings that the code is being
applied beyond its regime of validity.

These shortcomings maybe be remedied if an expansion
in poloidal harmonics of a full numerical solution, rather
than the existing analytic expansion, of the Grad-Shafranov
equation is used for the equilibrium in T7. The number of
poloidal harmonics used for each rational surface could also
be increased from seven. The work here indicates that T7
may be sufficiently accurate to provide fast calculation of the
tearing mode stability and so T7 could be run as part of a
bigger plasma simulation package. The MARS-F construction
method provides a new, very accurate, if more time consuming,
approach to calculating the tearing mode stability. The time
required to run the T7 code for a case is approximately an order
of magnitude faster than MARS-F.

The work here has all been carried out for pressure-free
equilibria. A pressure gradient around the rational surface
produces the Glasser effect which is likely to be significant
and complicates the use of MARS-F in this way. We hope to
investigate this theoretically challenging effect in future work.
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Appendix A. T7 code

We include the following short appendix on the T7 code, most
of which has been previously given in [2], for the convenience
of readers.

A.1. Analytic equilibrium

The T7 code currently uses a large aspect ratio analytic
equilibrium rather than the output plasma equilibrium from
a Grad–Shafranov solver. The full details of this plasma
equilibrium are presented in [3], however we give brief details
here. A plasma equilibrium is constructed with coordinates
(r, θ, φ) which are related to cylindrical coordinates (R, φ, Z),
where Z is in the direction of the symmetry axis, by

R = R0 − r cos ω − �S(r) + E(r) cos ω + T (r) cos 2ω

+ P(r) cos ω,

Z = r sin ω + E(r) sin ω + T (r) sin 2ω − P(r) sin ω, (A.1)

where ω is the poloidal angle around the magnetic axis, �S is
the Shafranov shift, E is the flux surface ellipticity and T is
the flux surface triangularity. The quantity

P(r) = 1

8

r3

R3
0

+
1

2

r

R0
�S − 1

2

E2

r
− T 2

r
+ O(ε3a) (A.2)

is chosen so that the Jacobian of the transformation (r, θ, φ) →
(R, φ, Z) is given by

(∇r ∧ ∇θ · ∇φ)−1 = rR2

R0
. (A.3)

The equilibrium coordinate θ is related to ω by

θ = 2π

∫ ω

0

J dω

R

/ ∮
J dω

R
, (A.4)

where J = (∂R/∂ω∂Z/∂r − ∂R/∂r∂Z/∂ω) is the Jacobian
for (R, Z → r, ω). The field lines appear straight in the
(r, θ, φ) system, i.e. B.∇ ∝ ((∂/∂θ) − q(r)(∂/∂φ)).

The ellipticity parameter is related to the elongation
parameter by κ ≈ (a+E(a))/(a−E((a)) and the triangularity
parameters are related by δ ≈ 4T (a)(a2 − 3T (a)2)/a3.

A.2. Definition of �′

In the presence of pressure and toroidal effects the �′ needs
to be more carefully defined than the expression given in (3).
Full details of this are given in [3]. The resonant perturbed-flux
harmonics near to their rational surface are given by

ψm ≈ AL|x|νL [1 + λLx + · · ·] + ASsgn(x)|x|νS [1 + · · ·]
+ ACx [1 + · · ·] (A.5)

where x = (r − rm)/a. The coefficients of the ‘large’ and
‘small’ solutions in the Newcomb sense [17] are AL and AS,
respectively. The coefficients of the ‘continuous’ solution are
AC. The indices, νL and νS, are given by

νL = 1
2 − (−DM)1/2 ,

νS = 1
2 + (−DM)1/2 ,

(A.6)

where DM is given in [13], DM > 0 corresponding to the
Mercier instability criterion.

T7 is restricted to stability calculations of the tearing parity
modes where the coefficient of the large solution is continuous
across the rational surface. However, the coefficient of the
small solution is not continuous and this provides the definition
of �′ as

�′ ≡
(

AS+ − AS−
AL

)
, (A.7)

where AS+ is the amplitude of the small solution as the rational
surface is approached from the right and AS− from the left.
AL is the amplitude of the large solution at the rational surface.

In the special case of a pressure-free equilibrium the
definition of �′ is

�′ ≡
[
rψ ′

ψ

]
rs

, (A.8)

where ψ is the perturbed poloidal flux of the resonant har-
monic.

Euratom © 2012.
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