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abstract. The effects of the fusion boro particles on the stability of the RWM are numerically
investigated for one of the advanced steady state Scenari®&R. Thea contribution is found to be
generally stabilising, compared to the thermal particteekic contribution alone. The same conclusion
is achieved following both a perturbative and self-comsisapproach. The latter generally predicts less
stabilisation, than the former. At high enough plasma pnessthe self-consistent approach predicts
two unstable branches for the ITER plasma studied here. tbédising effect fromu particles is found

to be generally weak, in particular in terms of the modificatdf the stability boundary. The effect
is more pronounced only at fast enough plasma rotation &ecy roughly matching the precession
frequency, which is in the order of a few percent of the toabiélifvén frequency for ITER. A simple,
energy principle based, fishbone-like dispersion relas@roposed to gain a qualitative understanding
of the numerical results.

1 Introduction

The steady state, 9MA scenario [1] in ITER aims at advancasinph performance with high
pressure and high bootstrap current fraction. The targestpé is designed to slightly exceed
the Troyn no-wall beta limit [2]. The most significant conedor this plasma regime, from
the macroscopic MHD point of view, is the stability (and gbgscontrol) of the resistive wall
mode (RWM) [3].

Because of its significance for ITER and power plants, the Ri@8Ibeen extensively studied
during recent years, both theoretically and experimentalhese efforts are well documented
in a recent review article by Chu and Okabayashi [4]. Work Ibesn carried out specifically
on RWM modelling for ITER. In Ref. [5], rotational stabilisan and active control of the
mode are investigated for the ITER advanced scenario, ifrémeework of the ideal MHD
theory and a simplified drift kinetic damping model based loa thode resonance with the
thermal particle bounce motion. This model predicts aaalttoroidal plasma rotation speed
of about 1.5-2% of the Alfvén speed in the plasma centre. critieal rotation speed is the
minimal speed required for full suppression of the mode. t@rlanodel, based on the kinetic
effects from the mode resonance with the thermal particdegssion drifts, predicts that the
RWM in ITER can be partially or fully stabilised, providedetiplasma rotation frequency is
below the ion diamagnetic frequency [6]. The calculatiorespnted in [6] are for an ITER-
like equilibrium but with an up-down symmetrised plasma idary shape. A perturbative
approach is pursued in this MHD-kinetic hybrid modellindyeve the marginally stable, ideal
kink mode eigenfunction is used to compute the drift kinetiergy. The ITER predictions,
based on the self-consistent inclusion of the kinetic tentesthe MHD equations, are made in
recent studies [7, 8], but considering the thermal pariatetic contributions only. Reference
[7] mainly studies the effect of mode resonance with patmlecession drifts, for realistic
equilibria from the ITER design. Both perturbative and smhsistent approaches have been
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used. Whilst the former predicts a full kinetic stabiligatiof the RWM in a large region of the
operational space, similar to [6], the latter approach gtsda smaller stabilisation domain,
occurring at slow enough plasma flow. Reference [8] exploftdl gyrokinetic formulation to
study the kinetic effects on the RWM for an ITER-like plasméh a shallow magnetic shear
reversal and an up-down symmetrised plasma shape. Theahpanmicle bounce resonances
are included, which yields a rotation threshold of abou#® & the Alfvén speed.

This work focuses on the precessional resonance effectambe¢da particles on RWM sta-
bility in ITER. We compare the modelling results with and gttt thea contribution. As in
[7], we follow both perturbative and self-consistent agmioes, formulated in [9] for thermal
particles, and in [10] for energetic particles, respedyivEhese formulations are implemented
in the MARS-K code [9]. The same set of ITER equilibria as ihif/used.

The following Section describes the model that we use footparticles. Section 3 shows the
MARS-K results of the RWM stability analysis, following tiperturbative approach. Section
4 shows the MARS-K results based on the self-consistentikif@mulation. Conclusions
are drawn in Section 5.

2 Equilibrium propertiesof a particles

For the fusion borm particles, we assume an isotropic, slowing-down equuordistribution
function [11]

(1)
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wheregq = 3.52MeV is thea birth energy, and

2/3 N\ 1/3
() (1)

The quantitieMg, M;, Me denote the mass of, thermal ions and electrons, respectively. The
(thermal) electron equilibrium temperature is denotedcas

The constant from Eq. (1) is determined by giving tleedensity profileNy. We use a profile
predicted by the ASTRA simulation for the ITER 9MA steadytstscenario. Figure 1 shows
the radial profile of the ASTRA simulatedparticle density and pressure profiles, normalised
by the corresponding electron density and total thermadqunee. Note that the particles
contribute a fraction of about 20% of the thermal pressurthenplasma centre to the total
equilibrium pressure, with only about 1% of the density fiaa.

We point out two different assumptions made for the ITER mplasbetween this study and
the previous work [7]. First, this study assumes that bo#mrttal @) anda (Py) particles
contribute to the total equilibrium pressuPgy = P + Py, Whilstin [7], we have assumed that
the total equilibrium pressure comes solely from the théfores and electronBeq = P, (i.e.
noa particles are present in the plasma). In this work, we asdtypne Py, + Py even when
the kinetic contribution froma particles is excluded (i.e. the fluid potential energy isaata/
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Figure 1: The radial profiles of the particle density and pressure from the ASTRA simu-
lation, normalised by the equilibrium electron density &ine total thermal pressure, respec-
tively. Y, is the equilibrium poloidal flux.

evaluated using the full equilibrium pressig). This allows us to clearly see the effect of the
a contribution, compared to the thermal contribution aloBecondly, the hydrogen thermal
ions have been assumed in [7], whilst the DT reaction is asdumthis work (to produce the
a particles).

In order to gain the physics insight into the mode-partielgonance, we show in Fig. 2 pre-
cessional drift frequencies of both trapped thermal iorn$ @mparticles, for one equilibrium
with Cg = 0.5. [As in [7] and elsewhereGg = (B — pno-wall) /(pideal-wall _ gno-wall) js ge-
fined as a linear scaling factor between the no-wall and tbaligiall beta limits for the ideal
external kink mode, such th@s = 0 corresponds to the no-wall limgno-wall, andCg =1
corresponds to the ideal-wall lim@'dea-walll - Figure 2 shows that the particles have an
averaged precession frequency reaching 3% of the Alfvéquiency in the plasma core, and
about 1% near the plasma edge. This frequency is about 35h68 larger than the thermal
ion precession frequency, and is consistent with the feattttie birth energy (3.52MeV) of
thea particles is two orders of magnitude larger than the theiorakinetic energy in ITER.
Thea particle precession frequency is comparable to the angaitd plasma toroidal rotation
frequency. The radial profile, however, is rather differéftte averaged precession frequency
has a negative sign in the middle region along the minor sadar both thermal and parti-
cles. This is due to the precession reversal, enhanced Hintteepressure effect [12]. This
sign reversal of the precession frequencydagparticles has a significant consequence on the
computed kinetic results, as will be demonstrated latenéngaper. Finally we notice that the
plasma toroidal rotation is normally treated as part of tireitlal precession drift for thermal
or fast ions. We separate, however, the plasma rotation fraparticle precession in this
study.



0.035f
= = =thermal x10

—— a—particle

0.03r

0.025f
0.02
0.015f

0.01r

{<(Jod>,ooE}/wA

0.005f

—-0.005f
-0.01¢

-0.015

Figure 2: Comparison of the precessional drift frequencesmalised by the Alfvén fre-
guency, for the trapped thermal ions angdarticles. The precession frequencies are an average
of the particle equilibrium distributions over the velgcdgpace and over the poloidal angle.
Shown also the expected rotation profiee for ITER, from Ref. [1]. Y, is the equilibrium
poloidal flux. The ITER equilibrium [7] wittCg = 0.5 is considered.

3 Resultswith perturbative approach

In the perturbative approach, the drift kinetic modificataf the RWM eigenfunction is ne-
glected. In order to evaluate the perturbed drift kinetiergy, the eigenfunction of either an
ideal kink mode at marginal stability [6], or fluid RWM [7], issed. The mode frequency
(in the wall frame), that participates into the mode-péeti@sonance operator, is normally
assumed to be either zero [6], or the fluid RWM mode frequeasya(complex number) [7].
The consequences of these different assumptions are gsextus[7]. As long as the plasma
is not approaching the ideal-wall beta limit, these assuwmptdo not alter much the results
of the perturbative approach. In the following, we shall tieefluid RWM eigenfunction and
the (complex) mode frequency= iy; to evaluate the drift kinetic energy perturbations. Here
yi is the growth rate of the fluid RWM in the absence of the plasoa fl

For RWM stability, normally two parameters play critical@s: the plasma pressui€g) and

the plasma toroidal rotation frequenayg(at centre). We first investigate the pressure effect at
a fixed plasma rotatioay = 0.02wa, Wherews is the toroidal Alfvén frequency. This rotation
frequency, probably with large uncertainties, is expedtedhe ITER steady state scenario

[1].

Figure 3(a-b) compares the MARS-K computed drift kinetiergy perturbation\) versus
Cg, with and without theo particle contribution. For comparison, the fluid potengakrgy,
with and without an ideal wall, is also plotted. In the RWMirag, the fluid potential energy
is negative (unstable) with the wall at infinity, and post{gtable) with an ideal wall. At this
relatively fast plasma rotation, thee contribution significantly modifies the kinetic energy,
compared to that with thermal particle contribution alofhke real part of total kinetic energy
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Figure 3: The (a) real and (b) imaginary parts of the pertdrhgid and drift kinetic energy
with varying plasma pressure. The fluid potential energyosputed without wall /My¢)
and with an ideal ITER inner vacuum vess&\f,). The imaginary part of the fluid energy
vanishes. The drift kinetic energy is computed using thelfRWM eigenfunction, including
the thermal particle contribution aloné\/(/kth) or both thermal and: contributions G\NQh+ 9.
All the energy terms are normalised by the plasma inertia@ated with the displacement
normal to the flux surface. The plasma toroidal rotation dpseassumed to be 2% of the
Alfvén speed at the centre.

W is about two time larger than that of the thermal particletdbation alonedW".
The imaginary part is of about the same order by amplitudevetidopposite signs. Whilst
this reasonably strong effect from particles will be qualitatively explained when Fig. 5 is
discussed, we focus here on the fact that the kinetic enexgunbation, with the inclusion
of the a contribution, becomes comparable to or larger than the fhaténtial energy by
amplitude. This leads to a substantial modification (stsddilon) of the RWM following the
perturbative approach.

Figure 4 shows the RWM eigenvalue with increasing the plagraasure, at a fixed plasma
rotation frequencywy = 0.02wa. The eigenvalue is calculated using the dispersion relatio
[13, 14]

. W+ OV
er_ 6\/\4)"‘6\/\4(,

wheret, is a normalisation factor related to the= 1 field penetration time through the wall.
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Figure 4: The (a) real and (b) imaginary parts of the RWM eugdure, normalised by the wall
time and calculated using the RWM dispersion relation wité énergy perturbations from
Fig. 3. The eigenvalues withf["®) and without (") the a contribution are compared. The
fluid RWM growth rate y;) for static plasmas is also shown in (a).

The fluid energy §W., O\W,) and the drift kinetic energyd\ = 6\th“ or 6\N|£h+“) are shown
in the previous figure.

The significant effect is the full stabilisation, for & values, of the mode by the particles,
following the perturbative approach. Without tiecontribution, only a partial stabilisation of
the mode is achieved - the mode is stableGgr< 0.55 and unstable fo€g > 0.55. Thea
contribution also changes the sign of the mode rotatiorueeqy (in the wall frame), without
a significant modification of its magnitude.

The effect of thex particles on the kinetic energy and on the mode stabilityedep on the
rotation frequencyy. Figure 5 shows the real and imaginary part®\Wk versusuwy, with and
without thea contribution. The plasma pressure is fixedgt= 0.5. At very slow rotation
(wp = 2 x 10~%wy), the a contribution nearly vanishes. At the rotation speed clasthe
expected value for ITERufp ~ 0.02w,), however, thex contribution does lead to a noticeable
change o®W. A similar observation has been made in a recent study forleplasma,
where the beam-driven hot ions are modelled as the enerngatiicle source (also with an
isotropic slowing down distribution) [10]. A qualitativepmewhat mathematical, explanation
is obtained by examining the resonance operator, whichheafotlowing form for energetic
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Figure 5: The (a) real and (b) imaginary parts of the pertdidr&t kinetic energy with varying
plasma central rotation speed. The energy is computed tisenfjluid RWM eigenfunction,
including the thermal particle contribution alor@/\ﬁh) or both thermal and contributions
(6\N|§h+°‘). All the energy terms are normalised by the plasma inesoaiated with the
displacement normal to the flux surface. The plasma pressaténg factor is assumegh =
0.5.

particles
NWe — W+ N
NWe + NW§ — 0’

(4)

wherew, can be qualitatively interpreted as the diamagnetic fraquef fast ions (for more
details see Eq. (10) from [10]). A careful comparison resdhht thew! term is typically
two orders of magnitude larger than ttee term in the numerator of the expression (4), when
wo = we (r = 0) = 0.02wa. Therefore, the major contribution from the fast ions corfinesh a
term like
N
NWe + NW§ — 0’

()

Indeed, by running MARS-K with an artificial elimination dfew, term in (4), we found that
thea particles barely modified the thermal particle results,tfeg whole rotation frequency
range considered in this study.

If we neglect the mode frequency teuxin the expression (5), which is generally legitimate at
fast enough plasma rotation, the behaviour observed ind-egn be explained as the interplay
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Figure 6: The (a) real and (b) imaginary parts of the RWM eugdure, normalised by the wall
time and calculated using the RWM dispersion relation wité énergy perturbations from
Fig. 5. The eigenvalues withy{*®) and without ¢{") the a contribution are compared. The
plasma pressure scaling factor is assuigge- 0.5.

betweenwe andwyf in the denominator of (5). The feature of the precessionrsaldor a
particles, shown in Fig. 2, plays a crucial role. At slow tima, |wg| << |wf|, because of
the sign reversal fowy (the sign ofw. does not change), a significant cancellation occurs as
the expression (5) is integrated (together with other mplidrs) over the minor radius. A fast
enough plasma rotation, however, tends to eliminate theegston reversal of fast ions, and
hence reducing the cancellation effect during the radigigration.

The behaviour ob\W versus the plasma rotation speed is reflected in the subsespability
analysis following the dispersion relation (3), as showrrig. 6. At slow plasma rotation
(wp < 2x 10 3wp), thea kinetic contribution is very small. At fast rotationy — 0.02wp),
thea particles cause the mode to be more stable. The mode fregebaages sign only at
fast enough plasma rotation.

Thea particle effect on the mode stability has also been exanmimtte 2D space ofu, Cp).
Figures 7(a-b) compare the real part of the RWM eigenvalut, and without thex contri-
bution, following the perturbative approach. We notice t@spite different assumptions for
the plasma thermal particles, the stability boundary shiovifig. 7(a) is close to that obtained
in figure 15(a) from Ref. [7]. The perturbative approach jredthat the precession drift ki-
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netic effect ofa particles is generally stabilising for the RWM. The effeecbmes stronger
as the plasma rotation speed increases. The mode rematablerat high pressui@; < 0.8
and slow plasma rotationg < 4 x 10-3w,), even with the inclusion of tha effect. As a
result, thea contribution expands the stable domain for the RWM, but dedscompletely
stabilise the mode across the full parameter domain. Ingerhthe modification of the sta-
bility boundary, thea effect is rather weak compared to that of the thermal parisdfects.

4 Resultswith self-consistent approach

The self-consistent approach solves the MHD equationghegevith the drift kinetic inte-
grals, in a MHD-kinetic hybrid manner [9, 10]. There are twajor differences compared
with the perturbative approach: (i) the mode eigenfuncisallowed to be modified by the



kinetic effects in the self-consistent approach; (ii) tidnown mode eigenvalugenters also
into the kinetic integrals in a nonlinear fashion. Theséedé@nces can have a large impact on
the prediction for the kinetic RWM stability.

Figure 8 compares the MARS-K computed mode eigenvalue, avithwithout thex contri-
bution, following the self-consistent approach. We varmy fttasma rotation frequency while
fixing the pressure &g = 0.63. In both cases, with or without tleecontribution, there are
two unstable branches (solid and dashed lines). dIparticles have a stabilising effect on
both branches. For the first unstable branch (dashed lithe),effect is weak at slow plasma
rotation; probably for the same reason as discussed in 8wequs Section. For both branches,
thea stabilisation is more significant at sufficiently fast ridatwy — 2 x 10 2wa. Note that
this is the same frequency range for the precessional ariftsparticles (Fig. 2). The local
minimum in the first branch, as well as the marginal stabiidy the second branch (solid
lines), corresponds tay ~ 103wa. This is roughly the precession frequency for thermal
particles.

Similar results have been obtained for a DIII-D plasma [1@jere the fast particles are the
beam driven hot ions. Because of the co-existence of botfablesbranches, the overall (i.e.
the maximum of two growth rates) mode remains unstable feqglasma, with or without the
o contribution.

The mode frequency for the second branch remains small vaityjing the plasma rotation.
The mode frequency for the first branch increases lineartl wg, reaching a value of about
7 x 10 3wp at wg = 2 x 10~%wa. Thea contribution does not significantly modify this fre-
guency behaviour. We mention that similar behaviour for fir& unstable branch is also
observed for two other high beta plasmas v@th= 0.88 and 0.75.

Both branches shown in Fig. 8 have a global, kink-like eigedenstructures. Figures 9(a-c)
plot three sets of eigenfunctions, for three chosen poinots fFig. 8. The radial profiles of
the poloidal Fourier harmonics for the radial displacensrtcompared, with and without the
o contribution. At slow plasma rotation (case (a)), thearticles do not modify the mode
eigenfunction, in agreement with the fact that the modereigleie is also not changed. Faster
plasma rotation (cases (b-c)) leads to slightly lagyenodification of the mode structure. This
modification is small but global.

The co-existence of two unstable branches occurs only &tiguitly high plasma pressures.
Figure 10 scan€y at fixed plasma rotation frequencies, for the first brancHaw sotation
(dashed lines) and the second branch at fast rotation (koéd). The first unstable branch
quickly becomes stable as the plasma pressure drops. Thadsecanch, on the contrary,
remains unstable through a large part of the pressure radogehg rotation frequency of
wp = 2 x 10~2wya). Thea contribution is again stabilising in all cases.

The RWM stability diagrams from a 2D parametex (- Cg) scan are shown in Figs. 11(a-b).
The diagrams are compared with and withoutdhgearticle contribution. Figure 11(a) agrees
roughly with Fig. 15(b) from Ref. [7], even though somewhdfedent assumptions have
been made for the equilibrium plasma. Comparing Figs. l1afgal) (b), we find that the
contribution slightly extends the stability boundary (enas higher beta) at high rotation. At
slow rotation, the stability boundary is not modified typarticles, as should be expected.
However, the mode growth rate is substantially reduced: Iparticles at high beta and fast
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Figure 8: The (a) real and (b) imaginary parts of the RWM eiugdure, normalised by the
wall time and computed following the self-consistent agyglo The eigenvalues with (filled
square) and without (filled dot) the contribution are compared. The first unstable branch
(dashed) and the second unstable branch (solid) are shdwerpldsma pressure scaling factor
isCg = 0.63.
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rotation.

The a particle effect obtained in the above self-consistent miwakcomputations can be
qualitatively understood with the following simple dispem relation

_ O + YTy, SV 1N
D(y) = AW+ = 5= +Crlin (15 ) =0, (6)

whereQ = w/wy = iy/wy. In the above dispersion relation, the first tedV, in D(y) is

the fluid potential energy associated with the plasma. Wanagshere that the equilibrium
pressure contribution tdW, comes only from the thermal pressure [15]. The second term
in D(y) is associated with the vacuum energy. [The inertia is négtbassuming that the
amplitude of the mode eigenvalyés much smaller than the Alfvén frequen@g.] The last
term of D(y) is due to thex contribution. This term can be obtained in a similar way as in
the fishbone theory for hot ions [15], neglecting the plasotation. The coefficienC; is
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Figure 12: The unstable root of the dispersion relation @g¥us the hot ion pressure param-
eterCh. The other parameters in this example are assuméigs= —1, OW° = 0.5, =
1.5,T}, = 10%Tp, wy = 10 2wa.

proportional to the hot ion pressure. We treat it as a frearpater in this qualitative analysis.

Figure 12 shows an example of the root tracing veGufor the dispersion relation (6). The
parameters are chosen such that the growth rate of the fluill RMithout thea contribution,

Ch = 0), normalised by the wall time},, is unity. Increasing ther contribution, the mode is
initially slightly destabilised, followed by a strong sthdation at large values @;,. Compar-
ison of this simple model with the numerical results indesatthat the ITER parameter regime
corresponds to a large value @f, whilst the DIII-D plasma (humerical results presented in
Ref. [10]) seems to be in the sm&l regime.

We mention that the dispersion relation (6) also allows asdaunstable root for certain
parameter range. For the parameter set as in Fig. 12, thedecrstable root appears in a
narrow range o€, € [0.042 0.5]. This can be easily shown by plotting the Nyquist diagram of
the functionD(iw). This second unstable root generally has a smaller growgttiman the one
shown in Fig. 12, but a large mode frequency, close to thedmprecessional drift frequency
wyg. This root is the fishbone equivalent for the kinetic RWM. § high frequency, unstable
root bears some similarity to the first unstable branch shiowg. 8.

5 Conclusions

The effects of the fusion borm particles on the stability of the RWM are numerically invest
gated using the MARS-K code, for the ITER steady state scegaen by Ref. [1].

For the ITER plasma regime, tleecontribution is generally more stabilising, than the ther-
mal particle kinetic contribution alone. The same conduass achieved following both the
perturbative and the self-consistent approaches. Thex g¢herally predicts less stabilisation
than the former. With the ASTRA predicted density and pressure profiles, the stabilising
effect from thea particles is generally weak.
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At high enough plasma pressure, the self-consistent apprgialds two unstable branches,
both having a global kink mode structure. As expected, thbilsing effect from thex
particles becomes more pronounced only at fast enough plastation frequency, roughly
matching thex precession frequency. For the ITER plasma, this is in therartla few percent
of the toroidal Alfvén frequency.

A simple, energy principle based (self-consistent) disioer relation is proposed to gain a
gualitative interpretation of the numerical results.

The modelling presented here neglects the effect of finifeahbit width (the banana width)
of trappedn particles, which is expected to be reasonably large condgarthe plasma minor
radius in ITER. For a mode with global eigenmode structure, finite banana width effect
may not be critical from the qualitative point of view. Netlezless, a realistic modelling
requires inclusion of this effect, by using, e.g. the HAGt$le [16].
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