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abstract. The effects of the fusion bornα particles on the stability of the RWM are numerically
investigated for one of the advanced steady state Scenariosin ITER. Theα contribution is found to be
generally stabilising, compared to the thermal particle kinetic contribution alone. The same conclusion
is achieved following both a perturbative and self-consistent approach. The latter generally predicts less
stabilisation, than the former. At high enough plasma pressure, the self-consistent approach predicts
two unstable branches for the ITER plasma studied here. The stabilising effect fromα particles is found
to be generally weak, in particular in terms of the modification of the stability boundary. The effect
is more pronounced only at fast enough plasma rotation frequency, roughly matching theα precession
frequency, which is in the order of a few percent of the toroidal Alfvén frequency for ITER. A simple,
energy principle based, fishbone-like dispersion relationis proposed to gain a qualitative understanding
of the numerical results.

1 Introduction

The steady state, 9MA scenario [1] in ITER aims at advanced plasma performance with high
pressure and high bootstrap current fraction. The target plasma is designed to slightly exceed
the Troyn no-wall beta limit [2]. The most significant concern for this plasma regime, from
the macroscopic MHD point of view, is the stability (and possibly control) of the resistive wall
mode (RWM) [3].

Because of its significance for ITER and power plants, the RWMhas been extensively studied
during recent years, both theoretically and experimentally. These efforts are well documented
in a recent review article by Chu and Okabayashi [4]. Work hasbeen carried out specifically
on RWM modelling for ITER. In Ref. [5], rotational stabilisation and active control of the
mode are investigated for the ITER advanced scenario, in theframework of the ideal MHD
theory and a simplified drift kinetic damping model based on the mode resonance with the
thermal particle bounce motion. This model predicts a critical toroidal plasma rotation speed
of about 1.5-2% of the Alfvén speed in the plasma centre. Thecritical rotation speed is the
minimal speed required for full suppression of the mode. A later model, based on the kinetic
effects from the mode resonance with the thermal particle precession drifts, predicts that the
RWM in ITER can be partially or fully stabilised, provided the plasma rotation frequency is
below the ion diamagnetic frequency [6]. The calculations presented in [6] are for an ITER-
like equilibrium but with an up-down symmetrised plasma boundary shape. A perturbative
approach is pursued in this MHD-kinetic hybrid modelling, where the marginally stable, ideal
kink mode eigenfunction is used to compute the drift kineticenergy. The ITER predictions,
based on the self-consistent inclusion of the kinetic termsinto the MHD equations, are made in
recent studies [7, 8], but considering the thermal particlekinetic contributions only. Reference
[7] mainly studies the effect of mode resonance with particle precession drifts, for realistic
equilibria from the ITER design. Both perturbative and self-consistent approaches have been
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used. Whilst the former predicts a full kinetic stabilisation of the RWM in a large region of the
operational space, similar to [6], the latter approach predicts a smaller stabilisation domain,
occurring at slow enough plasma flow. Reference [8] exploitsa full gyrokinetic formulation to
study the kinetic effects on the RWM for an ITER-like plasma,with a shallow magnetic shear
reversal and an up-down symmetrised plasma shape. The thermal particle bounce resonances
are included, which yields a rotation threshold of about 0.3% of the Alfvén speed.

This work focuses on the precessional resonance effects of trappedα particles on RWM sta-
bility in ITER. We compare the modelling results with and without theα contribution. As in
[7], we follow both perturbative and self-consistent approaches, formulated in [9] for thermal
particles, and in [10] for energetic particles, respectively. These formulations are implemented
in the MARS-K code [9]. The same set of ITER equilibria as in [7] is used.

The following Section describes the model that we use for theα particles. Section 3 shows the
MARS-K results of the RWM stability analysis, following theperturbative approach. Section
4 shows the MARS-K results based on the self-consistent kinetic formulation. Conclusions
are drawn in Section 5.

2 Equilibrium properties of α particles

For the fusion bornα particles, we assume an isotropic, slowing-down equilibrium distribution
function [11]

f 0 =

{
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ε3/2
k +ε3/2
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0 εk > εα
(1)
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)(

Mi
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)1/3

Te. (2)

The quantitiesMα,Mi,Me denote the mass ofα, thermal ions and electrons, respectively. The
(thermal) electron equilibrium temperature is denoted asTe.

The constantC from Eq. (1) is determined by giving theα density profileNα. We use a profile
predicted by the ASTRA simulation for the ITER 9MA steady state scenario. Figure 1 shows
the radial profile of the ASTRA simulatedα particle density and pressure profiles, normalised
by the corresponding electron density and total thermal pressure. Note that theα particles
contribute a fraction of about 20% of the thermal pressure inthe plasma centre to the total
equilibrium pressure, with only about 1% of the density fraction.

We point out two different assumptions made for the ITER plasma, between this study and
the previous work [7]. First, this study assumes that both thermal (Pth) andα (Pα) particles
contribute to the total equilibrium pressurePeq= Pth+Pα, whilst in [7], we have assumed that
the total equilibrium pressure comes solely from the thermal ions and electronsPeq = Pth (i.e.
no α particles are present in the plasma). In this work, we assumePeq = Pth +Pα even when
thekinetic contribution fromα particles is excluded (i.e. the fluid potential energy is always
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Figure 1: The radial profiles of theα particle density and pressure from the ASTRA simu-
lation, normalised by the equilibrium electron density andthe total thermal pressure, respec-
tively. ψp is the equilibrium poloidal flux.

evaluated using the full equilibrium pressurePeq). This allows us to clearly see the effect of the
α contribution, compared to the thermal contribution alone.Secondly, the hydrogen thermal
ions have been assumed in [7], whilst the DT reaction is assumed in this work (to produce the
α particles).

In order to gain the physics insight into the mode-particle resonance, we show in Fig. 2 pre-
cessional drift frequencies of both trapped thermal ions and α particles, for one equilibrium
with Cβ = 0.5. [As in [7] and elsewhere,Cβ ≡ (β− βno−wall)/(βideal−wall − βno−wall) is de-
fined as a linear scaling factor between the no-wall and the ideal-wall beta limits for the ideal
external kink mode, such thatCβ = 0 corresponds to the no-wall limitβno−wall, andCβ = 1
corresponds to the ideal-wall limitβideal−wall]. Figure 2 shows that theα particles have an
averaged precession frequency reaching 3% of the Alfvén frequency in the plasma core, and
about 1% near the plasma edge. This frequency is about 35-100times larger than the thermal
ion precession frequency, and is consistent with the fact that the birth energy (3.52MeV) of
theα particles is two orders of magnitude larger than the thermalion kinetic energy in ITER.
Theα particle precession frequency is comparable to the amplitude of plasma toroidal rotation
frequency. The radial profile, however, is rather different. The averaged precession frequency
has a negative sign in the middle region along the minor radius, for both thermal andα parti-
cles. This is due to the precession reversal, enhanced by thefinite pressure effect [12]. This
sign reversal of the precession frequency forα particles has a significant consequence on the
computed kinetic results, as will be demonstrated later in the paper. Finally we notice that the
plasma toroidal rotation is normally treated as part of the toroidal precession drift for thermal
or fast ions. We separate, however, the plasma rotation fromthe particle precession in this
study.
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Figure 2: Comparison of the precessional drift frequencies, normalised by the Alfvén fre-
quency, for the trapped thermal ions andα particles. The precession frequencies are an average
of the particle equilibrium distributions over the velocity space and over the poloidal angle.
Shown also the expected rotation profileωE for ITER, from Ref. [1]. ψp is the equilibrium
poloidal flux. The ITER equilibrium [7] withCβ = 0.5 is considered.

3 Results with perturbative approach

In the perturbative approach, the drift kinetic modification of the RWM eigenfunction is ne-
glected. In order to evaluate the perturbed drift kinetic energy, the eigenfunction of either an
ideal kink mode at marginal stability [6], or fluid RWM [7], isused. The mode frequency
(in the wall frame), that participates into the mode-particle resonance operator, is normally
assumed to be either zero [6], or the fluid RWM mode frequency (as a complex number) [7].
The consequences of these different assumptions are discussed in [7]. As long as the plasma
is not approaching the ideal-wall beta limit, these assumptions do not alter much the results
of the perturbative approach. In the following, we shall usethe fluid RWM eigenfunction and
the (complex) mode frequencyω = iγ f to evaluate the drift kinetic energy perturbations. Here
γ f is the growth rate of the fluid RWM in the absence of the plasma flow.

For RWM stability, normally two parameters play critical roles: the plasma pressure (Cβ) and
the plasma toroidal rotation frequency (ω0 at centre). We first investigate the pressure effect at
a fixed plasma rotationω0 = 0.02ωA, whereωA is the toroidal Alfvén frequency. This rotation
frequency, probably with large uncertainties, is expectedfor the ITER steady state scenario
[1].

Figure 3(a-b) compares the MARS-K computed drift kinetic energy perturbations (δWk) versus
Cβ, with and without theα particle contribution. For comparison, the fluid potentialenergy,
with and without an ideal wall, is also plotted. In the RWM regime, the fluid potential energy
is negative (unstable) with the wall at infinity, and positive (stable) with an ideal wall. At this
relatively fast plasma rotation, theα contribution significantly modifies the kinetic energy,
compared to that with thermal particle contribution alone.The real part of total kinetic energy
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Figure 3: The (a) real and (b) imaginary parts of the perturbed fluid and drift kinetic energy
with varying plasma pressure. The fluid potential energy is computed without wall (δWinf)
and with an ideal ITER inner vacuum vessel (δWb). The imaginary part of the fluid energy
vanishes. The drift kinetic energy is computed using the fluid RWM eigenfunction, including
the thermal particle contribution alone (δW th

k ) or both thermal andα contributions (δW th+α
k ).

All the energy terms are normalised by the plasma inertia associated with the displacement
normal to the flux surface. The plasma toroidal rotation speed is assumed to be 2% of the
Alfvén speed at the centre.

δW th+α
k is about two time larger than that of the thermal particle contribution aloneδW th

k .
The imaginary part is of about the same order by amplitude andwith opposite signs. Whilst
this reasonably strong effect fromα particles will be qualitatively explained when Fig. 5 is
discussed, we focus here on the fact that the kinetic energy perturbation, with the inclusion
of the α contribution, becomes comparable to or larger than the fluidpotential energy by
amplitude. This leads to a substantial modification (stabilisation) of the RWM following the
perturbative approach.

Figure 4 shows the RWM eigenvalue with increasing the plasmapressure, at a fixed plasma
rotation frequencyω0 = 0.02ωA. The eigenvalue is calculated using the dispersion relation
[13, 14]

γτ∗w ≃−δW∞ +δWk

δWb +δWk
, (3)

whereτ∗w is a normalisation factor related to then = 1 field penetration time through the wall.
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Figure 4: The (a) real and (b) imaginary parts of the RWM eigenvalue, normalised by the wall
time and calculated using the RWM dispersion relation with the energy perturbations from
Fig. 3. The eigenvalues with (γth+α

k ) and without (γth
k ) theα contribution are compared. The

fluid RWM growth rate (γ f ) for static plasmas is also shown in (a).

The fluid energy (δW∞,δWb) and the drift kinetic energy (δWk = δW th
k or δW th+α

k ) are shown
in the previous figure.

The significant effect is the full stabilisation, for allCβ values, of the mode by theα particles,
following the perturbative approach. Without theα contribution, only a partial stabilisation of
the mode is achieved - the mode is stable forCβ < 0.55 and unstable forCβ > 0.55. Theα
contribution also changes the sign of the mode rotation frequency (in the wall frame), without
a significant modification of its magnitude.

The effect of theα particles on the kinetic energy and on the mode stability depends on the
rotation frequencyω0. Figure 5 shows the real and imaginary parts ofδWk versusω0, with and
without theα contribution. The plasma pressure is fixed atCβ = 0.5. At very slow rotation
(ω0 = 2× 10−4ωA), the α contribution nearly vanishes. At the rotation speed close to the
expected value for ITER (ω0 ≃ 0.02ωA), however, theα contribution does lead to a noticeable
change ofδWk. A similar observation has been made in a recent study for a DIII-D plasma,
where the beam-driven hot ions are modelled as the energeticparticle source (also with an
isotropic slowing down distribution) [10]. A qualitative,somewhat mathematical, explanation
is obtained by examining the resonance operator, which has the following form for energetic
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Figure 5: The (a) real and (b) imaginary parts of the perturbed drift kinetic energy with varying
plasma central rotation speed. The energy is computed usingthe fluid RWM eigenfunction,
including the thermal particle contribution alone (δW th

k ) or both thermal andα contributions
(δW th+α

k ). All the energy terms are normalised by the plasma inertia associated with the
displacement normal to the flux surface. The plasma pressurescaling factor is assumedCβ =
0.5.

particles

nωE −ω+nωα
∗

nωE +nωα
d −ω

, (4)

whereω∗ can be qualitatively interpreted as the diamagnetic frequency of fast ions (for more
details see Eq. (10) from [10]). A careful comparison reveals that theωα

∗ term is typically
two orders of magnitude larger than theωE term in the numerator of the expression (4), when
ω0 ≡ ωE(r = 0) = 0.02ωA. Therefore, the major contribution from the fast ions comesfrom a
term like

nωα
∗

nωE +nωα
d −ω

. (5)

Indeed, by running MARS-K with an artificial elimination of theω∗ term in (4), we found that
theα particles barely modified the thermal particle results, forthe whole rotation frequency
range considered in this study.

If we neglect the mode frequency termω in the expression (5), which is generally legitimate at
fast enough plasma rotation, the behaviour observed in Fig.5 can be explained as the interplay
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time and calculated using the RWM dispersion relation with the energy perturbations from
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k ) theα contribution are compared. The

plasma pressure scaling factor is assumedCβ = 0.5.

betweenωE andωα
d in the denominator of (5). The feature of the precession reversal for α

particles, shown in Fig. 2, plays a crucial role. At slow rotation, |ωE | << |ωα
d |, because of

the sign reversal forωα
d (the sign ofω∗ does not change), a significant cancellation occurs as

the expression (5) is integrated (together with other multipliers) over the minor radius. A fast
enough plasma rotation, however, tends to eliminate the precession reversal of fast ions, and
hence reducing the cancellation effect during the radial integration.

The behaviour ofδWk versus the plasma rotation speed is reflected in the subsequent stability
analysis following the dispersion relation (3), as shown inFig. 6. At slow plasma rotation
(ω0 <∼ 2×10−3ωA), theα kinetic contribution is very small. At fast rotation (ω0 → 0.02ωA),
theα particles cause the mode to be more stable. The mode frequency changes sign only at
fast enough plasma rotation.

Theα particle effect on the mode stability has also been examinedin the 2D space of (ω0,Cβ).
Figures 7(a-b) compare the real part of the RWM eigenvalue, with and without theα contri-
bution, following the perturbative approach. We notice that, despite different assumptions for
the plasma thermal particles, the stability boundary shownin Fig. 7(a) is close to that obtained
in figure 15(a) from Ref. [7]. The perturbative approach predicts that the precession drift ki-
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Figure 7: Contour plots of the real part of the normalised RWMeigenvalue with varying
plasma pressure and rotation speed. The perturbative approach is used to compute the eigen-
value for the case (a) with the thermal particle drift kinetic contribution alone, and case (b)
with both thermal andα contributions. The solid lines indicate the stability boundary.

netic effect ofα particles is generally stabilising for the RWM. The effect becomes stronger
as the plasma rotation speed increases. The mode remains unstable at high pressureCβ >∼ 0.8
and slow plasma rotation (ω0 <∼ 4×10−3ωA), even with the inclusion of theα effect. As a
result, theα contribution expands the stable domain for the RWM, but doesnot completely
stabilise the mode across the full parameter domain. In terms of the modification of the sta-
bility boundary, theα effect is rather weak compared to that of the thermal particle effects.

4 Results with self-consistent approach

The self-consistent approach solves the MHD equations together with the drift kinetic inte-
grals, in a MHD-kinetic hybrid manner [9, 10]. There are two major differences compared
with the perturbative approach: (i) the mode eigenfunctionis allowed to be modified by the
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kinetic effects in the self-consistent approach; (ii) the unknown mode eigenvalueγ enters also
into the kinetic integrals in a nonlinear fashion. These differences can have a large impact on
the prediction for the kinetic RWM stability.

Figure 8 compares the MARS-K computed mode eigenvalue, withand without theα contri-
bution, following the self-consistent approach. We vary the plasma rotation frequency while
fixing the pressure atCβ = 0.63. In both cases, with or without theα contribution, there are
two unstable branches (solid and dashed lines). Theα particles have a stabilising effect on
both branches. For the first unstable branch (dashed lines),theα effect is weak at slow plasma
rotation; probably for the same reason as discussed in the previous Section. For both branches,
theα stabilisation is more significant at sufficiently fast rotation ω0 → 2×10−2ωA. Note that
this is the same frequency range for the precessional driftsof α particles (Fig. 2). The local
minimum in the first branch, as well as the marginal stabilityfor the second branch (solid
lines), corresponds toω0 ∼ 10−3ωA. This is roughly the precession frequency for thermal
particles.

Similar results have been obtained for a DIII-D plasma [10],where the fast particles are the
beam driven hot ions. Because of the co-existence of both unstable branches, the overall (i.e.
the maximum of two growth rates) mode remains unstable for this plasma, with or without the
α contribution.

The mode frequency for the second branch remains small with varying the plasma rotation.
The mode frequency for the first branch increases linearly with ω0, reaching a value of about
7×10−3ωA at ω0 = 2×10−2ωA. Theα contribution does not significantly modify this fre-
quency behaviour. We mention that similar behaviour for thefirst unstable branch is also
observed for two other high beta plasmas withCβ = 0.88 and 0.75.

Both branches shown in Fig. 8 have a global, kink-like eigenmode structures. Figures 9(a-c)
plot three sets of eigenfunctions, for three chosen points from Fig. 8. The radial profiles of
the poloidal Fourier harmonics for the radial displacementare compared, with and without the
α contribution. At slow plasma rotation (case (a)), theα particles do not modify the mode
eigenfunction, in agreement with the fact that the mode eigenvalue is also not changed. Faster
plasma rotation (cases (b-c)) leads to slightly largerα modification of the mode structure. This
modification is small but global.

The co-existence of two unstable branches occurs only at sufficiently high plasma pressures.
Figure 10 scansCβ at fixed plasma rotation frequencies, for the first branch at slow rotation
(dashed lines) and the second branch at fast rotation (solidlines). The first unstable branch
quickly becomes stable as the plasma pressure drops. The second branch, on the contrary,
remains unstable through a large part of the pressure range (for the rotation frequency of
ω0 = 2×10−2ωA). Theα contribution is again stabilising in all cases.

The RWM stability diagrams from a 2D parameter (ω0−Cβ) scan are shown in Figs. 11(a-b).
The diagrams are compared with and without theα particle contribution. Figure 11(a) agrees
roughly with Fig. 15(b) from Ref. [7], even though somewhat different assumptions have
been made for the equilibrium plasma. Comparing Figs. 11(a)and (b), we find that theα
contribution slightly extends the stability boundary (towards higher beta) at high rotation. At
slow rotation, the stability boundary is not modified byα particles, as should be expected.
However, the mode growth rate is substantially reduced byα particles at high beta and fast
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rotation.

The α particle effect obtained in the above self-consistent numerical computations can be
qualitatively understood with the following simple dispersion relation

D(γ) ≡ δWp +
δW ∞

v + γτ∗wδW b
v

1+ γτ∗w
+ChΩln

(

1− 1
Ω

)

= 0, (6)

whereΩ ≡ ω/ωd = iγ/ωd. In the above dispersion relation, the first termδWp in D(γ) is
the fluid potential energy associated with the plasma. We assume here that the equilibrium
pressure contribution toδWp comes only from the thermal pressure [15]. The second term
in D(γ) is associated with the vacuum energy. [The inertia is neglected assuming that the
amplitude of the mode eigenvalueγ is much smaller than the Alfvén frequencyωA.] The last
term of D(γ) is due to theα contribution. This term can be obtained in a similar way as in
the fishbone theory for hot ions [15], neglecting the plasma rotation. The coefficientCh is
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eterCh. The other parameters in this example are assumed asδWp = −1,δW ∞

v = 0.5,δW b
v =

1.5,τ∗w = 104τA,ωd = 10−2ωA.

proportional to the hot ion pressure. We treat it as a free parameter in this qualitative analysis.

Figure 12 shows an example of the root tracing versusCh for the dispersion relation (6). The
parameters are chosen such that the growth rate of the fluid RWM (without theα contribution,
Ch = 0), normalised by the wall timeτ∗w, is unity. Increasing theα contribution, the mode is
initially slightly destabilised, followed by a strong stabilisation at large values ofCh. Compar-
ison of this simple model with the numerical results indicates that the ITER parameter regime
corresponds to a large value ofCh, whilst the DIII-D plasma (numerical results presented in
Ref. [10]) seems to be in the smallCh regime.

We mention that the dispersion relation (6) also allows a second unstable root for certain
parameter range. For the parameter set as in Fig. 12, the second unstable root appears in a
narrow range ofCh ∈ [0.042,0.5]. This can be easily shown by plotting the Nyquist diagram of
the functionD(iω). This second unstable root generally has a smaller growth rate than the one
shown in Fig. 12, but a large mode frequency, close to the hot ion precessional drift frequency
ωd . This root is the fishbone equivalent for the kinetic RWM. This high frequency, unstable
root bears some similarity to the first unstable branch shownin Fig. 8.

5 Conclusions

The effects of the fusion bornα particles on the stability of the RWM are numerically investi-
gated using the MARS-K code, for the ITER steady state scenario given by Ref. [1].

For the ITER plasma regime, theα contribution is generally more stabilising, than the ther-
mal particle kinetic contribution alone. The same conclusion is achieved following both the
perturbative and the self-consistent approaches. The latter generally predicts less stabilisation
than the former. With the ASTRA predictedα density and pressure profiles, the stabilising
effect from theα particles is generally weak.
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At high enough plasma pressure, the self-consistent approach yields two unstable branches,
both having a global kink mode structure. As expected, the stabilising effect from theα
particles becomes more pronounced only at fast enough plasma rotation frequency, roughly
matching theα precession frequency. For the ITER plasma, this is in the order of a few percent
of the toroidal Alfvén frequency.

A simple, energy principle based (self-consistent) dispersion relation is proposed to gain a
qualitative interpretation of the numerical results.

The modelling presented here neglects the effect of finite drift orbit width (the banana width)
of trappedα particles, which is expected to be reasonably large compared to the plasma minor
radius in ITER. For a mode with global eigenmode structure, the finite banana width effect
may not be critical from the qualitative point of view. Nevertheless, a realistic modelling
requires inclusion of this effect, by using, e.g. the HAGIS code [16].
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