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Abstract. Present day tokamaks are capable of generating toroidal flows approaching the ion sound
speed. Such toroidal rotation is known to have a stabilising effect on resistive wall modes[1]. Here
the effects of plasma rotation and diamagnetic drifts on the n = 1 internal kink mode and high-

n ballooning modes are presented with specific comparison to experimental data from MAST.
Results from MAST concerning the effect of toroidal rotation driven by neutral beam injection
(NBI) on sawteeth are presented. The sawtooth period is shown to increase as the co-NBI power,
and thus the toroidal plasma rotation, is increased. Conversely, as the counter-NBI is increased,

the sawtooth period decreases to some minimum that is shorter than in Ohmically heated plasmas,
before lengthening at high toroidal flows. Magnetohydrodynamic stability analyses of the n = 1
internal kink mode with respect to toroidal rotation at finite ion diamagnetic frequency have been

performed using a new code, called MISHKA-F[2]. The results indicate that the marginally stable
radial location of the q = 1 surface reaches a minimum at approximately the same counter-toroidal
rotation as that which minimises the sawtooth period experimentally[3]. It has also been shown

that sheared toroidal rotation is able to stabilise the peeling-ballooning modes which are thought to
be the likely trigger of Edge Localised Modes (ELMs). A model for ELM triggering in MAST is
proposed, such that, initially the rotation shear keeps the edge stabilised until the pressure gradient

sufficiently exceeds the stability boundary for static plasmas. When the mode becomes unstable,
it grows, ties the flux surfaces together and consequently flattens the rotation profile. This further
destabilises the plasma edge, leading to the ELM crash[4].
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1. INTRODUCTION
In order to obtain the maximum fusion yield it is imperative to control the magnetohy-

drodynamic (MHD) instabilities which can limit plasma performance in a tokamak. A

careful assessment of how to control or alleviate such MHD activity is best provided by

numerical computations which assess the stability of the plasma. In modern-day toka-

maks, the toroidal rotation of the plasma induced by neutral beam injection (NBI) heat-

ing can approach ion sound speed. The toroidal rotation in the Mega Ampère Spherical

Tokamak (MAST) can be significantly higher than in conventional tokamaks for two rea-

sons: Firstly the tight aspect ratio geometry means that MAST plasmas have a smaller

moment of inertia than comparable plasmas in conventional tokamaks; secondly, MAST

has a high beam power available per plasma volume. This strong plasma rotation intro-

duces new effects such as centrifugal and Coriolis forces and redistribution of pressure
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and density. Since this fast plasma rotation can influence the stability of ideal and resis-

tive magnetohydrodynamic instabilities, it is necessary to include the effects of rotation

in linear stability analyses.

The effects of plasma rotation on different MHD instabilities has been discussed

in numerous analytical studies. Resistive wall modes can be stabilised by sufficiently

fast toroidal rotation [5]; ballooning modes are stabilised by sheared toroidal flows

[6, 7] and the internal kink mode also exhibits stabilisation with toroidal rotation [8,

9, 10]. There is also substantial experimental work which suggests stabilisation of

instabilities due to toroidal rotation. The energy losses due to edge localised modes

(ELMs) have been shown to reduce due to NBI directed counter to the plasma current

in JT-60U[11] and DIII-D [12]. It has also been shown that sawtooth oscillations are

stabilised with increasing toroidal rotation [13] and that the direction of momentum

input has a profound impact on the stabilisation of the sawteeth in JET [14], TEXTOR

[15] and MAST [3]. In NSTX it has been proposed that sawteeth periods are extended

by 2-3 times due to the very fast toroidal rotation of the plasma [16].

In Section 2 details of the MISHKA-F stability analysis code and benchmarks against

analytic theory are presented. Results from MAST concerning the effect of NBI heating

on the sawtooth period are described in Section 3. In Section 4 the equilibria employed

in MISHKA-F modelling are detailed and the stability analyses results are presented.

Here we discuss the stabilising effect of toroidal rotation on the ideal n = 1 internal

kink mode and the relationship to the experimentally observed asymmetry in sawtooth

period. In Section 5 we discuss the stabilising effect of toroidal rotation shear on high-

n peeling-ballooning modes and present an ELM triggering model for the spherical

tokamak. Finally, conclusions are made in Section 6

2. MISHKA-F STABILITY ANALYSIS CODE

A new code, MISHKA-F (Flow), has been developed as an extension of the ideal

MHD code MISHKA-1 [17] in order to investigate the linear MHD stability of ideal

and resistive eigenmodes with respect to the effects of toroidal rotation in tokamaks in

general toroidal geometry with the ion diamagnetic drift effect taken into account. The

code solves a set of two-fluid equations in order to compute the spectrum of eigenmodes

and eigenfrequencies for general tokamak configurations.

We take the starting momentum equations in the form

ρ0
dv
dt

+∇ ·π i
Λ = −∇p̃+

1

μ0
H (1)

Here p̃ is the perturbed plasma pressure, the function H is introduced by (see Reference

[17])

H = [∇×B0]× B̃−B0 × [∇× B̃] (2)

where B̃ is the perturbed magnetic field, ρ0 = ρ0(s) is the equilibrium plasma mass

density, d/dt = ∂/∂ t + v0i · ∇, v0i is the equilibrium ion velocity and π i
Λ is the ion
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gyroviscosity tensor. We take the perpendicular Ohm’s Law in the form

Ẽ⊥ +[v0 × B̃]⊥ +[ṽ×B0]⊥− T0i∇⊥ñ
en0

+
ñ

en2
0

∇p0i = 0 (3)

where e is the ion charge. Similarly, the parallel Ohm’s law is represented in the form

Ẽ‖ +[v0 × B̃]‖ +
T0e∇‖ñ

en0
= 0 (4)

Here ⊥ and ‖ represent the directions perpendicular and parallel to the equilibrium

magnetic field respectively. The perturbed electric field is related to the vector potential

A by Ẽ = −∂A/∂ t. Therefore, for ∂/∂ t → λ we have

Ẽ = −λA (5)

The set of equations is completed with the pressure equation in the form

λ p̃ = −∇ · (p0ṽ+ p̃v0)−Γ∇ · (p0ṽ+ p̃v0) (6)

As a benchmark case for the MISHKA-F code, the stabilisation of the n = 1 internal

kink mode with respect to toroidal velocity is analysed. Analytically, the growth rate

of the internal kink mode as a function of the toroidal velocity can be found by using

Equation (3.17) of Reference [18]:

Ω =
ω∗i

2
± 1

2
(1−κ2)1/2[ω2

∗i −4(1−κ2)Λ2ω2
A]1/2 (7)

where Ω is the Doppler shifted mode frequency, Ω = ω − vE(r0)ky, ω is the mode

frequency, ω∗i is the ion diamagnetic frequency, ωA = svA/qR, s is the magnetic shear,

s = r/qdq/dr evaluated at the q = 1 surface, vA = B/
√

n0Mi, B is the equilibrium

magnetic field, n0 is the plasma density, Mi is the mass of the ions, ky = m/r, m is

the poloidal mode number and Λ is proportional to the static growth rate and is defined

in Reference [18]. The dimensionless parameter κ is the normalised velocity shear,

κ =
qR
svA

d

dr

(
rvφ

Rq

)
=

RΩφ

vA

(
1

s
−1

)
+

Rq
vA

dΩφ

dq
(8)

where vφ is the toroidal rotation prescribed as a profile input to MISHKA-F and Ωφ is

the angular velocity. In this test we ignore the diamagnetic effects, so ω∗i = 0. As such,

the flow-shear stabilisation of the n = 1 internal kink mode is described by

Ω = ±i(1−κ2) (9)

MISHKA-F was tested by varying the toroidal velocity with both a constant rotation

profile and a linearly sheared rotation profile.
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FIGURE 1. The growth rate of the n = 1

internal kink mode as a function of toroidal

velocity with flat and linearly sheared rotation

profiles. Also shown for comparison is the

predicted stabilisation from reference [18].

FIGURE 2. The growth rate of the bal-

looning modes at an ITB as a func-

tion of dimensionless parameter κ quan-

tifying the sheared toroidal rotation,

κ = qR/SvA×d/dr(rvT/Rq).

Figure 1 shows the growth rate, γ = Re(λ ) of the internal kink mode normalised to unity

as a function of the toroidal velocity normalised to the Alfvén speed, which is in good

accordance with Equation (9). The growth rate of the mode decreases as the toroidal

velocity increases, whether the flow is sheared or constant. As the flow reaches κ = 1 the

mode is stabilised. The value of flow required to stabilise the internal kink mode is within

15% of the analytical predictions based on considering the inertial layer only. The n = 1

internal kink mode is stabilised by flows of the order vφ /cs < 0.15, (cs = (Te/mi)
1/2) for

which it has been shown [19] that a static equilibrium is an appropriate approximation.

The influence of toroidal flow shear on finite-n ballooning modes is analysed and

compared to analytic theory as another benchmark test of MISHKA-F. Ideal MHD

predicts that ballooning modes will be unstable in regions of high pressure gradients,

for instance, as found at transport barriers established in high confinement mode (H-

mode). Ballooning mode stability at an internal transport barrier (ITB) with respect to

the sheared toroidal flow was predicted in Reference [20] where it is suggested that the

effect of flow shear will become more significant at low magnetic shear.

The equilibrium used for this benchmark has a steep localised pressure gradient and

is unstable to ballooning modes but stable to Mercier modes. Figure 2 shows the growth

rate of the ballooning modes as a function of the parameter κ representing the sheared

toroidal flow. In accordance with Equation (9) the growth rate reaches zero when κ ≈ 1.

Here the magnetic shear and the flow shear are evaluated at the radial position at which

the ballooning mode is most unstable. As the sheared toroidal rotation is increased, the

ballooning mode eigenfunction narrows in radial extent, consistent with the predictions

made in Reference [20]. This narrowing of the mode structure continues to the point

when κ is sufficiently high to stabilise the mode, at which point the eigenfunction

disappears. In this case, the low magnetic shear means that κ ∼ 1 can be reached by low

toroidal flows, vφ/cs < 0.1, which satisfies the criterion for using a static equilibrium.
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FIGURE 3. Soft X-ray emission for two ap-

proximately identical MAST discharges with

similar beam power injected in opposite di-

rections with respect to Ip.

FIGURE 4. Sawtooth period for MAST dis-

charges with respect to the toroidal rotation

speed at the q = 1 surface.

3. SAWTEETH EXPERIMENTAL RESULTS FROM MAST

Sawtooth behaviour is compared in MAST plasmas with approximately matching flat-

top currents, magnetic fields and plasma shapes. The experimental results presented

here expand the range of rotation speeds over which sawtooth behaviour has been

considered since flows in MAST are significantly higher than in the previous JET

results [14]. Figure 3 shows the soft X-ray traces from two shots in MAST with similar

injected beam power but oriented in opposite directions with respect to the plasma

current. At the time of the first sawtooth crash, in shot 13575, Ip = 719kA, BT = 0.36T

and n̄e = 2.24 × 1020m−3 whilst in discharge 13369, Ip = 723kA, BT = 0.4T and

n̄e = 2.26× 1020m−3. The NBI directed in the co-current direction (discharge 13369)

results in a quiescent time which is over twice as long as that when the NB is injected in

the counter-current direction.

Figure 4 shows the sawtooth period with respect to the rotation speed at the q = 1

surface for plasmas which have the following parameter ranges: Ip ∈ [680,740]kA,

BT ∈ [0.35,0.45]T and ne ∈ [1.6,2.2]× 1020m−3. Here we use the convention that

negative rotation velocity is in the counter-Ip direction whereas positive rotation is in

the co-Ip direction. The plasma toroidal velocity is found by using charge exchange

measurements of carbon ions. The sawtooth inversion radius is found from the soft X-

ray signals and this is used to estimate the radial location of the q = 1 resonant surface.

As the co-NBI is increased in MAST, the sawtooth period also increases. Conversely, as

the counter-NBI is increased, the quiescent time decreases until it reaches a minimum

at vφ ∼ 60km/s, and then subsequently lengthens, analogous to the co-NBI regime. The

results obtained are consistent with those from JET [14].

The rotation profile is significantly flatter and broader in counter-NBI discharges,

where large first-orbit losses are caused by the fact that the injected ions move radially

outward from the point of ionisation [21]. A typical counter-injected trapped ion is lost
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FIGURE 5. Sawtooth precursor frequency as a function of injected beam power. The convention

here is that negative precursor frequency corresponds to the mode rotating in the counter-Ip
direction and positive frequency means that mode rotates in the co-Ip direction. The frequency

changes direction when the plasma rotation and ion diamagnetic rotation are balanced by the

momentum input from the injected neutral beams.

on the outboard leg of its banana orbit, when it is moving in the co-current direction.

This means that counter-NBI can result in larger rotation speeds [21], since the angular

momentum transferred to the plasma through the J × B torque is larger than during

co-injection. Koslowski proposed that the sawtooth period has a minimum when the

MHD rotation in the tokamak frame is stopped [15]. This occurs when the rotation

resulting from the beam momentum input balances the sum of the toroidal components

of the E×B rotation and the ion diamagnetic drift. The sawtooth crash is preceded by

a growing oscillation known as the sawtooth precursor. In Ohmically heated discharges

in MAST, the precursor mode rotates in the same direction as the plasma current. As

such, momentum input in the counter-current direction is required to balance the MHD

rotation, at which point the sawtooth period is minimised. Figure 5 shows the frequency

of the sawtooth precursor with respect to the injected neutral beam power. Here we use

the convention that negative precursor frequency indicates that the mode is rotating in

the opposite direction to the plasma current. This means that the precursor mode changes

direction of rotation when PNBI ≥ 0.6MW is injected in the counter-current direction. It

is at the point when the frequency changes sign that the MHD rotation is balanced by

the rotation arising from the momentum input of the beams. Whilst the inhomogeneous

nature of the experimental data with respect to beam power does not allow an exact

determination of the transition, it does show that it occurs when the beam is oriented in

the counter-current direction, consistent with Koslowski’s hypothesis.

4. MODELLING THE STABILISATION OF THE n = 1 INTERNAL
KINK MODE BY TOROIDAL ROTATION

The stability of the ideal n = 1 internal kink mode with respect to the toroidal rotation

at finite ion diamagnetic frequency has been analysed using the MISHKA-F code.
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FIGURE 6. The growth rate of the ideal n = 1

internal kink mode in discharge 13541 as a

function of the toroidal rotation speed. The

parameter τ represents the ion diamagnetic

frequency.

FIGURE 7. The growth rate of the ideal n = 1

internal kink mode in discharge 13035 with

respect to the core toroidal rotation using dif-

ferent experimental rotation profiles (circles =

co-NBI, squares = counter-NBI).

In order to quantify the importance of the rotation profile, we employ a simple

model equilibrium with a pressure profile, dp/dψ = p′ = p′(0)(1− ψ̂) and a current

profile, 〈 j〉 = j(0)(1 − ψ̂) where ψ̂ is normalised poloidal flux. The plasma has a

circular boundary, an aspect ratio of 10, safety factor on-axis, q0 = 0.8 and poloidal

beta, βp = 0.3. The equilibrium is static and unstable to the ideal n = 1 internal kink

mode. The stability of this equilibrium to the internal kink mode is tested with respect

to a constant toroidal rotation profile and a linearly sheared (with respect to ψ) profile

which has the same magnitude of rotation at the q = 1 surface. The results show that the

stability boundary is identical for the two different rotation profiles and clearly indicates

that the toroidal rotation at the q = 1 surface governs the stability of the n = 1 internal

kink mode with respect to toroidal flows.

The importance of the radial location of q = 1 means that it is imperative to recon-

struct the equilibrium with an accurate q-profile. In MAST the standard equilibrium

reconstruction is performed using EFIT [22] with just external magnetic data. The equi-

librium produced by EFIT can subsequently be improved by using the pressure profile

derived from the Thompson Scattering diagnostic, which gives profiles for the electron

density and temperature. Using both the inboard and outboard Thompson Scattering data

allows isothermal surfaces to be constructed along the length of the major radius and so

indicates the relative radial location of the flux surfaces. Finally, the soft X-ray diag-

nostic can be used to find the inversion radius of the sawtooth oscillations, and hence

ascertain the location of the q = 1 surface. The drawback with this process is that the

q-profile is not measured directly in MAST and so the soft X-ray calculation of the in-

version radius to set q = 1 is the only information about the q-profile in the core. The

sensitivity of n = 1 stability with respect to changes in the q-profile has been investigated

theoretically by changing the current profile in the core whilst keeping the q = 1 surface

in the same position. The stability boundary of these equilibria with respect to sheared
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flow was only nominally affected by changes to the q-profile in the core, and hence the

location of the q = 1 surface is the key factor in accurate equilibrium reconstruction.

When q0 is raised but the shape of the monotonic q-profile is unaltered, hence reducing

rq=1, the stability boundary is changed.

In order to analyse the experimental results illustrated in Section 3, MISHKA-F has

been used to test the stability of two MAST equilibria with respect to toroidal flows of

the order of magnitude observed experimentally. The discharges concerned are 13035 (a

discharge with co-injected neutral beam power of 1.82MW, Ip = 730kA, BT = 0.408T,

n̄e = 1.6×1020m−3 and maximum rotation speed, vφ ≈ 230km/s) and 13541 (a shot with

counter-NBI of 1.92MW, Ip = 730kA, BT = 0.407T, n̄e = 1.9× 1020m−3 and a peak

toroidal rotation speed, vφ ≈ 170km/s). The pressure and current profiles together with

the plasma shape from EFIT are supplied as input for the HELENA [23] code, which

generates the equilibria used by MISHKA-F. HELENA solves the static Grad-Shafranov

equation and so the effect of toroidal rotation is not included in the equilibrium. This

assumption is valid for subsonic toroidal rotation, when Mt ≤ 0.2, as shown by the

CASTOR-FLOW code which can perform stability analyses with stationary equilibria

including toroidal flows [19]. The experimental rotation profiles used in the stability

analyses are represented by quartic polynomials as:

v13035
φ = v13035

0 [0.6406+1.6425s+0.564s2−9.5009s3 +6.6498s4] (10)

v13541
φ = v13541

0 [0.7392−0.3397s+5.6457s2−9.9688s3 +4.071s4] (11)

The growth rate of the kink mode decreases as the toroidal rotation is increased in

the co-current direction. However, when there is a finite ion diamagnetic frequency, the

n = 1 internal kink mode is initially destabilised by toroidal rotation in the counter-ω∗i
direction, before being completely stabilised at high toroidal flows. This is consistent

with the results found experimentally in MAST. Figure 6 shows the growth rate of the

n = 1 internal kink mode in discharge 13541 with respect to the rotation velocity at

the magnetic axis. The toroidal rotation has a profile given by Equation 11. As the ion

diamagnetic frequency is increased, the toroidal rotation velocity at which the n = 1

internal kink mode is most unstable increases in the counter-ω∗i direction.

Using experimental values for the ion diamagnetic frequency and the rotation profile,

the core toroidal rotation required to stabilise the n = 1 kink mode is nearly twice as

high in the counter-ω∗i direction as in the co-ω∗i direction. Figure 7 shows the growth

rate of the mode in discharge 13035 with respect to the core toroidal rotation velocity for

the rotation profiles as given in Equations 10 and 11. In this instance the co-ω∗i rotation

profile exhibits stronger stabilisation of the n = 1 kink mode because the q = 1 surface

is localised to the plasma core at s ≈ 0.3, where the rotation is larger in Equation 10 than

Equation 11. The filled symbols in Figure 7 represent a “real” rotation profile (that is to

say, using the profile of 13541 in the counter-Ip direction and that of 13035 in the co-Ip
direction).

The sawtooth period is an inherently non-linear property, so in order to use linear

stability analysis to address this we use the experimental observation that the q = 1

surface increases radially as a function of time[24] between sawtooth crashes, rq=1 ∼
τST . As q0 is increased towards 1, the position of the q = 1 surface moves radially
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inwards, since the q-profile is monotonically increasing. The marginally stable q = 1

position with respect to the toroidal rotation speed at the q = 1 surface is plotted in

Figure 8. The scans represented in this figure are for the n = 1 internal kink mode in

co-NBI discharge 13035 using the experimental rotation profile and ion diamagnetic

frequency. The marginal q = 1 surface is nearest to the centre at approximately the

same counter-vφ as required to minimise the sawtooth period. Using the assumption that

rq=1 ∼ τST this suggests good accordance between the MISHKA-F stability analyses

and the experimental data from MAST. We also assume that the kinetic stabilisation due

to the fast ions injected by the neutral beam does not vary with rq=1 and is dominated

here by the fluid effects.

Both the MAST experimental results presented in Section 3 and the results from

modelling with MISHKA-F show good agreement with References [8, 9]. Waelbroeck

[8] proposed that increasing vφ would result in strong gyroscopic stabilisation of the

ideal n = 1 internal kink mode. Wahlberg and Bondeson [9] also showed that the

centrifugal forces resulting from the toroidal rotation would lead to the stabilisation of

the internal kink mode for rotational frequencies of the order Ω/ωA ∼ ε , where ε is the

inverse aspect ratio and ωA = svA/qR is the Alfvén frequency. MISHKA-F modelling

shows that rotation below half of the ion sound speed (which is 680 km/s in discharge

13541) can stabilise the n = 1 kink mode, just as theory predicted. However, whilst the

centrifugal force established by the toroidal rotation explains why the n = 1 kink mode

is stabilised at high toroidal flows, it does not explain the asymmetry between co- and

counter-NBI.

Analytically, the growth rate of the internal kink mode as a function of the toroidal

velocity can be found by using Equation 7. In these studies, the κ terms will be small

since the toroidal velocity shear is much smaller than the Alfvén frequency and the

magnetic shear is not very low. In the limit vφ 
 vA and s ∼ 1, Equation 7 becomes

Ω ≡ ω −Ωφ � ω∗i (12)

This means that the precursor mode frequency will change direction when Ωφ � −ω∗i,

which is to say that the toroidal rotation frequency of the plasma induced by the NBI

balances the ion diamagnetic frequency. This is consistent with experiment as the dia-

magnetic drift has a toroidal component, which adds to the toroidal flow when the beam

is injected co-current and so stabilises the internal kink mode more readily. When the

beam is injected in the counter-current direction, the flow due to the beam first has to

overcome the toroidal component of the diamagnetic drift before it can stabilise the

kink mode. In fact, when the beam induced flow is low it simply reduces the stabilis-

ing diamagnetic flows, and hence drives the kink instability. The flow-dependent term

in Equation 7 has no dependence upon the direction of the flow. The asymmetry in the

fluid picture arises from the direction of the ion diamagnetic drift.

Such fluid effects are applicable in MAST due to the high toroidal rotation achievable.

However, the experimental results from JET [14] cannot be explained by fluid effects

since the flows are an order of magnitude smaller than in MAST. Graves et al [10]

presented a kinetic treatment of the stabilising effects of neutral beam injected ions on

sawteeth.

47

Downloaded 24 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



-200 -100 0 100
Toroidal Rotation Velocity at q=1 Surface (km/s)

0

0.1

0.2

0.3

0.4

0.5
N

or
m

al
is

ed
 R

ad
ia

l L
oc

at
io

n 
of

 q
=1

0

0.01

0.02

0.03

0.04

Sa
w

to
ot

h 
Pe

ri
od

 (s
)

0 20 40 60
0

0.01

0.02

0.03

0.04

0.05

V
ped.top

 [km/s]

γ/
ω

A

n= 3
n= 6
n=10
n=15
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marginally stable q = 1 surface in discharge
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the resonant surface (squares). Also shown

for comparison is the sawtooth period of

shots in MAST (open circles).

FIGURE 9. The growth rate of the

n = 3,6,10,15 modes normalised to Alfvén

speed with respect to the toroidal velocity at

the top of the pedestal. The equilibrium is

from MAST shot 8209.

5. MODELLING THE EFFECT OF TOROIDAL ROTATION ON
EDGE PEELING-BALLOONING MODES

The beam-induced toroidal rotation in an H-mode MAST plasma has a very steep radial

gradient near the plasma edge. This sheared rotation can have a stabilising effect on the

peeling-ballooning modes thought to act as a trigger for ELMs. We study this effect

by reconstructing a MAST equilibrium (discharge 8209) which is ideally unstable to

peeling-ballooning modes and investigating its stability with respect to sheared edge

rotation using the ELITE code [25]. As before, we employ a static equilibrium which

is only valid for vφ 
 cs. The sheared region has a width of 2% of the poloidal flux

and is centered at the maximum pressure gradient (ψ̂ = 0.991). The width corresponds

to approximately 1 cm in minor radius which represents the best estimate for the

experimental velocity pedestal width in MAST H-mode. The experimental toroidal

velocity is about 25 km/s at the top of the pedestal (∼ 0.15cs) and falls to zero at the

separatrix [26].

The growth rates of the peeling-ballooning modes with respect to the toroidal rotation

at the top of the edge pedestal are shown in Figure 9. Here we assume a fixed rotation

profile and only vary the magnitude of rotation at the top of the pedestal. The modes

with high-n are stabilised by the rotation more easily than those with low-n, as expected

[27]. The velocity at which significant stabilisation of the modes occurs is in the range

of the experimental value of the pedestal top toroidal velocity.

During an ELM, the velocity profile flattens [26]. The disappearing velocity shear

during an ELM and the stabilising effect of the velocity shear on the peeling-ballooning

modes suggests an ELM-model that is depicted in Figure 10. Prior to an ELM (1), the

edge plasma is unstable to low- to intermediate-n modes in the absence of rotation shear.
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FIGURE 10. A schematic diagram of the edge velocity profile, plasma pressure, stability limits

and edge flux surfaces during the evolution of an ELM.

However, a strong rotation shear is able to stabilise these modes until the pressure

gradient becomes sufficiently steep to exceed the stability limit and drive the peeling-

ballooning modes. Then an unstable mode starts to grow (2). As it grows, it ties together

adjacent flux surfaces and subsequently flattens the velocity profile (3). As the stabilising

effect of the flow shear is reduced, the mode grows even faster and leads to an ELM that

then relaxes the pressure profile below the stability limit(4). In addition to the transport

due to the MHD instability, the loss of flow shear could lead to a loss of the edge

transport barrier, further increasing the transport in the edge region. After the ELM crash,

the pressure profile has relaxed below the stability limit and the cycle starts again.

This ELM-triggering model is only applicable in spherical tokamaks with high edge

rotation velocities. The stabilising effect of the rotation shear becomes weaker as the

aspect ratio increases. The rotation shear has only a nominal effect on the stability of

peeling-ballooning modes in conventional tokamaks, and so the standard ELM model

[28] applies in large aspect-ratio machines.

6. CONCLUSIONS

MHD stability analyses including toroidal rotation effects have accurately modelled

sawtooth behaviour on MAST and led to the prediction of an ELM trigger model for

spherical tokamaks. The MAST geometry and beam power per plasma volume means

that toroidal flows can approach the ion sound speed and lead to rotation effects which

are not applicable in conventional tokamaks.

Results from MAST show that the sawtooth period increases when the toroidal flow

increases in the co-current direction. Conversely when the flow increases in the counter-

current direction, the sawtooth period reaches a minimum dependent upon the ion

diamagnetic drift. Modelling with MISHKA-F shows excellent agreement with the

experimental results obtained from MAST. It has been shown that the radial location of

the q = 1 surface for marginal stability increases with co-current rotation, but decreases

to some minimum in the counter-current regime. The toroidal velocity at which the q = 1

radius for marginal stability is minimised agrees well with that at which the experimental

sawtooth period is at a minimum. It is also found that the ideal n = 1 internal kink mode
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stabilisation by flow is determined by the magnitude of the flow at the q = 1 rational

surface, rather than the flow shear.

The sheared toroidal rotation at the plasma edge has been shown to have a stabilising

effect on the peeling-ballooning modes thought to be the trigger for ELMs. The stabil-

ising effect is stronger for higher-n modes. The following model for ELM triggering in

spherical tokamaks has been proposed: Initially the peeling-ballooning modes are sta-

bilised by the flow shear. As the pressure gradient increases, the destabilising force be-

comes larger than the flow shear stabilisation and drives the modes. As the mode grows,

it ties adjacent flux surfaces together and flattens the rotation profile, exacerbating the

instability and leading to the ELM crash.
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