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Abstract. The ability to predict the stability of fast-particle-driven Alfvén eigenmodes in burning
fusion plasmas requires a detailed understanding of the dissipative mechanisms that damp these
modes. In order to address this question, the linear gyro-kinetic, electromagnetic code LIGKA[1] is
employed to investigate their behaviour in realistic tokamak geometry. The eigenvalue formulation
of LIGKA allows to calculate self-consistently the coupling of large-scaled MHD modes to the
gyroradius scale-length kinetic Alfvén waves. Therefore, the properties of the kineticly modified
TAE mode in or near the gap (KTAE, radiative damping or ’tunnelling’) and its coupling to the
continuum close to the edge can be analysed numerically. In addition, an antenna-like version of
LIGKA allows for a frequency scan, analogous to an external antenna.
The model and the implementation of LIGKA were recently extended in order to capture the
coupling of the shear Alfvén waves to the sound waves. This coupling becomes important for
the investigation of kinetic effects on the low-frequency phase of cascade modes [2], where e.g.
geodesic acoustic effects play a significant role [3, 4].
Keywords: Kinetic Alfvén Waves, TAE, KTAE, Cascade Modes
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INTRODUCTION

The stability properties of the toroidal Alfvén Eigenmode (TAE) [5],[6] in magneti-
cally confined fusion plasmas are of great interest because TAEs can be driven un-
stable by fusion-born α-particles with dangerous consequences for the overall plasma
stability and confinement [7]. In order to make predictions for an ignited plasma like
ITER, the background damping mechanisms of TAEs have to be investigated carefully.
These mechanisms are electron and ion Landau damping, continuum damping, colli-
sional damping and radiative damping. The latter mechanism requires a non-perturbative
description, since the MHD properties of the mode structure are modified by coupling
to the kinetic Alfvén wave (KAW) [8].
The application of perturbative, fluid models like CASTOR-K [9] and NOVA-K [10]

on JET for low-n, low-m cases resulted in damping rates which were too small by one
order of magnitude compared to the measured damping rates [11] [12]. With a gyroki-
netic, perturbative extension of CASTOR-K based on a complex resistivity model [13]
considerably higher damping rates with a discrepancy of a factor of 2 were calculated,
verifying the importance of mode conversion of Alfvén and kinetic Alfvén eigenmodes.
The global gyrokinetic wave code PENN [14] found agreement with the experiment,
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FIGURE 1. Overview: kinetic models

proposing mode conversion in the plasma centre as the main damping mechanism. How-
ever, there has been no confirmation of this mechanism by analytical estimates or other
codes like CASTOR-K. Recent work on this topic, employing a global, reduced kinetic
model [15] did not confirm any significant mode conversion mechanism in the centre.
Instead, continuum damping near the plasma edge was found to be important, leading to
damping rates comparable to the experiment.
The application of the gyrokinetic, linear, non-perturbative code LIGKA[1] to this prob-
lem resulted [16] in similar results as the ’reduced kinetic model’ [15]. Benchmarks with
this reduced model and the axisymmetric version of CAS3D-K [17, 18, 19] showed good
agreement for electron damping, continuum damping and radiative damping. Strong
mode conversion in the plasma centre like in PENN was also not found.
LIGKA is based on a self-consistent model by Qin et al. [20][21] consisting of the
quasi-neutrality equation and the moment equation for the perturbed current. It is non-
perturbative, since it allows for a non-linear dependence of the eigenvalue through the
velocity space integrals and also for a mode structure which is not prescribed by ideal
MHD calculations. The propagator integrals along the drift orbit of ions and electrons
are carried out numerically using the drift kinetic code HAGIS [22],[23], and the reso-
nance integrals are solved accurately applying rational interpolation and grid refinement
techniques. LIGKA therefore covers all the damping mechanisms mentioned above, ex-
cept collisional damping, which is assumed to be small compared to the other types of
damping.
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LIGKA was originally developed and tested for the Alfvén-frequency regime. It is shown
in this paper how the model can be extended and modified for lower frequencies, i.e. the
drift and the sound waves. First test cases are shown.
This extension starts to become important when e.g. the low-frequency phase of Alfvén
cascade modes is investigated [3]. An analysis with the MHD-code CASTOR [24] shows
that cascade modes can exist above the magneto-acoustic continuum branches at low-
frequencies and that they do not transform directly into TAE modes when the q-profile
drops. There are strong indications that these modes were observed in the early phase of
several ICRH-heated ASDEX-Upgrade discharges.

THEORETICALMODEL AND RELEVANT LIMITS

As shown in [16], the contact between the reduced kinetic model and the linear gyroki-
netic model can be obtained as summarised below:
The following basic equation [27] is usually employed as the relevant one for non-ideal
shear Alfvén modes:
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It is derived from the vorticity equation with finite Larmor radius (FLR) corrections and
Ohm’s law given in references [25], [26]. Here, φ is the electrostatic potential, A‖b the
magnetic vector potential, r the radial coordinate and s the coordinate along the field
line. δs is the skin depth δs = c2ε0/ωσ with σ being the parallel complex electrical
conductivity, which was chosen to be σ/ε0 = iω2

pe/(ω + iνe f f − k2
‖v2

the/ω). ωpe and
νe f f are the electron plasma frequency and the effective electron collision frequency.
Near the singular layer of the ideal MHD equation (left hand side of equation 1), the
right hand side becomes most important and can be simplified by the substitutions
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The underlying equations of LIGKA (derived by Qin [20],[21]) consist of the quasi-
neutrality equation
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and the gyrokinetic moment equation:
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Here, ∑a indicates the sum over different particle species with the perturbed distribution
function fa, mass ma, charge ea, unperturbed density na0, thermal velocity vth,a =√

Ta/ma and cyclotron frequency Ωa. The perturbed distribution function fa is governed
by the linearised Vlasov equation:

∂ f
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with
H1 = eJ0(φ − v‖(∇ψ)‖/iω).

Now one can split up a term that gives a 0-th order solution of the GKE and that allows
to write most terms proportional to (φ −ψ), i.e. the electrostatic contribution:
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Integrating this expression over the velocity space gives the convective pressure term:
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In the same simple limit as described above, carrying out the velocity space integrals
and using A‖ = c(∇ψ)‖/iω , these equations can be reduced to:
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leading by elimination of ψ to exactly the same fourth order equation as given above in
lines 1 and 2.
The sound-wave dispersion relation can be obtained by applying the cold ion, hot
electron expansion to the QN equation:

ρ2
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⊥φ = (
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s k2
‖

ω2 −1+
ω∗e
ω

)(φ −ψ);
ω2

v2
A

φ − k2
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It can be easily seen that the sound wave is basically electrostatic and it’s coupling to
the shear Alfvén wave depends on β = 2c2

s/v2
A.

For the complete spectrum of waves, including the fast compressional wave, one would
need the full set of three equations rather than the two equations considered here [28, 29].
In addition to φ and ψ one would need an equation for the perturbed parallel magnetic
field compression δB‖. However, for the frequency regime considered here, the only ef-
fect of this third equation is to eliminate the ∇B-drifts in favour of the curvature drifts
[28].
The next limit considered here is the geodesic-acoustic correction to the Alfvén contin-
uum. It is well known that this correction influences the low-frequency behaviour of the
cascade modes [3]. This correction is

ω2

v2
A
− k2

‖ −
2c2

s
v2

AR2
0
(1+

1
2q2

0
) = 0; c2

s = γ p0/n0 (8)

This expression can be derived from the linear ideal MHD-equations. The term 1
2q2

0
is due

to the toroidal coupling of the Alfvén waves to the acoustic wave. If a kinetic closure is
employed, cs has to be replaced by ĉ2

s = (Te +(7/4)Ti)/mi [30]. Also kinetic expressions
for the toroidal acoustic coupling and the k‖-corrections have been derived [31, 32].
In order to recover this correction from the equations underlying LIGKA, one has to keep
ωd = ωk +ωB as an operator of first order in the radial direction. The expression for h
reads as follows:

h =
ie
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ω
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Carrying out the integration in the simplest limit and employing the ωB-cancellation
described above, one obtains for the quasi-neutrality equation:
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The same procedure is employed for the GKM equation:
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One can see clearly, that there are two extra contributions to the second order operator
in radial direction: one term is coming from the electrons,

4τ2〈ωk〉2

ω2 φ ,
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the analytical ωgeo (lines) with the local LIGKA results

the other from the ions:
7〈ω2

k 〉
ω2 φ .

Note the difference between 〈ω2
k 〉 and 〈ωk〉2. Expanding these two operators gives

exactly the continuum correction as given in line 8 with c2
s replaced by ĉ2

s .
In LIGKA, the integrals over the unperturbed orbits and over velocity space are carried
out numerically. In order to check the correctness of these integrations, the terms for the
second order operator were collected and a local solve carried out: figure 2 shows, that
for n = 1, m = 2 and q(rs) = 2 with rs = 0.64, k‖ goes to zero for zero temperature. For
increasing temperature (Te = Ti) the correction due to the acoustic coupling can be easily
identified and compared with the analytical values as given by line 8. Good agreement
is found in this first, simple benchmark.

Numerical Model

The basic version of LIGKA [1] solves the equations 4,5 and the linear gyrokinetic
equation for the perturbed distribution function f up to 2. order in k⊥ρi. As discreti-
sation scheme finite elements based on Hermite polynomials in radial direction (with
usually 200 to 400 grid-points along the minor radius) and a Fourier decomposition in
the poloidal angle are employed. There is no coupling in the toroidal angle. Using a
Galerkin method an eigenvalue problem is formed. The boundary conditions are chosen
as φm(0) = φm(a) = ψm(0) = ψm(a) = 0. Straight field line coordinates for the back-
ground quantities given by the equilibrium code HELENA [24] are chosen. Since the
velocity space integrals depend on the eigenfrequency ω in a complicated way (reso-
nance integrals), the eigenvalue problem is not linear anymore, and LIGKA applies the
Nyquist contour integration technique to find the eigenvalues.
To be able to study the complex physics that is caused by non-ideal effects in and near
the gap region, LIGKA has been modified:
For examining the rich spectrum around a gap, many closely spaced modes are expected.
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Using a Nyquist solver is cumbersome under these conditions because many poles re-
quire a high number of sample points along the integration contour, even when also
background phase removal techniques are applied [33]. Thus an antenna-like version of
LIGKA was developed: a drive vector is added on the right hand side of the homogeneous
equation:

M(ω)
(

φ
ψ

)
= d (11)

where d is only nonzero for the last finite element at the plasma edge, prescribing a small
perturbation from the outside. The absolute value of d is chosen somewhat arbitrarily.
However, it was tested that different choices of d did not change the basic properties of
the response spectrum,i.e. the location and the width of the peaks. The wave equations in
the vacuum and the proper boundary conditions are not considered in this simple model.
The eigenfunctions are found by inverting M(ω) resulting in:

I
(

φ
ψ

)
= M(ω)−1d, (12)

and the plasma response is ’measured’ by an integral over the eigenfunction:

� = ∑
m

∫ a

0
φmφ∗

mdr (13)

Recently, for this antenna version, a parallelised solver has been implemented: using
the Watson Sparse Matrix Package by IBM [34], with compressed matrix storage and
distributed memory, the performance of LIGKA has been improved considerably. Thus
problems with higher n and more poloidal modes can be addressed.

LOW-FREQUENCY CASCADE MODES

In a series of discharges at ASDEX-Upgrade (#20396-99) chirping events in the early
phase of the discharge were observed [35]. As can be seen in figure 3, in these shots
on-axis ICRH is applied at 0.9 seconds and is ramped up to 4MW. In this figure also
the magnetic spectrogram of a Mirnov-coil measurement is shown: the coil B31-14 is
located on the outboard midplane, measuring mainly radial perturbations. From a phase
correlation analysis of different coils one can clearly identify, that the set of modes at
around 260 kHz are TAE-modes with the toroidal mode numbers n = 4,5,6,7. However,
the chirping events starting at 1.05 seconds and 1.09 also have most likely a mode
number of n = 5. Therefore, these modes cannot be conventional cascade modes that
would convert into TAE-modes when the minimum value of the q-profile, qmin reaches
qTAE = 2m−1/2n. Furthermore, the onset-frequency of these chirping modes is below
fgeodesic which is the lower bound for a conventional Alfvén cascade.
It is known from reflectometry measurements that the chirping modes are very core

localised [35], rmode < 0.3. Taking into account the onset of the sawtooth modes at 1.32
seconds and a sawtooth inversion radius of r ≈ 0.3 one can obtain a rough estimate
of the q-profile based on an ASTRA-simulation with a fast particle pressure given by
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FIGURE 3. Time evolution of the magnetic spectrogram (top) and the IRCH power (bottom) for
ASDEX-Upgrade shot #20398

a TORIC-calculation. The evolution of the q−profile is shown in figure 4. Based on
these q−profiles a series of equilibria were constructed and the Alfvén continua were
calculated with the linear MHD-code CASTOR [24]. The inclusion of compressibility
strongly changes the spectrum compared to a pure Alfvénic case in this relatively low-
frequency region. One can see that there is a local maximum in the continuum at r = 0.1
(see figure 4) starting from ω/ωA = 0.15 and going up to ω/ωA = 0.23 which fits
reasonably to the experimental chirping range.

Using CASTOR, one finds a cascade-like mode just slightly above this maximum, as
shown in figure 5, bottom row. This mode exhibits a typical cascade-like perturbation in
the radial direction, i.e. a mainly cylindrical behaviour, however, in the direction parallel
to the equilibrium magnetic field one finds a strong v‖-perturbation, whose amplitude is
comparable in magnitude to the radial perturbation. This perturbation is dominated by a
strong sideband coupling to the neighbouring m+1 and m−1 harmonics.
This first analysis will be refined with future experiments, taking advantage of a more
complete set of diagnostics, such as the Soft-X-ray cameras and the fast-particle-loss
detector.

CONCLUSIONS

In this paper it has been shown that the gyrokinetic formulation underlying LIGKA
recovers the reduced kinetic model, the sound wave dispersion relation and the geodesic-
acoustic corrections and is therefore not only applicable to the physics of kinetically
modified global shear Alfvén modes but also to the lower-frequency modes in the sound-
wave regime. First test cases were shown.
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Chirping events in the early phase of ASDEX-Upgrade discharges might be explained
by low-frequency cascade modes that show a strong sideband coupling to neighbouring
poloidal harmonics.
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