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 i  g  h  l  i  g  h  t  s

A  new  model  selection  indicator,  based  on  the  Model  Falsification  Criterion,  has  been  applied  to the  problem  of  choosing  the  scaling  laws  for  power
threshold  scaling  to  access  the  H-mode  in  tokamaks.
The  indicators  have  at  least  the  same  selection  power  of  the  classic  indicators  for databases  of  low  dimensionality.
For  the  high  dimensionality  dataset  the  indicator  outperforms  the  traditional  criteria.
The  indicator  preserves  its  advantages  up  to  a noise  of  20%  of the  signal  level.
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a  b  s  t  r  a  c  t

The  development  of  computationally  efficient  model  selection  strategies  represents  an  important  prob-
lem facing  the  analysis  of  nuclear  fusion  experimental  data,  in  particular  in  the  field  of scaling  laws  for  the
extrapolation  to future  machines,  and  image  processing.  In this  paper,  a  new  model  selection  indicator,
named  Model  Falsification  Criterion  (MFC),  will  be  presented  and  applied  to  the  problem  of choosing  the
vailable online 30 March 2013
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most  generalizable  scaling  laws  for  the  power  threshold  (PThresh) to access  the  H-mode  of confinement  in
tokamaks.  The  proposed  indicator  is  based  on  the  properties  of  the model  residuals,  their  entropy  and  an
implementation  of the  data  falsification  principle.  The  model  selection  ability  of  the  proposed  criterion
will be  demonstrated  in  comparison  with  the  most  widely  used  frequentist  (Akaike  information  criterion)
and bayesian  (Bayesian  information  criterion)  indicators.

© 2013 Elsevier B.V. All rights reserved.
. Introduction

Karl Popper argued in favour of a simple way to determine the
cientific validity of a theory: the falsification principle. This prin-
iple states that, in order for a theory to be deemed scientific, there
ust exist an empirical way of showing that it is false. A model

s a quantitative formulation of a theory, which provides falsifi-
ble predictions of phenomena. Testing the reliability of models
nd scaling laws is very important during the conceptual study
r design phase of a new experiment such as ITER. For example,
he PThresh [1,2] to access the H-mode of confinement in tokamaks
epresents a critical engineering parameter for the design of the

dditional heating systems and for the extrapolations of operative
cenarios. A goodness-of-fit measure (GOF) is usually used to mea-
ure the quality of quantitative models. What is measured is how

∗ Corresponding author. Tel.: +39 3332225359.
E-mail address: Ivan.Lupelli@ccfe.ac.uk (I. Lupelli).

920-3796/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.fusengdes.2013.02.115
much a model’s predictions deviate from the observed data [3–5].
The model that provides the best fit (i.e. the smallest deviation)
is favoured. Unfortunately one of the biggest challenges faced by
nuclear fusion scientists is that experimental signals are noisy, or
in any case affected by large error bars. Errors arise from several
sources, such as the imprecision of measurement tools, electronic
noise etc. Noisy data make the simply GOF measure by itself a
poor method of model selection. A typical GOF measure such as
the root mean squared error (RMSE), for example, is insensitive
to the number of the explanatory variables, dimensionality of the
dataset and different sources of variation in the data. This could
result in the selection of a model that overfits the data, which may
not be the model that best approximates the process under study.
The preferred solution has been to redefine the problem as one of
assessing how well a model’s fit to one data sample generalizes

to future samples generated by that same process [6]. Early meas-
ures of generalizability are the Akaike information criterion (AIC)
[7] and Bayesian information criterion (BIC) [7]. In this approach
a good fit is a necessary but not sufficient condition for a model

dx.doi.org/10.1016/j.fusengdes.2013.02.115
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:Ivan.Lupelli@ccfe.ac.uk
dx.doi.org/10.1016/j.fusengdes.2013.02.115


ring a

b
m
M
p
t
c
d
t
h
t
o
a

2

2

C
m
s
c
b
m
t
o
i
p
w
c
i
o
i
a
b
t
o
u
e
i
f

M

w
t
c
m
v
e
a
k
e
t
p
p
o
d
s
m
s
t

I. Lupelli et al. / Fusion Enginee

ecause more complex models are penalized (as a form of parsi-
ony). In this paper, an original model selection indicator, named
odel Falsification Criterion (MFC), will be presented. The new pro-

osed indicator is based on the properties of the model residuals,
heir entropy and an implementation of the data falsification prin-
iple. The model selection ability of the proposed indicator will be
emonstrated by comparison with the AIC and BIC by using first
wo datasets: a low dimensionality real-life dataset and a synthetic
igh dimensionality dataset. Moreover the indicator will be applied
o the 2010 version of the ITPA database (IGDBTHv6b) [1,8,9] in
rder to derive the most generalizable scaling laws for the PThresh
s function of a limited number of macroscopic quantities.

. The Model Falsification Criterion

.1. Theoretical background

The present version of the criterion, name Model Falsification
riterion (MFC), is conceived as a measure of generalizability of a
odel. The generalizability is the ability of a model to fit all data

amples generated by the same process under study, not just the
urrently observed samples. Generalizability is estimated by com-
ining a model’s GOF with a measure of its complexity. A complex
odel, with many parameters, could in principle be more adequate

o interpret the data generated by a complex system. Therefore, in
rder to implement some form of parsimony, the main inspiration
n the formulation of the MFC  criterion has been the falsification
rinciple more than the Occam’s Razor. A model is to be preferred
hen a small error in its parameters does not result in a great

hange in its estimates. In this context, the falsification principle
s therefore interpreted and translated in terms of the robustness
f the model. The principle of parsimony, to increase the general-
zation capability of the indicator, is therefore implemented in such

 way as to penalize not so much the simple number of parameters
ut more the repercussions on the final estimates of small errors in
he model parameters. In mathematical terms, the main elements
f the MFC  criterion are based on the properties of the model resid-
als (r), their entropy H(|r|) [10] and the robustness of the model
stimates against the variations in the j-th explanatory variables
ncluded in the model (falsification principle). The value of the MFC
or a model under study is

FC(r, k, n) =

MFC2︷  ︸︸  ︷
kcorr + 2k +

∑
|r|

H(|r|) +

MFC2︷  ︸︸  ︷
R∑

j=1

kcorr + 2k + nkcorr

2k2

∑
|rj|

H(|rj|)
(1)

here r represents the model’s residuals vector, H(|r|) estimates
he Shannon entropy [9] of the r from the corresponding observed
ounts, k is the number of model parameters (i.e. the number of esti-
ated coefficient of the model plus the variance), rj represents the

alue of model residuals vector, calculated after varying inside the
rror bars each explanatory variable from a set of R candidate vari-
bles xj (xj = {x1, x2, . . .,  xR}) included in the model one at the time.
corr = 2k(k + 1)/(n − k − 1) is the corrected number of model param-
ters that takes into account the total number of observations n and
he model parameters. In analogy with Information Theory [6] kcorr

rovide a greater penalty for complex models. In Eq. (1) the first
art of the indicator, MFC1, takes into account both the properties
f the model residuals, how well the model fits the experimental
ata, and the model complexity. A good model should have a low

um of the residuals and a high entropy of the residuals keeping the
odel complexity (provided by kcorr and k) as low as possible. The

econd part, MFC2, assesses the robustness of the model against
he falsification in explanatory variables. In the case of a robust
nd Design 88 (2013) 738– 741 739

model, the sum of the residuals should not increase significantly
and the entropy of the residuals should not decrease significantly in
the case of variations of its explanatory variables inside their error
bars. MFC2 is calculated introducing an error on each explanatory
variable of the model one at the time. According to the proposed
criterion, the most generalizable model is the one which presents
the lowest value of the MFC  indicator. The mathematical defini-
tion of the MFC  criterion has to be compared with the ones of the
AIC = 2k + nln(RSS/n) and BIC = nln(RSS/n − 1) + kln(n) where n is the
number of samples in the database, k the number of parameters in
the model, RSS is the sum of squared residuals and ln indicates the
natural logarithm.

3. Databases description

3.1. Test databases description

Dataset 1 [7] is a simple low-dimensionality experimental
database consisting of 13 observations of 4 of candidate vari-
ables (x1 to x4) and 1 dependent variable (y). The true model is
the model that includes just x1 and x2 as explanatory variables
y = 52.6 + 1.468x1 + 0.662x2 with x3 and x4 as spurious variables.
This dataset has been considered in order to test the performance
of the MFC  criterion in a case when both AIC and BIC iden-
tify the correct and well established experimental model [7]. The
Dataset 2 is a high-dimensionality synthetic database generated
by a linear model with one response variable y and 12 candi-
date variables x1 through x12 (150 observations). The true model is
y = x1 + x2 + x3 + x4 + x5 and variables from x6 through x12 are consid-
ered spurious. The validity of the results has been tested with more
complex linear and non-linear functional forms [7]. This dataset
has been considered in order to test the performance of the MFC  in
presence of an high number of spurious variables in the set of candi-
date regressors. For R predictors, since each can be either included
or omitted (two possibilities for each variable), there are 2R − 1
(excluding the trivial solution with no variables) possible mod-
els for each dataset: 15 model for Dataset 1 and 4095 for Dataset
2. For both datasets the noise level introduced in the explanatory
variables amounts to ±10% of their original value.

3.2. The ITPA International Multi-machine Database

This MFC  indicator has been applied to the ITPA International
Global Threshold Data Base v6b(IGDBTHv6b) of L to the H mode
transitions [8] according to the selection criteria (SELEC2007),
defined to extract ITER relevant discharges from the database.
According to these criteria, discharges with single-null config-
urations, ion grad B drift towards the X point and deuterium
as fuel are selected. On the other hand, plasmas with too low
plasma density [1], too low safety factor at the 95% flux surface
(q95 < 2.5), too large counter-NBI fraction (Pctr/PNBI > 0.8), too small
gaps between plasma surface and wall (d < 5 cm) are discarded.
These criteria furthermore exclude transitions obtained in Ohmic
conditions, since they are not relevant for ITER, and electron
cyclotron only heated discharges, since this heating scheme,
mainly used in small devices, regularly leads to high PThresh values
[1]. Also configurations with a plasma elongation lower than
1.2 have not been considered. To maximize the accuracy of the
scalings, only the data belonging to an interval of 50 ms  before the
L-H transition has been included in this analysis; all together a
total of 470 discharges from the main tokamaks (JET, AUG, DIIID,

CMOD) present all the required quantities in the aforementioned
interval and can be used in the analysis. Previous studies have
shown that, in terms of macroscopic quantities measured on all
major devices [1,2,8], PThresh mainly depends on the plasma line
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Table 1
Models proposed by different criteria for the Dataset 1 and Dataset 2.

Dataset Spurious variables Variables included in the true model Variables included in the model according to different criteria

AIC BIC MFC
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Thresh 0.531 t e20
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Dataset 1 (13 observations) x3, x4 x1, x2

Dataset 2 (150 observations) x6 to x12 x1 to x5

ntegrated density (ne20[1020 m−3]), the strength of the toroidal
eld (Bt[T]), the plasma surface area (S[m2]) major (R[m]) and
inor radius (a[m]), elongation (k), triangularity (ı), the plasma

urrent Ip [MA] and q95 (the safety factor at 95% of the plasma
adius). The operational range covered by this set of discharges is
.29 < Bt[T] < 5.37, 0.20 < ne20[1020 m−3] < 1.19, 0.67 < R[m]  < 2.92,
.216 < a[m]  < 1.03, 7.32 < S[m2] < 174.10, 0.0696 < ı < 0.508,
.56 < k < 2.04, 2.51 < q95 < 6.78, 0.54 < Ip[MA] < 3.22 and
.831 < PThresh[MW]  < 6.466. All these quantities are routinely
vailable in all the major tokamaks, providing enough data for

 sound statistical analysis (for the single machine analysis just
ET, DIID and AUG have been considered). The noise level for each
ariable has been assumed as ±10%. The scaling laws considered
n this paper are of the form of power-law monomials

Thresh = ˇ0aˇ1 Rˇ2 Sˇ3 ıˇ4 kˇ5 Btˇ6 nˇ7
e20qˇ8

95 Iˇ9
p (2)

. Results

The proposed most generalizable models provided by the dif-
erent criteria (AIC, BIC, and the proposed MFC), are reported in
able 1. For the low dimensionality experimental dataset (Dataset
) the MFC  is able to find the correct true model of the process under
tudy (4 parameters and two variables x1, x2). This means that the
FC  has at least the same selection power of the classic indicators

or databases of low dimensionality experimental problems. For
he high dimensionality dataset (Dataset 2), it appears very clearly
hat the MFC  outperforms the traditional AIC and BIC criteria. In

ig. 1 the relationship between GOF (RMSE) and the generalizabil-
ty (AIC, BIC and MFC  value) as a function of model complexity (k) is
hown. It is clear that the MFC  penalizes more the complex models
ith respect to the AIC and BIC criteria, and also is able to find the

ig. 1. Relationship between goodness of fit, expressed in terms of root mean squared err
unction of model complexity. Results for Dataset 1 and 2 are reported. The vertical lines 
x1, x2 x1, x2 x1, x2

x1, x2 × 3, x4, x5, x9 x2 × 3, x4, x5 x1, x2 × 3, x4, x5

correct model in a high dimensionality dataset. This is a very impor-
tant point, especially given the high dimensionality and noise level
of the data in nuclear fusion, when it comes to important applica-
tions such as the identification of multivariate scaling laws or large
datasets of image processing data. It has also been checked that
the MFC  preserves its advantages up to a noise of 20% of the signal
level. The result of MFC  applied to the problem of choosing the most
generalizable scaling laws for the PThresh to access the H-mode of
confinement in tokamaks are showed in Table 2. Both AIC and BIC
criteria identify more complex models than the MFC. The results
provided by the MFC  in Fig. 2, show again the ability of the indi-
cator to select the most generalizable and less complex model for
the L-H transition [2] (dependence of PThresh from the geometrical
quantities, magnetic field and electron density). For the reader con-
venience, the scaling laws are explicitly reported in the following:

PThresh(ITPA) = 0.6860.694
0.678a0.9610.964

0.958 R1.0721.074
1.071 S−0.000090.0015

−0017

× B
0.73180.732

0.7315
t n

0.7490.794
0.748

e20 (3)

PThresh(JET) = 1.7811.887
1.676B

0.7630.868
0.659

t n
0.7740.854

0.695
e20 (4)

PThresh(DIIID) = 0.7730.799
0.747B

0.7430.773
0.712

t n
0.7400.758

0.722
e20 (5)

P (AUG) = 0.5400.550B
0.7360.744

0.728 n
0.7230.729

0.716 (6)
Fig. 3 reports the histograms of the residuals for the models
proposed by different criteria (AIC, BIC, MFC) using the whole multi-
machine ITPA database. The pdf of the model selected by the MFC
criterion is only slightly better than the ones of the other two

or (RMSE) and generalizability measure, expressed in term of AIC BIC and MFC  as a
correspond to the best model identified by the various indicators.
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Table 2
Models proposed by different criteria for the multi-machine ITPA database and for the single machines (JET,DIID,AUG).

Variables included in the model according to different criteria

Data AIC BIC MFC

ITPA a, R, S, ı, k, Bt , ne20, q95, Ip a, R, S, ı, k, Bt , ne20 a, R, S, Bt , ne20

JET R, ı, Bt , ne20, Ip R, Bt , ne20, Ip Bt , ne20

DIID S, ı, k, Bt , ne20, q95, Ip S, k, Bt , ne20 Bt , ne20

AUG a, R, S, ı, k, Bt , ne20, q95, Ip a, R, S, ı, k, Bt , ne20, q95 Bt , ne20

Fig. 2. Relationship between goodness of fit, expressed in terms of root mean squared error (RMSE) and generalizability measure, expressed in term of AIC BIC and MFC as a
function of model complexity. Results for multi-machine ITPA (10% noise level) database
lines  correspond to the best model identified by the various indicators. A 10% of noise has
this  figure legend, the reader is referred to the web version of the article.)

Fig. 3. Histogram of residuals for the models proposed by different criteria (AIC,
B
h
(

m
l
e
f
c
a
a
o
u

IC,  MFC) using the whole multi-machine ITPA database. The residuals of each model
ave  also been fitted with a normal distribution, whose mean and standard deviation
StDev) values are reported.

odels (identified by AIC and BIC) but it includes a significantly
ower number of variable (lower complexity). Particularly inter-
sting are also the results for the individual machines (the results
or JET machine are shown in Fig. 2), for which the MFC  is the only
riterion capable of identifying the fact that the geometric vari-

bles are not good regressors, since they do not vary sufficiently on

 single machine. Of course this does not imply that a simple use
f the MFC  can substitute more involved analysis of the datasets
nder investigation (ANOVA, collinearity analysis etc.) but certainly

[

 and an individual machine (JET) are reported (10% noise level). The green vertical
 been considered for each variable. (For interpretation of the references to color in

shows a competitive advantage of the criterion compared to the
more traditional ones.

With regard to future developments, asymptotic properties of
the MFC, its application in conjunction with the symbolic regression
tools and the extension to image processing applications will be
considered.
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