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Wave propagation near a cyclotron resonance in a nonuniform equilibrium 
magnetic field 

R. A. Cairns,@ C. N. Lashmore-Davies, R. 0. Dendy, B. M. Harvey, R. J. Hastie, 
and H. HoIt@ 
AEA Fusion, Wham Laboratory (Euratom/UKAE4 Fusion Association), Abingdon, Oxfordshire, 
OX14 3DB, England 

(Received 11 October 1990; accepted 9 July 1991) 

The inclusion of the variation of the equilibrium magnetic field across the Larmor orbits of the 
resonant particles is crucial for a self-consistent treatment of cyclotron resonance in plasmas. 
Two contrasting nonrelativistic self-consistent calculations [T. M. Antonsen and W. M. 
Manheimer, Phys. Fluids 21,2295 (1978); C. N. Lashmore-Davies and R. 0. Dendy, Phys. 
Fluids B 1, 1565 ( 1989) ] which analyze perpendicular propagation in the same nonuniform 
magnetic field are compared. It is shown that the first of these, which is a full wave calculation, 
makes an approximation that eliminates the damping found in the second, which calculates 
optical depth via a Wentzel-Kramer-s-Brillouin (WKB) approximation. A new expansion of 
the exact integral equation describing the problem is given, producing full wave equations 
which incorporate the perpendicular damping. The equations are of the correct form to ensure 
energy conservation and can easily be obtained to any order in an expansion in terms of the 
ratio of Larmor radius to perpendicular wavelength. 

I. INTRODUCTION 

In this paper we shall develop a theory of wave propaga- 
tion through a cyclotron resonance in a nonuniform magnet- 
ic field, with the effect of the inhomogeneous field included 
self-consistently. By this we mean that the variation of the 
equilibrium magnetic field across the Larmor orbit is includ- 
ed in the particle response to perturbations. We first discuss 
two previous theories which incorporate this effect. The 
first, developed by Antonsen and Manheimer’ some years 
ago, gave a full wave solution of the problem but did not 
include damping which occurs, even at perpendicular inci- 
dence, as a result of the magnetic field variations across the 
Larmor orbit. The second, presented more recently by Lash- 
more-Davies and Dendy,’ points out the existence of this 
damping mechanism but applications of it have, so far, been 
confined to calculations of optical depth using a local disper- 
sion relation to obtain the imaginary part of the wave num- 
ber. Calculations of this type generally agree with the optical 
depth obtained from full wave calculations, but do not, of 
course, give any information on reflection or mode conver- 
sion coefficients. 

In Ref. 1 the Vlasov equation was integrated along the 
unperturbed orbits in the nonuniform field, while Ref. 2 ob- 
tained the particle response using the general gyrokinetic 
theory of Chen and Tsai. 3*4 In both cases the same finite 
Larmor radius correction appears in the resonance condi- 
tion, so the first problem is to explain why one theory gives 
damping near the resonance while the other does not. An 
examination of Antonsen and Manheimer’s procedure will 
be presented, showing that an approximation which they 
introduce, in order to make an integral equation analytically 
soluble, amounts to an asymptotic expansion of the plasma 
dispersion function. As a result, a damping profile with finite 

” Permanent address: Department of Mathematical and Computational 
Sciences, University of St. Andrews, St. Andrews KY16 9SS, Scotland. 

width is replaced by a resonant pole. By converting their 
solution, presented in terms of the Fourier transform of the 
field, into a differential equation in space, it will be shown 
that the finite Larmor radius correction plays a vital role in 
maintaining the correct energy conservation properties of 
the wave.’ 

We then turn to the main new result of this paper, name- 
ly a method of obtaining full wave equations which incorpo- 
rate the effect of the finite Larmor radius in a nonuniform 
field, and which combine the energy conservation properties 
noted by Antonsen and Manheimer with the finite damping 
width obtained by Lashmore-Davies and Dendy. This meth- 
od yields differential equations, to any order in an expansion 
in the ratio of Larmor radius to perpendicular wavelength, 
in a simple way. 

To illustrate the theory we shall look at electron cyclo- 
tron absorption, in a nonrelativistic approximation, at per- 
pendicular incidence, concentrating mainly on the 0 mode 
at the fundamental. It is, ofcourse, well known that in reality 
relativistic effects are very important in this case.6 However, 
it is useful for our purposes in that it is the simplest problem 
involving only one electric field component and one dielec- 
tric tensor element. It allows us, therefore, to exhibit the 
essentials of our theory with a minimum of extraneous de- 
tail. The general method can then be applied to problems in 
the ion cyclotron range of frequencies and to nonperpendi- 
cular propagation. 

The structure of the paper is as follows. In Sec. II we 
obtain the integral equation which describes the problem 
exactly. In Sec. III we describe the approximate solutions 
obtained in Refs. 1 and 2 and discuss the differences between 
them. Section IV is concerned with the full wave equations 
corresponding to the approximation of Antonsen and Man- 
heimer, and Sec. V with the more exact full wave equations 
that include perpendicular cyclotron damping. Finally, Sec. 
VI gives our conclusions. 
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II. CYCLOTRON RESONANCE IN A NONUNIFORM 
MAGNETIC FIELD 

We shall restrict the analysis in this paper to the propa- 
gation of electromagnetic waves perpendicular to the equi- 
librium magnetic field in the plasma. The magnetic field will 
be taken as 

B = e,B( 1 + x/L, ), (1 

where the scale length LB may be identified with the major 
radius of a tokamak. In both Refs. 1 and 2, where the above 
model magnetic field was employed (L, -+ - L in Ref. 1 ), 
the condition for electron cyclotron resonance was found to 
be 

0 - K&(x) + Z(u,/L,)sina = 0; (2) 

here I is the harmonic number, Q(x) = (lelB/m,c) 
X ( 1 + x/LB ), U, is the perpendicular velocity of an elec- 
tron, and a is the gyrophase angle. Since the resonance con- 
dition occurs in a velocity integral, cyclotron resonance is a 
wave-particle resonance, even for propagation perpendicu- 
lar to the magnetic field with relativistic effects ignored. 
Such a resonance is expected to lead to wave damping with a 
smooth absorption profile. The finite Larmor radius correc- 
tion to the resonance which arises from the variation of the 
magnetic field across the Larmor orbit will be shown below 
to have important consequences. Since cyclotron resonance 
is a localized phenomenon, the effect of the magnetic field 
nonuniformity need only be included in the resonant terms. 
After making this approximation, the problem can be for- 
mulated exactly; for this, it is convenient to use Fourier 
transforms in the direction of the inhomogeneity. 

Let us now consider the case of the ordinary elcctromag- 
netic wave propagating across the fundamental electron cy- 
clotron resonance. We may follow either the orbit method 
used by Antonsen and Manheimer’ or the gyrokinetic meth- 
od of Chen and Tsai,4 representing the wave field as a Four- 
ier transform: 

&A(x) = dk &&(k)eikx 
s (3) 

and 

- 
SA(k) = $ 

J 
dxtiA(x)e-ikT. 

The amplitude of the 0 mode is represented by the vector 
potential SA = e&4, so that 

6E,(x) = - ( ~~$+f$M . > 
Since we have assumed a /& = 0, it follows that 

(5) 

SE,(x) = i(w/cfSA(x), (6) 

where we assume an exp( - iwt) dependence. Retaining the 
finite Larmor radius correction only in the resonant term, 
both methodsls3 lead to an integral equation for z(k) giv- 
en by 

(k’-$) x(k) + ~e-k2P2~2~o c2 (F) m(k) 

Xe i(k’-kk)((L’-lnO)LB/lROSA(k,)dk,, (7) 

where R, = n(O) and p = u,/s1, is the electron Larmor 
radius. In Eq. (7), one term is resonant, say o = ma,. 
For the nonresonant terms, the exponential 
exp i[ (k ’ - k) (w -- Xl, )L,/W, ] will be rapidly oscillat- 
ing; it therefore ave.rages to zero except for k ’ = k. Since we 
are considering the fundamental resonance we take m = 1. 
Separating the nonresonant terms from the resonant one, 
Eq. (7) becomes 

‘ 2 
“@P LBe - k$3/4 

cz 

z(k’)dk’. (13) 

Equation (8) describes the 0 mode propagating at right an- 
gles to the nonuniform magnetic field, given by Eq. ( 1 ), in 
the vicinity of the fundamental electron cyclotron reso- 
nance. The wave propagates in the direction of the nonuni- 
formity and the equation is valid for large Larmor radius 
kp > 1, limited only by the constraint kp Q LB/p. A general 
solution of Eq. (8) has not yet been given. 

Ill. THE OPTICAL IDEPTH 

We shall now consider the solution of Eq. (8) with the 
simplifying assumption kp ( 1, Let us first review the tech- 
nique used by Antonsen and Manheimer.’ Assuming 
k ‘p’ 4 1, Antonsen and Manheimer’ were able to make the 
following approximations to simplify Eq. ( 8) : 

Furthermore, the integral in Eq. (8) is approximated by tak- 
ing 

e - k’2P*‘41, [ (kk ‘p2)/2] N kk ‘p2/4. 

Neglecting the nonresonant terms on the right-hand side of 
Eq. (8); Antonsen and Manheimer’ obtained 

k2- 

2 
@P p2 

s 

k 

=-- iLB -.-k 
c24 -02 

k ’ 6A( k ‘)dk ‘. 

Now-differentiate E.q. (9) with respect to k, giving 

(9) 
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+iL,s- 
= k=v2, - 

2 4fi; sEz(k) 

(10) 

Note that we have used Eq. (6) to replace m(k) with 
6E, (k) in conformity with Ref. 1 and that L, in Eq. ( 10) 

corresponds to - L in Ref. 1. Equations (9) and ( 10) may 
be solved for SE I (k), which on inverting the Fourier trans- 
form yields 

Xeap(ikx-iL.cdk’s), (11) 

where 

E(k) = (c=k=/m=) - 1 + (w;/w=), (12) 
G(k) = $(w;/w’, k ‘p’. (13) 

The electron cyclotron second harmonic resonance was also 
described in a similar manner. Equations analogous to Eq. 
(9) were obtained for 6E, (k) and SE,,(k), which were 
expressed in terms of SE f. (k) defined by 

SE * (k) = a,(k) fiSE,(k). (14) 
The equations obtained by Antonsen and Manheimer’ in 
this case were 

$-+SE+(k)-$- SE-(k) 
PO 

- 2iLa2S -c=SE+(k’)dk’=O, (15) 

-5 SE+(k) +($- 1 -C SE-(k) =0, (16) 
10 >- 

where we use the notation of Ref. 1. Equations ( 15) and 
( 16) may be solved by differentiating Eq. ( 15) with respect 
to k, giving 

d - 
K 

k- 1 -$SE,(k)] 
dk 2~’ 

-5% [k==(k)] 

- 2iLa’S 5 SE, (k) 

- 2iLa2S 
s 

k 
&’ k’c= - - SE+(k’) =0 (17) 

-00 c-o= 
and eliminating SE- (k) using Eq. ( 16). This procedure 
yields SE+ (x), after Fourier inversion, in a form corre- 
sponding to Eq. ( 11). The explicit result is given by Eq. (20) 
of Ref. 1. These expressions for SE, (x) and SE+ (x) were 
evaluated asymptotically by Antonsen and Manheimer with 
the aid of contour integration, and the various wave coeffi- 

cients were deduced. In particular, the standard6 transmis- 
sion coefficients for the 0 mode crossing the fundamental 
resonance and the X mode crossing the second harmonic 
resonance were obtained. For the second harmonic reso- 
nance, Antonsen and Manheimer obtained the result that 
the energy lost by the incident X mode was mode converted 
to the electron Bernstein wave. No energy was dissipated by 
the electrons. 

We now summarize the results of a similar calculation 
.by Lashmore-Davies and Dendy.= The approach of Ref. 2 
differs from Ref. 1, but the same model magnetic field [Eq. 
( 1) ] is assumed and the same resonance condition, given in 
Eq (2), is obtained. The following, self-consistent, local dis- 
persion relation is obtained for the 0 mode crossing the fun- 
damental resonance: 

k=++ “; $kp[WG 1 + ‘1 
T 

la2 WL, +-A- C= 2v k 2~251 [ 5, ZG, ) + 11. 
T 

(18) 

Equation ( 18) can be solved perturbatively for k, assuming 
k = k, + Sk where k, is the cold plasma solution.2 The 
optical depth is then obtained by carrying out the usual inte- 
gration across the resonance layer 

I 

m 
r=2 Im Sk dx. (19) 

--m 

Again, the standard result6 is obtained for the optical depth, 
in agreement with Ref. 1. The same procedure was also car- 
ried for the X-mode second harmonic. The dispersion rela- 
tion is given by Eq. ( 123) of Ref. 2 and the standard result6 
is obtained, in agreement with Ref. 1. 

However, there is a significant difference in the interpre- 
tation of the results obtained in Refs. 1 and 2. This difference 
is most clearly illustrated in the case of the second harmonic. 
Antonsen and Manheimer’ found that the energy lost by the 
X mode, when incident from the high-field side, was mode 
converted to the electron Bernstein wave. For the X mode 
incident from the low-field side the energy is divided be- 
tween transmitted, mode converted, and reflected channels. 
Energy is conserved amongst these three channels, and no 
energy is dissipated. 

By contrast, it is clear from the calculation of Lash- 
more-Davies and Dendy’ [cf. Eq. ( 123) of Ref. 21 that dis- 
sipation will occur as the X mode crosses the second har- 
monic resonance from either the high- or low-field side. This 
is because the calculation of the resonant term using the res- 
onance condition, Eq. (2)) gives rise to the plasma disper- 
sion function.2’7 As a result, energy is dissipated by the elec- 
trons with a well-defined absorption profile. 

Since both calculations start from the same resonance 
condition, it is of interest to discover the source of this differ- 
ence. Both calculations have approximated the exact prob- 
lem illustrated by the integral equation given in Eq. (8). One 
possible source for the difference is that in Ref. 2 only the X 
mode is included in the calculation and mode conversion is 
excluded by the single-mode approximation. However, even 
if mode conversion was included, it is clear from the reso- 
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nance term in Ref. 2 that dissipation would still be present, 
which would affect both the X mode and the electron Bem- 
stein wave. Since Antonsen and Manheimer carried out a 
full wave calculation, their result may appear to be more 
general. However, the treatment of the resonance term by 
Antonsen and Manheimer is less accurate than that of Lash- 
more-Davies and Dendy. It is this feature that we now dis- 
cuss. 

Following the method described in Ref. I, the following 
resonant term for the 0 mode at the fufidamental is ob- 
tained: 

uvl dv, du dt’ afo 
au 

X 
J, (&j&b& 6- 8) 

(x+ (vJi20)sine+itL) - 
(20) 

Here E is a positive~infmitesimal introduced to satisfy causa- 
lity requirements, b = kv, /Cl,, k, has been taken to be zero 
and the other quantities have their usual meaning and zre 
defined in Ref. 1. In order to include the x dependence of 2,) 
which arises from the assumed linear magnetic field varia- 
tion, Antonsen and Manheimer introduced a further Fourier 
transform 

dkl exp(ik,x) z (Ml 1, 
P 

(21) 

vIu dv, du d6$Jl &J,(8) 

Xexp 
vi sin 8 

ik, n + i( 8 sin 6 - 8) . (221 
0 

Using the Bessel identity this is written 

x=2?riL% 
s 

qudq du~J,($+g,)J&), (23) 
P cd= 

where &, = k, v,/R,. The resonant integral given by Eqs. 
(20) and (23) is still exact at this point. It is here that An- 
tonsen and Manheimer make a further approximation in or- 
der to carry out their full wave trea;men,t: they take only the 
first term in the expansion of J, (b + b, ), This procedure 
truncates the Fourier transformation in Eq. (2 I), resulting 
in a_loss of information on the resonance. The expansion of 
J, (b) corresponds to the usual finite Larmor radius expan- 
sion, and this approximation is made in both Refs. 1 and 2. 
However, Lashmore-Davies and Dendy did not Fourier ex- 
pand the resonance but evaluated the resonant integrals ex- 
actly, following the treatment of Lee et aZ.7 

Making these expansions and assuming a Maxwellian 
equilibrium distribution function, Eq. (23) is approximated 
by 

(24) 

Using Eq. (24) to form the resonant current, changing the 
integration variables in the Fourier transform, and substitut- 
ing into Maxwell’s equations, one obtains the O-mode equa- 
tion 

kk ‘V’T 
m dk ’ 4n~ E, (k ‘) eikr = 0. 1 (25) 

This gives Eq. (9), corresponding to Eq. (30) of Ref. 1. 
The approximation of the Fourier transform of the reso- 

nance term given in Eqs. (21) and (22) is equivalent to an 
asymptotic expansion of the resonant denominator in Eq. 
(20) retaining only the first two terms, since 

1 1 v, sin B -s--p, 
x + (q/f-lo )sin 8 x x=n, 

(26) 

Substituting Eq. (26) into Eq. (20), the 0 integration gives 

(i),i(hsin 8- 8) 1 v, sin % 
x 00 

~1 Jf (&) 
X 

-~~J,(~)J~(~)~, 
X2t-lo 

where we have neglected a term proportional to J, (6) J, (8). 
The x dependence contained in Eq. (27) may now be Four- 
ier transformed as before to give the same result as Eq. (24). 
Thus, as stated, Antlonsen and Manheimer’s treatment of the 
resonance is equivalent to taking the first two terms of an 
asymptotic expansion of the resonant denominator. An ex- 
act treatment of this integral leads to the plasma dispersion 
function, which is associated with a wave-particle resonance 
and a smooth profile. In contrast, the treatment given by 
Antonsen and Manheimer resufts in a wave equation with a 
singularity at the origin. The inclusion of the second term in 
the asymptotic expansion of the resonance in Ref. 1 has the 
important consequence of satisfying the conservation of en- 
ergy.5 Without this term the full wave equation does not 
satisfy this condition. 

IV. THE WAVE EQUATIONS AND CONSERVATION OF 
ENERGY 

We now return to Eq. ( 10) for the 0 mode and Eqs. 
( 16) and ( 17) for the X mode. Let us first consider the 0 
mode and associate a differential equation with Eq. ( 10). In 
order to do this, we differentiate Eq. ( 10) with respect to k, 
giving 

-$t$) mz(k)] 

w= 
i iL ~-...-.~ [k2mz(k)] 4 

c= 4n; dk 

*P = 4 - Z‘L-- 
c= 4Q2;: 

k B,(k) =O. 

We have replaced 1, by - L in going from Eq. (10) to Eq. 
(28) in conformity with the convention of Ref. 1. Equation 
(28) is the Fourier transform of the differential equation 

SE,(x) +xL$ 4- d2 
--SE,(x) 

c= 4R; dx= 

-L u2 2~ d -f------SE,(x) =o, 
c= 4ft; dx 

(29) 
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which can be written 

The last term in Eq. (29) arises from the second term in the 
asymptotic expansion of the resonance given by Eq. (26). If 
this is neglected, Eq. (29) reduces to Budden’s equation 
which, for comparison with Eq. (30), can be written 

( $+$$-$)%+(1-$)s,=O. 

(31) 

We note that if 4 is a solution of Eq. (3 1 ), dqb/dx is a solution 
of Eq. (30). This is evidently the reason why Antonsen and 
Manheimer obtained the same transmission and reflection 
coefficients as are given by the Budden equation. The Bud- 
den equation, however, does not conserve energy. 

Let us now consider the conservation properties of Eq. 
(30). Multiplying Eq. (30) by SE r and subtracting the 
product of the complex conjugate equation with SE, yields 
the result 

=O. (32) 

Hence the differential equation which results from a theory 
that includes the particle response to the nonuniform mag- 
netic field does satisfy a conservation relation. The first term 
in Eq. (32) is the Poynting flux and the second term is the 
kinetic power flow of the particles. Any loss of energy from 
the incident wave which occurs is the result of the pole at 
x = 0 which, in the usual way, is taken to give an imaginary 
part &(x). 

Next, consider the case of the X mode at the second 
harmonic. This is described by Eqs. ( 16) and ( 17) taken 
from Ref. 1. We differentiate Eq. ( 17) with respect to k, 
giving 

d2 - 
K 

=- 1 _,>6E,(k)] 
dk2 2w2 

-5s [k*=(k)] 

-2iLa’6$ 6E+(k) =O. (33) 

Equations ( 16) and (33) are the Fourier transforms of the 
following differential equations: 

c2 d2 ---SE+(x) - 
%a2 dx* 

Lc+ 1 ++E-(x, =O, 
2w2 dx2 IO 

c’ d2 --+ 1 +c 
20’ dx2 

” d2 SE-(x) cm+(x) --- 
m 20’ dx* 

2La’S c2 d 2 
+x --J 2 SE+(x) 

2La2S c2 d 
--o,z6E+(x) =O. 

X2 
(35) 

We note that the last term in Eq. (35) comes from the second 
term on the right-hand side of Eq. (26). Equations (34) and 
(35) combine to yield a fourth-order equation. Again, if 4 is 
a solution of the fourth-order equation which results from 
neglecting the last term in Eq. (35), d@dx satisfies the com- 
plete fourth-order equation. As for the 0 mode, this means 
that the transmission and reflection coefficients of the X 
mode will be independent of whether the gyrokinetic correc- 
tion is included, since k * for this mode tends to the same 
constant value on both sides of the resonance. On the other 
hand, the wave number of the Bernstein mode is indepen- 
dent of x, so that the energy flow in this wave will depend on 
the model used. 

To analyze the conservation properties of the Antonsen 
and Manheimer model, we use Eqs. (34) and (35). Manipu- 
lating these equations as for the 0 mode, we obtain 

$(Im[aET (1+4%6)$SE+ +SE*_ $6E_ 

---SE: &SE 
dx - 

-6E*_ -&6E, (36) 

This is the equation for the conservation of energy for the 
second harmonic resonance. The term proportional to x - ’ 
represents the Bernstein wave, and the other terms are the 
Poynting flux. 

This identification of a differential equation with the 
Fourier transform solution of Antonsen and Manheimer 
makes it clear how the finite Larmor radius term is crucial 
for energy conservation. It also makes clear how their ap- 
proximation in the kernel of the integral equation loses the 
finite width damping profile. 

V. FULL WAVE EQUATIONS WITH DAMPING 
In this section we return to the exact integral equation, 

and develop a method of obtaining full wave equations that 
retains both the energy conservation properties noted in the 
last section and the finite damping profile as discussed by 
Lashmore-Davies and Dendy.2 For the O-mode problem 
the integral equation can be written 

E(k)E(k) - iL $ 

s 

k 

a2 -ca 
xe- k’kp2’2E(kr)dk’ = 0, 

where e(k) is the usual cold plasma term, 

e(k) = 1 - (w;/02) - (k2c2/m2). 

(37) 

(34) 
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s 
m 
-co 

e%(k>E(k>dk - iL 3 
J 

m 
eikr dk 

-m 

J k 

X e 
-co 

Xe-k’@/2E(k’)dk’ = 0. (38) 
We now change the order of integration in the second term, 
which becomes 

2 m 
UP - iL - 

J w2 --m 
dk’E(k’) m 

J 
k, dkeihe- (k- k’)‘p2/4 

x~ 
1 (39) 

If we assume that E(k) contains only long-wavelength com- 
ponents, with kp Q 1, then in (39) the k ’ integral will only be 
important over a range with 1 k ‘p 1 g 1. The inner integrand, 
over k, will then be small, because of the factor e - (k - k ‘)p2’4, 
except when kp is less than a few times unity, Combining 
these two conditions, we see that in the important part of the 
range af the double integral, k ‘kp2/2( 1, so that in those 
parts of the integrand which depend on this variable we can 
make a power series expansion. We begin by retaining only 
the lowest-order term, putting 

I, (kk ‘p2/2) e - kk ‘p212 z k ‘kp2/4. 

Now, (39) becomes 
2 6s 

@P - iL - 
J 

dk’E(k’)- 
J 

-dkTe e ikx - (k- k‘j2p2/4 

u* -m k’ 

2 m 

= -&!” 

J u2 -m 

dk’E(k’)eik’” 

X r 
* & k’(k+k’fp* eikxe-k2p2/4 

Jo 4 
Now 

J m 
m eik.xe - kzp’/4 dk _ e - z/p’ - e - k =p=/4 & 

0 J - 2ir/pz 

(42) 

so that Eq. (40) becomes 

Including the inversion of the term Ef k)E( k) gives the dif- 
ferential equation 

$2 ,-,+ i!e dE + l-WI:E=O. 
(,)I dxj ( cu2> 

If we take the asymptotic limit of the 2 function in Eq. (43), 
we regain Eq. (30). Also Eq. (44) has a conservation law of 
the form 

(45) 

representing a bala.nce between the divergence of power flow 
and the dissipation due to the fact that Z has an imaginary 
part Zi . 

This expansion procedure is not entirely self-consistent, 
since E(k) is assumed to have only components with kp 4 1, 
although it satisfies Eq‘ (43), which evidently has coeffi- 
cients with much shorter wavelength Fourier components. 
Another way of seeing this is to note that we are assuming 
x;O< 1 in the first term of (37) but later assume that in the 
second term the important range of k extends up to 1 kpl a 
few times unity. Ifwe do not make any expansion, then the 
inversion of the Fourier transform can still be carried out, 
but leads to a much more complicated integrodifferential 
equation. This equation, and a comparison of its solutions 
with those of the differential equation is currently under in- 
vestigation. 

If we consider higher-order terms in the expansion 
equation (38), then it is obvious that all terms are of the 
form u, (kk r)np2n where a,, is a constant coefficient. In place 
~of Eq. (41) this will produce a term 

2 m 
- j&r& EL!” J u2 -- 

dk’E(k’) m&ei(k+k’)X 

J a 

Xe-k2P2’4anp2nk’n(k+ k’), (46) 
On inverting the F’ourier transforms, each factor ik gives a 
derivative acting on %(x/p) and each factor ik ’ gives a deri- 
vative acting on E’(x), Thus, Eq. (46) gives 

The procedure given here can be used to translate resonant 
terms in the dielect.ric tensor elements into differential oper- 
ators to arbitrary order in an expansion in kp with very little 
effort. For consistency, higher-order nonresonant terms 
should also be included, but these are easily obtained and do 
not involve x-dependent coefficients. 

For comparison with the results of Lashmore-Davies 
and Dendy,2 it is of interest to make the approximation 

f 1 
- k ‘@/2 

so that Eq. (37) yields 

-Lc&~~z(yz] 

+-g I 1 -w;:Lezx 01 dE 2 4 P -z 1 
+- 

( > 
u2-uj E=-j, 

2 
(48) 

If a Wentzel-Kramers-Brillouin (WKB) approximation is 
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made in Eq. (47) and terms up to k ’ retained, we can repro- 
duce the local dispersion relation, Eq. (77) of Ref. 2. 
[Note that, in this equation, {- i Z(g- , ) z 1 and 
5 _ , Z’(c _ , ) -0.1 However, the present calculation shows 
that for a self-consistent full wave analysis of energy flow 
and conservation, either the last term in Eq. (77) of Ref. 2 
should be neglected or extra terms corresponding to the 
higher derivatives of E in Eq. (47) should be added. 

VI. CONCLUSIONS 
We have investigated the effect of magnetic field varia- 

tion across a Larmor orbit on wave propagation near a cyclo- 
tron resonance. The reason why the full wave calculations of 
Antonsen and Manheimer’ did not reproduce the finite 
width absorption profile at perpendicular incidence, predict- 
ed by the theory of Lashmore-Davies and Dendy,2 has been 
explained in detail; so has the role of the finite Larmor radius 
corrections in a nonuniform magnetic field in giving the cor- 
rect energy conservation properties. 

We have shown how to derive full wave equations which 
combine the features of both theories. The placing of deriva- 
tives with respect to the field and to space-dependent coeffi- 
cients comes out in the form needed to give an energy conser- 
vation relation, and the resonant pole of the Antonsen and 
Manheimer treatment is replaced by a plasma dispersion 
function. The resonant contributions to the dielectric tensor 
elements can be expanded to arbitrarily high order in the 
ratio of Larmor radius to wavelength in a very simple way. 
The simplicity of the method compares favorably with varia- 
tional and other techniques used previously for obtaining 
wave equations in an inhomogeneous plasma.8-” 

Although our detailed calculation relates to the electron 
cyclotron 0 mode at perpendicular resonance, we empha- 
size again that this is just for convenience in illustrating the 
method, and that full wave equations for any wave in the 
vicinity of a cyclotron resonance can be obtained in this way. 
The analysis is of particular relevance to ion cyclotron reso- 
nance for which the relativistic broadening is negligible in 
comparison with the perpendicular damping mechanism 
discussed in this paper. Nor is the theory restricted to per- 
pendicular incidence. We shall not discuss the inclusion of a 

finite value of k,, in detail, but simply point out that the most 
important change which it introduces is to replace the first 
exponential factor in the integral in Eq. (37) by 

exp[ - (k- k’)‘(p2/4)(1 + k;L2)], 

and hence the term in Eq. (42) becomes 
1 Z 

X 

@(I +k$52)“2 > ~(1 +k;L2Y2 * 

The argument of the plasma dispersion function is the same 
as that which occurs in the local theory of Lashmore-Davies 
and Dendy, I2 which includes the effect of arbitrary k,, . With 
the methods described in this paper, we are now in a position 
to extend the results already given by Lashmore-Davies and 
Dendy,2,‘2 and use full wave calculations to find the modifi- 
cation to reflection and mode conversion coefficients pre- 
dicted by the gyrokinetic theory. 

If k ;L 2 is large enough then the problems outlined 
above, regarding the consistency of the small kp expansion, 
do not arise and, in the appropriate parameter range a per- 
fectly self-consistent small Larmor radius approximation 
can be obtained. In the large Larmor radius regime, which is 
important in current experiments, we must again go to an 
integrodifferential equation. 
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