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We present a magnetic bond-order potential (BOP) that is able to provide a correct description of both

directional covalent bonds and magnetic interactions in iron. This potential, based on the tight binding

approximation and the Stoner model of itinerant magnetism, forms a direct bridge between the electronic-

structure and the atomistic modeling hierarchies. Even though BOP calculations are computationally more

demanding than those using common empirical potentials, the formalism can be used for studies of

complex defect configurations in large atomic ensembles exceeding 105 atoms. Our studies of dislocations

in �-Fe demonstrate that correct descriptions of directional covalent bonds and magnetism are crucial for

a reliable modeling of these defects.
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Iron and its compounds and alloys belong to the tech-
nologically most important materials. Efforts to model
Fe-based materials at the atomic level have been growing
rapidly in the last years not only to gain a better funda-
mental understanding but also to facilitate the design of
advanced materials such as modern high-strength twin-
ning- or transformation-induced-plasticity (TWIP/TRIP)
steels. First-principles calculations, e.g., within the gener-
alized gradient approximation of the density functional
theory (DFT), are able to provide trustworthy predictions
for small atomic ensembles. However, the development
of accurate models of interatomic interactions that could
capture subtleties of chemical bonding and still be appli-
cable in large-scale atomistic studies presents a significant
challenge.

The absence of reliable and computationally efficient
models of interatomic interactions for iron stems from a
difficulty to describe appropriately and simultaneously two
key ingredients of its atomic bonding: (1) the unsaturated
directional covalent bonds and (2) the magnetic effects.
Most of the existing interatomic potentials for Fe are of
central-force type, based on the embedded atom method or
the Finnis-Sinclair schemes (e.g., Refs. [1–4]), that cannot
provide a proper description of directional bonds. There
have been attempts to include angle-dependent terms in
classical potentials (see, e.g., Refs. [5,6]), but these models
use mostly empirical functional forms and their parame-
terization requires complicated fitting strategies. A com-
mon characteristic of almost all classical interatomic
potentials is a complete lack of magnetic interactions.
These potentials are therefore neither able to describe the
broad variety of magnetic phases of iron nor provide any
information about local magnetic phenomena in the vicin-
ity of crystal defects.

The crucial importance of magnetic effects for structural
stability of iron phases was described by Hasegawa and

Pettifor almost 30 years ago [7]. A first successful attempt
to incorporate a description of magnetism into an empirical
model was done recently by Dudarev and Derlet [4]. These
authors augmented the Finnis-Sinclair model with a Stoner
model in order to account for changes of magnetic mo-
ments around interstitial defects in collision cascade simu-
lations. Unfortunately, the central-force character led to a
limited applicability of this potential in dislocation studies.
Aside from the classical potentials are recent Gaussian

approximation potentials [8] that attempt to reproduce the
Born-Oppenheimer potential energy surface for a large set
of atomic configurations. These models can deliver accu-
rate predictions (albeit at much higher computational cost
than the classical potentials) but provide only limited
physical insight into structure-bonding relationships and
completely lack magnetism.
In this Letter, we present a novel magnetic bond-order

potential (BOP) for iron, as the first interatomic potential
that is able to provide a correct description of both the
directional covalent bonds and the magnetic interactions in
iron. The magnetic BOP is based on the tight binding (TB)
approximation to the electronic structure and contains a
description of magnetic interactions within the Stoner
theory of itinerant magnetism [9]. We demonstrate that
the model is not only able to predict correctly the stability
of various magnetic phases in bulk iron but also the be-
havior of crystal defects such as dislocations with an
accuracy comparable to electronic-structure methods.
Even though BOP calculations are computationally more
demanding than those using common empirical potentials,
we show on the example of dislocation kinks that our
model is able to simulate complex configurations of up to
105 atoms on a single processor and to capture energy
differences of few tens of eV.
The theory of BOPs has been developed by Pettifor

and co-workers [10–12] and the methodology has been
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successfully applied in atomistic studies of extended de-
fects in nonmagnetic transition metals and their alloys (see,
e.g., Refs. [12–15]). Here we summarize only the crucial
points of the magnetic BOP formalism and refer the reader
to original papers and Ref. [16] for more details.

The BOP model is in its essence a tight binding scheme
that is recast to provide a real-space OðNÞ description of
interactions between the atoms [10–12]. The validity of
various TB approximations for modeling magnetic prop-
erties of Fe have been tested by several authors [17–21].
Since the cohesion in Fe is primarily governed by d-d
bonding, it is sufficient to include only d orbitals within
the spin-polarized TB treatment [18]. It was shown re-
cently that such model is also fully transferable to the
case of magnetic Fe-Cr alloys [22]. The distance depen-
dencies of the dd�, dd�, and dd� bond integrals in our
BOP model were derived by an atomic-orbital projection
scheme that enables us to obtain them directly from DFT
calculations in a rigorous and controlled way without any
need of fitting [16,21]. The crucial connection between the
real-space BOP formalism and the k-space quantum me-
chanics of electrons is carried through a continued fraction
expansion of the diagonal Green’s function matrix ele-
ments, which provides a link between self-returning bond-
ing paths in the lattice and approximated local densities of
states (LDOS’s) on the atoms. Similarly as in other tran-
sition metals, we carried out the bond-order expansion to
four recursion levels which gives a 9th moment represen-
tation of the LDOS’s. This guarantees that all important
features of the LDOS’s are correctly reproduced and as-
sures a reliable description of local bonding in bulk phases
as well as in less ordered environments. A comparison of
k-space TB and BOP densities of states for bcc and fcc
phases is shown in Fig. 1. The accurate evaluation of spin-
polarized LDOS’s is crucial for a correct determination of
the magnetic contributions within the Stoner model. The
local Stoner criterion, IniðEFÞ> 1, for onset of a stable

ferromagnetic state depends on the product of the Stoner
exchange integral I and the LDOS at the Fermi level
niðEFÞ. Provided that niðEFÞ is correctly reproduced, the
Stoner exchange integral is the only parameter that needs
to be supplied into the BOP to capture all magnetic effects.
Our value of I ¼ 0:80 eV was again based on DFT calcu-
lations and adjusted to obtain a correct magnetic behavior
within our d-only model. The right panel of Fig. 1 shows
the spin density of states for the FM bcc phase obtained
using the magnetic BOP, again agreeing well with the
k-space TB result. Figure 2 shows two examples demon-
strating the predictive capabilities of our model. We can
see that BOP is not only able to distinguish correctly
between various bulk magnetic phases of Fe, but it also
predicts rather subtle features, such as the structural insta-
bility of the NM bcc phase under tetragonal deformation
[18]. An extensive lists of validation tests of the potential
showing the importance of magnetic effects are given in
Ref. [16].
In the following we focus on the properties of

dislocations—defects that mediate the plastic deformation
at the atomic scale. Studies of dislocations in �-Fe have
recently attracted a lot of attention from the materials
modeling community, but the influence of magnetic effects
on dislocation behavior is still largely unknown.
Additionally, it was revealed [23] that the properties of
the 1=2h111i screw dislocation, which is known to control
the low temperature plastic behavior of all bcc metals, is
described poorly by all existing empirical potentials.
We investigated the core structures of both screw and

edge dislocations with the 1=2h111i and h100i Burgers
vectors in �-Fe using our magnetic BOP. The resulting
structures are shown in Fig. 3 and Ref. [16]. In addition to
the core structures our calculations reveal also the changes
of local magnetic moments within the cores. For the
1=2h111i screw dislocation these changes are negligible
and the core adopts the ‘‘nondegenerate’’ structure, virtu-
ally identical to that found in DFT studies [23]. The small
variations in magnetic moments of the core atoms are
understandable as the main structural changes are in
bond angles rather than in bond lengths. In contrast, a
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FIG. 1 (color online). Comparison of electronic densities of
states for nonmagnetic (NM) bcc and fcc (left) and ferromag-
netic (FM) bcc (right) Fe phases calculated using the k-space
d-TB and 9th moment BOP theory. Shaded regions mark occu-
pied states.
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FIG. 2 (color online). Relative stabilities of bcc and fcc Fe
bulk phases (left) and the Bain transformation path between the
two phases (right) calculated using BOP.
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much larger decrease of the magnetic moments by about
20% of the bulk value is visible in the region of highest
compressive stress of the 1=2h111i edge core. Even larger
changes occur in the cores of h100i dislocations [16].

The analysis of the core structures is only the initial step
in studies of dislocations. The ultimate goal is to under-
stand their glide behavior under the influence of external
stresses. The most interesting is the mobility of the
1=2h111i screw dislocation, whose nonplanar core reacts
sensitively to the local stresses and its changes lead to
strong variations of the Peierls stress and the operating
glide systems, commonly termed as non-Schmid plastic
behavior. Recent simulation studies of the 1=2h111i dis-
location glide [23,24] were performed mostly with the
potential of Ackland and Mendelev (AM) [2,3] as this
has been so far the only empirical potential that yields
the nondegenerate core structure. This potential, however,
also predicts an occurrence of a metastable dislocation
configuration at a halfway position between two minima
in the Peierls potential on the f110g glide plane and an
average dislocation motion on a f211g plane even for pure
shear stress applied on a f110g plane. Both of these pre-
dictions disagree with available DFT calculations [23] and
experimental observations [25], which identified the screw
dislocation to glide at low temperatures exclusively on
f110g glide planes for arbitrary stress conditions.

We carried out nudged-elastic-band calculations [26] of
the energy barrier for the 1=2h111i screw dislocation be-
tween its two neighboring equilibrium configurations on
the f110g plane, which can be considered as an estimate
for the Peierls barrier at zero applied stress. A comparison
of the results obtained using BOP and the AM potential
together with available estimations of the barrier height
from DFT calculations and experiments is displayed in
Fig. 4. In contrast to the AM potential, BOP yields a barrier
with a single maximum located in the halfway position
that agrees both qualitatively and quantitatively with avail-
able DFT calculations [23] as well as the experimental
estimate [25]. The double-hump shape of the energy
barrier with a pronounced local minimum in the middle,
which corresponds to the metastable dislocation configu-
ration, is a likely unphysical feature originating from de-
ficiencies of the AM potential.

On the example of dislocation kinks we demonstrate that
BOP is not only robust and reliable but also computation-
ally efficient to carry out large-scale simulations. We note
here that calculations of kink energies are a very subtle
subject. They require large computational blocks and are
prone to be influenced by boundary conditions and elastic
effects. This can be demonstrated on the large variation of
kink energies obtained with the same interatomic potential
[24,27,28]. It should be stressed that the formation energy
of a single kink, which is of the order of few tens of eV,
need to be obtained as a difference of total energies of large
atomic ensembles that typically exceed 105 eV. We there-
fore believe that calculated kink energies should be taken
cautiously and considered more for their relative rather
than absolute values.
The formation energies of individual single kinks on the

1=2h111i screw dislocation were computed for fully 3D
simulation blocks with varying dimensions in directions
perpendicular as well as parallel to the dislocation line. Our
largest block with a kinked dislocation of a total length of
26 Burgers vectors contained more than 70 000 atoms. The
two kinks of a kink pair on the 1=2h111i screw dislocation
are not degenerate but have distinct atomic structures.
Because of local tensile and compressive regions in the
kink center they are sometimes termed as ‘‘vacancy’’ and
‘‘interstitial’’ kinks even though the number of atoms
remains constant [24,28]. Our BOP calculations predict
the formation energies of the vacancy and interstitial kinks
to be 0.62 eV and 0.53 eV, respectively. Even though the
results for the largest block sizes seem to be converged
with respect to the system size these energies should be
taken as upper limits. The lower formation energy of the
interstitial kink is related to magnetic effects. According to
the BOP results two atoms at the center of this kink flip
their magnetic moments to an antiferromagnetic state
while in the vacancy kink we observe only marginal
changes of the local magnetic moments. Additionally,
our simulations show that the kink region is rather com-
pact, which is in contrast to simulations carried out with the
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FIG. 3 (color). Core structures of the 1=2½111� screw (a) and
edge (b) dislocations. The coloring of the atoms shows the relative
decrease of atomic magnetic moments from their bulk value.
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FIG. 4 (color online). An energy barrier associated with the
displacement of the 1=2½111� screw dislocation by one period
along the ½�12�1� direction on the ð�101Þ plane. A comparison of
results computed using BOP, DFT [23], and AM potential with
an experimental estimate [25].
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AM potential [28]. This result is again most likely related
to the central-force character of the AM potential that
favors a conservation of atomic volumes rather than of
bond angles. Figure 5 displays the atomic core structures
of both kinks computed using BOP. The bars correspond-
ing to the increase (vacancy kink) and decrease (interstitial
kink) of the nearest-neighbor bond lengths along the h111i
direction show that the two kinks are distinct. Especially in
the interstitial kink, the central bond is reduced due to the
magnetic effects by more than 10% while its neighboring
bonds have lengths similar to those in the ideal straight
dislocation. The prediction of a distinct character of the
two kinks is unique to our potential, and the change of the
local magnetic state asks for an experimental validation.

In summary, the magnetic bond-order potential for Fe is
the first interatomic potential, which is able to describe
correctly two crucial ingredients of cohesion and structure
in iron—the unsaturated directional covalent bonds and the
magnetic interactions. This potential reproduces correctly
the relative stability of different magnetic bulk phases as
well as the behavior of lattice defects such as dislocations
that induce changes in bond lengths, bond angles, and local
magnetic moments. At the same time the BOP model
remains efficient enough to be applied in atomistic studies
of complex defect configurations. Furthermore, its general-
ization to include additional elements such as carbon or
hydrogen is a relatively straightforward task.
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