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The absorption mechanisms of whistler waves in cool, dense, cylindrically
bounded plasmas

B. M. Harvey and C. N. Lashmore-Davies
AEA Technology, Fusion, Culham Laboratory (Euratom/UKAEA Fusion Association), Abingdon,
Oxon OX14 3DB, England

(Received 1 June 1993; accepted 20 July 1993)

It can be shown that whistler waves with low parallel phase velocity can be subject to strong
cyclotron damping, even when the wave frequency is well below the cyclotron frequency. This
resonance arises as a result of the Doppler effect which is proportional to the plasma density and
increases the frequency experienced by electrons moving in the opposite direction to the wave.
In this paper the dispersion relation of whistler waves in a cylindrically bounded plasma is
obtained and then solved. This geometry is desirable for its relevance to experiment and also for
comparison with theoretical results by other authors. In addition to cyclotron damping, Landau
damping as well as electron-ion, electron-electron, and electron-neutral collisions are all
included thus enabling the relative importance of these damping mechanisms to be evaluated.
The dispersion relation that is obtained is used to explore the transition from Landau dominated
damping to cyclotron dominated damping.

1. INTRODUCTION

The object of this paper is to investigate the damping
of whistler waves (sometimes called helicon waves) in a
homogeneous, magnetized, and bounded plasma. This is
motivated by the use of radio frequency power in the pro-
duction of dense plasmas for applications such as plasma
processing. Particular attention is paid to examining the
relative significance of various heating effects including col-
lisional damping as well as the collisionless damping mech-
anisms such as Landau and cyclotron damping.

The effect of Landau damping on bounded whistler
waves has been calculated previously using kinetic theory
by Dolgopolov et aL ,' and used to explain the strong
damping they had observed in experiment.2 Recently,
Chen3 used fluid theory with a kinetic correction to show
that Landau damping could explain the high ionizing effi-
ciency observed in experiments" and this result was in-
voked by Zhu and Boswell7 to explain the selective excita-
tion of the upper lasing level of Ar II. Because of the very
low wave frequencies in these experiments, more than two
orders of magnitude below the cyclotron frequency, cyclo-
tron damping was quite legitimately ignored, although
Landau and collisional damping were both included by
Chen8 and Shoji et al 9

Cyclotron damping of whistler waves is normally only
considered when the wave frequency is close to the electron
cyclotron frequency. At this frequency, the right-hand po-
larization of whistler waves makes for particularly efficient
cyclotron damping.'0

In this paper intermediate frequency whistler waves
are modeled. Although the frequencies of these waves are
well below the cyclotron frequency, the cyclotron reso-
nance terms are retained in full since it will be shown that
for high density plasmas, o)/f/I3 (C/VT )2, the density
dependent parallel wave number can be large enough to
bring thermal electrons into cyclotron resonance.

For each of the collisionless damping mechanisms, the

regions of velocity space, in which the electrons absorb the
energy lost by the wave, can be calculated for the varying
plasma parameters. Since these results are calculated for
relatively low temperature plasmas they raise the possibil-
ity, when applied to partially ionized plasmas, of focusing
energy on the most efficiently ionizing electrons for a cost
effective radio frequency plasma source.

II. WAVE EQUATION

The spatial evolution of the electric and magnetic fields
is given -by Maxwell's equations

VXE= -DC'

VXB=IL 0J+ P-t 

(1)

(2)

A. Cylindrical geometry

For a wave varying as exp(e-iot), the components of
Eq. (1) in cylindrical geometry are

I DE, (9E, =iBr,

Dr DE0 -i

ID aIDEr

while the components of Eq. (2) are

D9Br D9B, io)

(3)

(4)

(5)

(6)

(7)
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I a 1 aB ir
- - (rB,6) -- -j-=yOJ,--j E,. (8)

B. Nonscalar conductivity

In the absence of collisions, the behavior of the velocity
distribution of a particular plasma species is given by the
Vlasov equation. For small amplitude waves this can be
linearized about a Maxwellian equilibrium,

Mf af I q af'1 q a]'0-+v- -±vXO =-E-E WIa~T a~x m m (9)

For high frequency waves we need only consider the
response of the electron distribution to the electric field.
Thermal effects parallel to the magnetic field (such as the
Doppler shift) are retained in our calculation of the per-
turbed electron distribution function, while thermal effects
perpendicular to the magnetic field (such as the finite Lar-
mor radius) are neglected. Fourier transforming Eq. (9) in
space and time, using cylindrical coordinates for velocity,

v.= v, cos 0, vy= v, sin 0,

and writing fI as a Fourier series in 0, we obtain an infinite
system of coupled equations for the Fourier components of
the perturbed distribution. Ignoring finite Larmor radius
effects decouples the equations and so only the three Fou-
rier components which contribute to the electric currents
need be considered:

J -iJ

e7T dv1 v2 .f20 dv..f 1

= EoiCOP Zco -fl\_~ 

kzVT \ k.VT / -

J, - e2lT f{ dv1 v1 10 .

(13)

dv. vJ 1 .

2 (c

=- 2Jx 0)C)P ' ~kTy-

v`2

~e21rf dv1 v~ 2 f 0 dV~f1 +

= _ i zCO()2Zo+ fl)-

(14)

(15)

where

2 e2ne

P meeo

Finally, noting that changing to cylindrical coordinates
only modifies the phases of the right-hand and left-hand
components of a vector,

= 2 J Er -=E

2eE~vj
mvTvfT

i~o-k.v._fj_ eE~vAI

i(cEo+fl-kpv,)fi+=-y- fo,

with

- E.-E~- E~,+iEy
L V2 Z = 'E 

eBO 2 2kBT
e =-, TMe

and

f&IV v,VZ,)=fjz(v.l vz)+-vf,-(vL ,vz)eie

+v2f,+(vl ,v_)e- .

The first velocity moment of the perturbed distribution
multiplied by the charge of the species gives the perturbed
electric current,

(10)

~ =~ ,E+= Er+ =iE~= +e'O,J+ V2 ~~~~v2 +

(16)

( 11) these currents can be combined with Maxwell's equations
to give a set of linear equations for the components of the
electromagnetic field.

(12) The right-hand component is given by

(17)GE_ = _(in2 E,-cB_),

where

kzVT (kZVT)

and

c /a i a \ c (a m\
- <ar ra) c ar+ r)

The left-hand component is given by

G+E+ =a+(inA~+cB.,),

where
2

j (co +f 2
G+=I+ cOkZvT kzvT Z

and

(18)
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a ca da i C a m\

The parallel component is given by

G.E,= (l/r) [a_ (rcB+)-a+ (rcB2],

where

GZ= 1+2E lk r (kzvr

These equations are valid for any high frequency v
but in this paper attention will be restricted to pla
with o,>f1 and waves with o < Q.

Completing the set of equations are those for the
turbed magnetic field,

GcB_ =a- [in~cB2 + (G- +nZ)EzI,

G+cB+ =a+ [incB,- (G+ +nZ)Ej,

cBz=(l/r) [a+(rE2-&_(rE+)].

Multiplying Eq. (22) by GG+, eliminating G_E_
[using Eq. (17)] and eliminating G+E+ [using Eq. (18)]
gives an equation containing only E, and Bz,

SLm(CBz) +G+GcBz-inzDLm(Ez) =0.

The differential operator Lm is

2
Lm(.') =- a_ (ra9+0)

2
=-_ a+ (ra-?P)

-r

C2 0,2 ao M m2 

= -- t+ r Tr :F )

while S and D are

SG+ +G_ G+-G_
-= 2 ' -= 2 

Similarly, multiplying Eq. (19) by G_ G+, elimin
G_B_ [using Eq. (20)] and eliminating G+B+ [usin
(21)] gives another equation containing only E, and

inzDLm(cBz) +Sn2LLm(Ez) + GI+GG Lm(Ez)

+G+GzG-E,=O.

The eigenfunctions of the operator Lm
Jm[a((or/c)I and Nm[a(wr/c)] with eigenvalue -a 2

requirement for finite fields at the origin excludes sold
based on the Neumann function.

The Hankel transforms of Eqs. (23) and (25) giv
(26)

(Sa2 - G+ G..

in'Da2
_-in'Da2 ) b 

(Sn + G+ G-)a 2 -G+ GG- e)

cBz=bJmr a , Ez=eJm(a c).

The term inD couples the rows of Eq. (26) and thus
(19) prevents pure TM (transverse magnetic) and TE (trans-

verse electric) solutions from propagating along the cylin-
der. Setting n,=O does allow 0-mode (TM) and X-mode
(TE) solutions; however for a wave propagating along the
cylinder n, is clearly nonzero.

For solutions of this system of equations to exist the
wave, determinant must be zero. This condition gives a quadratic
smas equation for the radial eigenvalue -a 2 .

per- a4 (S+n2)-a2 [G+G_+S(G2 +n2)I+G+GzG-=O.(27)

(20) The existence of two roots is of course expected; per-
(20) haps less expected is the fact that both solutions are re-
(21) quired if conducting wall boundary conditions are to be

satisfied
(22)

cB,=biJm,(al/ ) +b2Jm(a 2t )or,

Ez=eiJm.ai c) +e 2 J.(a 2 r).

As a preliminary step note that the first row of Eq.
(26) implies that

inDa,
bj= - e1 , j = 1,2. (28)

Sa'- G+ G

Subtracting the product of G+ with Eq. (17) from the
product of G_ with Eq. (18) gives EO in terms of Ez and

(24) B-,

G~~~G iESaCmz in~mG+G-iEO=S Ca _, t_ E.)

-D- in,=L -- cB,. (29)

ating
ig Eq. At the conducting wall, both EO and E. must be zero.
I Bz This contrasts with the approach of Chen,8 where, a priori,

it is assumed that E,=0 everywhere. Later in the same
paper, a nonzero E, is obtained from J, in order to calcu-

(25) late Landau damping. Unfortunately, the E, obtained by
Chen does not vanish on the conducting wall. For the

I are frequency regime in which we are interested, the nonexist-
. The ence of any solution using only one root can be proven as
nations follows.

If a solution consisting of a single a exists then, from
ve Eq. the condition that Ez=O at the wall, a must satisfy

m c)O.

The condition that EO=O at the wall gives Eq. (30):

(23)

(26)

where b and e are defined by

a [or
(Sb - Dinze) - Jm, a c 0.

ar C lr~rw
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FIG. 1. Real and imaginary parts of n. as functions of density for the first
four radial modes corresponding to m= 1. The plasma has a 10 cm radius,
a temperature of 3 eV, and is in a magnetic field of 48.4 G. The wave
frequency is 13.56 MHz (fl/w= 10).

Using Eq. (28) to eliminate e in Eq. (30) gives b=O
which from Eq. (28) implies e=O. Therefore no nonzero
solution can be formed using only one root of Eq. (27).

The lack of single mode solutions to the conducting
boundary problem is related to the lack of TE and TM
modes in that it, also, is due to the term n 2D.

11. CONDUCTING WALL

Using both roots of Eq. (27) solutions to the conduct-
ing wall problem can be obtained for suitable values of G+,
G2, and G_.

Using Eq. (28) the magnetic field components b1 and
b2 can be eliminated in favor of the electric field compo-
nents el and e2. The boundary condition E 2=0 on the wall
gives e2 in terms of el. Applying the final condition EO=O
on the wall gives the dispersion relation for the bounded
wave

a,(G+G -a2S)Jm(a2 c )J_(a I )

-a 2 (G+G_-a1S)Jm(a, co)J_(a2rc)

Mc 2 2) Dim 
=-(a2-al)DJm a 2 )Jm (aI -) (31)

Both Eq. (27), and Eq. (31) are transcendental in the
parallel wave number kz. ZERINT (a general, complex root,
solver) is used to solve this system numerically for kz.

90 longitudinal

80~~~~~~~~~~~~~~~~N

° 40 \ " '
0 30\ " ' 
tR 20 E , | | I \ 

2 4 6 8 10 12 14 16 18 20 22 24 26

Density x 1012cm-3

FIG. 2. Cyclotron and Landau damping as functions of density for the
first four radial modes corresponding to m= 1. The plasma has a 10 cm
radius, a temperature of 3 eV, and is in a magnetic field of 48.4 G. The
wave frequency is 13.56 MHz (fl/w= 10).

It is found that for each m, a spectrum of k. solutions
exist, corresponding to different radial modes.

Whistler solutions are characterized by their
polarization-predominantly right-handed (E )-and
their direction of propagation-nearly parallel to the equi-
librium magnetic field. These characteristics will be most
easily found among solutions with E_ large and propor-
tional to JO. Using the Bessel function identities

(32)

(33)a_j_'acr ~ _1( o)

it is clear that m = 1 modes will have E_ proportional to

Jo-
Setting m = 1, the dependence of the first four radial

modes on the plasma density can be calculated. The results
for a 13.56 MHz wave propagating through a 3 eV plasma
are plotted in Fig. 1. The equilibrium magnetic field used is
0.004 84 T to give a cyclotron frequency of 135.6 MHz (an
order of magnitude larger than the wave frequency). For
comparison: in their experiment Perry and Boswell5 use
the same wave frequency in a 0.005 T magnetic field.

The Landau damping rises rapidly at first, as the in-
creasing n, reduces the required velocity for particle reso-
nance. At higher densities the increase in parallel conduc-
tivity is counterbalanced by the changing polarization of
the electric field; the parallel component (E 2) decreases
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and the right-hand component (E_), increases. Finally as
the density, and so n., continues to increase, cyclotron
damping rises rapidly to become dominant. Continuing to
raise the density increases the right-hand component of the
electric field and reduces the required velocity for cyclo-
tron resonance. Both effects lead to a further rise in cyclo-
tron damping.

IV. POWER DISTRIBUTION BETWEEN RESONANCES

Since the applied frequency co is real, the electromag-
netic energy density T is independent of time

T=!(e0E* E+y 0H*- H),

and so employing Poynting's theorem:

Re[V - (E*XH) +E* * J] =0.

(34)
28

24

20

16

12

8

4�

(35)

The electromagnetic power transferred from the wave
to the plasma can now be calculated from the loss of Poyn-
ting flux, or the E* * J gain of the plasma. Moreover, since
the gain of the plasma separates naturally into Landau,
cyclotron, and anomalous Doppler components, the rela-
tive importance of each effect can be calculated:

M COl-(l/co)
Re(E* .J)=Im KPZ ii oEI'

[2v '(On, VTn, )z

r 2 ~ 2 c Z(c \110E.
+ Im - - --- 1 + Z i E E 21+ l1I~fl I V+uTnz \ Tnzf ]J

+IM [ P c z(c(l /)) [oIE+ 12.

(36)

The terms on the right-hand side of Eq. (36) give,
respectively, the cyclotron damping, the Landau damping,
and the anomalous Doppler damping.

These three damping effects occur at three distinct par-
allel velocities. Electrons traveling in the opposite direction
to the wave at a velocity of (w-f)1/kz experience a fre-
quency increased by the Doppler effect to the cyclotron
frequency and cyclotron damp the right-hand polarization
(E_) which rotates in the same sense as the electrons.
Electrons moving with the wave at the parallel phase ve-
locity experience a constant field and Landau damp the
parallel polarization (Es). Finally, electrons moving faster
than the phase velocity experience a wave with the oppo-
site time dependence; the left-hand polarization (E+) now
rotating in the same sense as the electrons. Thus cyclotron
resonance occurs for the left-hand polarization at a parallel
velocity of (co+ Q ) /k, and is referred to as the anomalous
Doppler resonance.

Using Eq. (36) the percentages of the total power lost
from the wave that are due to cyclotron, Landau, and
anomalous Doppler damping can be calculated. It is found
that the power loss due to anomalous Doppler damping is
negligible over the entire density range. This was to be
expected since the electric field polarization became unsuit-
able for anomalous Doppler damping at a lower value of n,

2 4 6 8 10 12 14 16 18 20 22 24 26

Density x lOkn2enr

FIG. 3. Real and imaginary parts of n. as functions of density for the
lowest radial mode corresponding to m=O . 3. The plasma has a 5 cm
radius, a temperature of 3 eV and is in a magnetic field of 48.4 G. The
wave frequency is 13.56 MHz (Q/o = 1O).

than that required to provide a large enough Doppler shift
to bring the left-hand polarized perturbation into reso-
nance.

A plot of the percentages of cyclotron and Landau
damping for the same range of parameters as were used in
Fig. 1 is given in Fig. 2, confirming the interpretation of
Fig. 1 given above.

In Fig. 3 graphs are drawn for the first radial modes
corresponding to m =0 . 3. It can be seen from this figure
that the m= I solution which was chosen earlier has the
lowest damping, particularly for densities around
1.6X 1013 cm-3 and below, where we would expect damp-
ing to be dominated by Landau damping. As the density is
increased to 2.5 X 1013 cm-3 and beyond, we would expect
cyclotron damping, to become dominant. In Fig. 3 we can
see that the graphs of Im(n,) obtained for a range of m
values converge at these higher densities. Moving away
from m = 1, m= 0 and m = 2 have very similar behavior to
each other showing heavier damping than the m= 1 solu-
tion while the heaviest damping occurs in the m =3 case.

Figure 4 confirms that Landau damping is dominant in
the density range (1.6X 1013 cm-3 and below) which
shows the strongest dependence of damping on m. The
difference in damping experienced by the different m can
be attributed primarily to differences in the amount of
Landau damping.

From Eq. (36) Landau damping is proportional to
- j 2 while, for a whistler wave which is predominantly
right-hand polarized, Eq. (19) implies that

3868 Phys. Fluids B, Vol. 5, No. 11, November 1993

Density xlO 2cm 3

-~ m=o -.-.- m=2

-_-- = I - - - m=3

H ---- -* - --s- - - - -- F -- /

, , , , _ . A...., ........ __.+ f g 

ca

E

B. M. Harvey and C. N. Lashmore-Davies 3868

Downloaded 08 Nov 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



right-hand I.,

////
/// "

I I 

2 4 6 8 10 12 14 16 18 20 22 24 26

Density x1O'2cm-3

~~m=0
- -- m=3

40

35

30

25
eV 20

15

10

5 

Energy of Cyclotron Resonant Electrons
I 

2 4 6 8 10 12 14 16 18 20 22 24 26

Density xlO12cm-3

in=0 -.-.- n=2

----- m= I - - - m=3

Energy of Landau Resonant Electrons

14T

70- 

° 60 N

50- 

o 

40- 
30- 

20

10 -

0
2 4 6 8 10 12 14 16 18 20 22 24 26

Density x1O'2 cm-3

FIG. 4. Cyclotron and Landau damping as functions of density for the
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FIG. 5. Resonant parallel energies of the electrons performing cyclotron
and Landau damping for m= 1 - 3. The plasma has a 5 cm radius, a
temperature of 3 eV, and is in a magnetic field of 48.4 G. The wave
frequency is 13.56 MHz (fl/w= 10).

-c fa m-1\
Ez -__ B_

ZG. (5r r

It is not surprising therefore that as we increase m - 1I
(Fig. 3) or the radial variation of the wave (Fig. 1), the
strength of the Landau damping rises.

A. Damping region

The electrons responsible for Landau damping lie in a
different region of velocity space from those responsible for
cyclotron damping. When o < f, the resonant parallel ve-
locities are in opposite directions (parallel to the wave for
Landau, antiparallel for cyclotron) and in the particular
case o = 0. lIl the electron energies involved differ by
nearly two orders of magnitude.

Identifying the region of velocity space in which power
is being deposited is important because of the energy de-
pendence of the efficiences of atomic processes such as ex-
citation and ionization as well as the efficiencies of plasma
processes such as current drive.

The parallel energies of the resonant electrons corre-
sponding to Fig. 4 are plotted in Fig. 5. By comparing
these graphs it can be seen that even when the cyclotron
damping has become dominant the required resonant en-
ergy is still well above the thermal value.

Also of interest is the spatial location of the power
deposition. To investigate this, the damping profiles for the
m=0. 3 are given in Figs. 6-9. The plasma density con-
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FIG. 6. Cyclotron and Landau damping profiles for the axially symmetric
(m =0) mode. The plasma has a 5 cm radius, a density of 2X 1013 cm-

3 ,
a temperature of 3 eV, and is in a magnetic field of 48.4 G. The wave
frequency is 13.5 6 MHz (1/co = 10).
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FIG. 7. Cyclotron and Landau damping profiles for the m= I mode. The
plasma has a 5 cm radius, a density of 2X 1013 cm-3 , a temperature of 3
eV, and is in a magnetic field of 48.4 G. The wave frequency is 13.56 MHz
(f/oW 10).

sidered is 2 X1013 cm- 3, with the rest of the parameters
taken from Fig. 3. It should be noted that the power fluxes
in Figs. 6-9 are not normalized!

In Fig. 6 the Landau damping accounts for 61.3% of
the total damping and is peaked on the axis, while the
cyclotron damping (38.7%) is strongest at a radius of 2.4
cm. This is as expected for the m = 0 case as E, behaves as
JO and E_ behaves as J1.
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FIG. 8. Cyclotron and Landau damping profiles for the m = 2 mode. The
plasma has a 5 cm radius, a density of 2X 1013 Cm-

3 , a temperature of 3
eV, and is in a magnetic field of 48.4 G. The wave frequency is 13.56 MHz
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FIG. 9. Cyclotron and Landau damping profiles for the m = 3 mode. The
plasma has a 5 cm radius, a density of 2 X 1013 cm"3 , a temperature of 3
eV, and is in a magnetic field of 48.4 G. The wave frequency is 13.56 MHz
(a/w= 10).

The roles of Landau and cyclotron damping are inter-
changed in the m =1 (Fig. 7) case with the cyclotron
damping peaked on axis and accounting for 62.5% of the
total damping while the Landau damping (37.5%) is
strongest at a radius of 3 cm. This interchange of profiles is
expected since E- now behaves as JO while E, behaves as
J, -

Finally profiles for m = 2 are given in Fig. 8. It will be
remembered from Fig. 3 that this case produces an almost
identical value of nZ to that obtained in the m =0 case. It
will also be remembered from Fig. 4 that the fractions of
'Landau damping (62%) and cyclotron damping (38%)
were almost identical to those obtained for m = 0. Despite
these similarities, the damping profiles are very different.
The maximum damping for m = 0 occurs on the axis where
m = 2 has no electric field and so no damping.

B. Radial power flow

It might have been expected that, in a cylindrically
bounded plasma, the perturbing fields would form standing
waves in the radial direction with no net radial power flow;
just as they do in the absence of dissipation. To understand
why the radial power flows in Figs. 6-9 are nonzero we
must consider the damping profiles in these figures. From
Eq. (36) the cyclotron damping is proportional to [E- 12
and so the cyclotron damping profile varies as Ij_ 12;

since the whistler wave is right-hand polarized, the trans-
verse electric field is dominated by I E- I (except at the
boundary where E+ and E_ are equal) giving an axial
power flow with almost identical profile. Landau damping
is proportional to I E, 12 and so has a different profile
( |jm 12). This difference in profiles implies the existence of
a nonzero radial component of the power flow.
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As an example, consider the case m = 0; where strong
Landau damping occurs on the axis, implying a significant
net inflow of power to this region. Since there is no axial
power flow in this region, the influx of power must be from
the radial direction. This interpretation is confirmed by the
plot of radial power flow.

As a further check, the divergence of both power flows
are summed and plotted and compared with a plot of the
sum of cyclotron and Landau damping. As expected from
Eq. (36), these plots match.

V. DIELECTRIC WALL

When the plasma is bounded by a nonconducting wall,
obtaining the boundary conditions from the continuity of
the tangential electric field requires the calculation of the
electric field in the dielectric.

For a dielectric constant e,

S=G_,d=G+,d=e-nZ,

D=O, Gzd=e.

Substituting these values in Eq. (27) gives

a2 =e-n'.

For the plasma parameters considered
n2>e for glass or vacuum, and so

a inz.

The electric and magnetic fields in the dielectric there-
fore behave as modified Bessel functions, reflecting the fact
that the wave is evanescent in these materials.

A. Thick dielectric wall

For a thick dielectric wall, defined by
jk2 (r. 2 - ri) I>1 only modified Bessel functions of the
second kind (K1m) need be considered. Modified Bessel
functions of the first kind (I,) are excluded by the require-
ment that E and B tend to zero as r tends to infinity.

At the plasma edge, the tangential components of E
and B are continuous. The continuity of E. at the dielectric
wall (at radius r. 1) implies

eiJm(a, cr) +e24(a2 c i) =e3Km(kzrwj) (40)

and the continuity of B, implies

biJm(ai cWWI +b 2Jm(a 2 c) =b3 Km(kZw1). (41)

These equations, when combined with Eq. (28), specify
the fields in the dielectric in terms of the field components
in the plasma, el and e2. The continuity of Eg

bJ(a WWI b2 J.+ Ctorwl im
a , C ) a 2 c) kZw

X -1 )elJm(al c ')

time3 b3
- Km(kZ.1) -- (kj

and of B

iGz Jlm a I +-J (a 2 H
~aj C /a 2 C

mcn2 [ bj Ja or 1 ) bo a ta cr~,\

WrL-a-', C a2k C]

b3Km(k1)

(42)

(43)

when combined with Eq. (28) gives two equations in two
unknowns el and e2 . This system of equations is solved
numerically using ZERINT.

(38) B. Dielectric layer between plasma and conducting
(39) wall

Introduction of a conducting wall some distance from
the plasma edge requires the inclusion of Im in the solu-
tions for the perturbed fields, giving two more degrees of

in this paper freedom.
In Eqs. (40) and (42) e3Km(kzrwi) is replaced by

e3Km( kZ 1 ) +e4Im(kZjw), while the requirement that E,
disappears on a conducting wall at radius r. 2 implies

Km ( kiw2 )
e4 = Im(kZw2 ) (44)

In Eqs. (41) and (43) b3Km(kZiwi) is replaced by
b3Km(kZ.w1) +b4 Im(kZw.) and in Eq. (42) b3K,,(kir,,) is
replaced by b3K,(k rkl) + b4IM4(kirj), while the require-
ment that E, disappears on a conducting wall implies

b4 - K (kr2)b3. (45)

As the thickness of the dielectric layer is increased, the
solution will return to the thick dielectric wall form. In
Fig. 10 the dependence of n. on the thickness of the dielec-
tric layer is shown for whistler waves with m = 0 - 3 in a
moderate density (1012 cm-3 ) plasma.

Although a conducting wall within a couple of centi-
meters of the plasma has a significant effect on n,, this
effect disappears rapidly as the wall is moved further from
the plasma. In Fig. 10 n2, typically, reaches its asymptotic
value at a wall radius of 8 cm or less.

Since whistler waves in higher density plasmas have
larger values of n2 , their electric fields decay more rapidly
in the dielectric. It is therefore expected that the effect of a
conducting wall at a fixed distance from the plasma will
become insignificant as the plasma density is increased. In
order to verify this, the refractive index n2 is plotted against
density in Fig. 11 for four different conducting wall posi-
tions, ranging from 1 mm from the plasma edge to 3 cm
from the edge. As the density increases, the four graphs
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FIG. 10. Real and imaginary parts of n, for m = 0 - 3 as a function of the
position of the conducting wall. The plasma has a 5 cm radius, a temper-
ature of 3 eV, a density of 1012 cm-3, and is in a magnetic field of 48.4 G.
The wave frequency is 13.56 MHz (fl/c)= 10).

coalesce, showing that even I mm from the plasma edge
the conducting wall ceases to perturb the wave.

VI. COLLISIONS

The effect of collisions on the perturbed velocity dis-
tribution is modeled using the BGK (Bhatnagar, Gross,
and Krook, Ref. 11) collision term:

Dfet( D ) =Vee(FefBe) +Vei(Fe-fe).

This describes the relaxation of the electron distribu-
tion function to thermal equilibrium with itself Fe at a rate
given by the electron-electron collision frequency (vee)
and to thermal equilibrium with the ions Fe at a rate given
by the electron-ion collision frequency (vei).

The collision frequencies used in this theory are aver-
age values, i.e., calculated for particles moving at thermal
velocities. The velocity dependence of collision frequencies
is ignored.

Here Fe is chosen so that electron-ion collisions con-
serve charge, while Fe is chosen so that electron-electron
collisions conserve charge (qn), momentum (mnu), and
energy (T),

Fe =(1+n4)fo' (46)

FIG. 11. Real and imaginary parts of n, as functions of density for four
different positions of the conducting wall. The plasma has a 5 cm radius,
a temperature of 3 eV, and is in a magnetic field of 48.4 G. The wave
frequency is 13.56 MHz (!/ol= 10).

T, v2 3

- Too -VT -
F,=�1+'+2"'+ A I

_T _ 2no VT )I
(47)

Equating the linearized Vlasov operator to the linear-
ized BGK collision operator gives

afI af e Mf
t7 +V. ax_-me vXBO v

e EOf 0==--E. -v+ Vee(Fe-G-fi) + Vei(Pe-of X ).

(48)

Fourier transforming Eq. (48) in space and time, using
cylindrical coordinates for velocity, and ignoring finite
Larmor radius effects, the three Fourier components which
contribute to the electric currents are

i.i--kv.f e E \ ,U- e- VI 

l(Okz~~~j2zyfiueE-) V' fo+ ,,
V, T

eE+T \ v2 

i(&cf-k~v,)fl+=-l~ VeeUz -e+)V 
1k ~~me] VTr

(49)

(50)

(51)
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Note that since the right- and left-hand components
are unaffected by density or energy conservation and do
not themselves contribute to the density or energy pertur-
bations, only their first velocity moments need be calcu-
lated. Solving the resultant linear equations for u- and u+
and multiplying by the charge gives the perturbed current
components

EO)~pZ[ (CO-fl)/kZVTI (2
J=-i- EL0;z n) k (52)

kzVT+iVeeZ[ (&f))/kZVT]

and

J+ i kvT+iVeeZ[ (+fl)/kzVT] (53)

However flz is affected by, and determines the perturbed
density and energy as well as the parallel component of
velocity

± fld'v
no no J

- = v~fl. d'v,

(54)

(55)

(56)

On performing the velocity integrals, Eqs. (54) to
(56) give three linear equations in three unknowns.

A x =y (57)

where

+ Vee + Veif

l-i Ve eZP

2k-,VT

Vee+ VeiE
6kZVTZ

and

x =

ni

no
liz

VT

T,!

II
eE_2 kvT 7 II

mk~vT I
CO~v
(Ik ) - /1

TO I)

The current parallel to the equilibrium magnetic
can now be calculated by inverting Eq. (57)

uz
JZ=qnOvT uTVT'

The modified currents give rise to modified G-
and G+:

= 1CLZ[ (ci-S)/k yTI n

+Ct1 +{kzvT+jVeeZ[ ('7)-4)/kzvTI} Z'

G-= 1 0C Z[( + fl)/kzVTI 2

+ +o{kvT+iVeeZ[ (Ji+S)/kzVT]} 

,O2 r I \ 1

Gr [( - 21 + k~TM22 ZP-3 Z"'M23OkhVe tT M distilled kzo T

where the matrix M is the inverse of A.

The analysis from Eq. (23) onwards is still valid with
the new form of G with the exception of Eq. (36) where
now Eqs. (52) and (53) must be used in Eq. (35), and the
power dissipation resolved only into longitudinal, left- and
right-handed rather than Landau, anomalous Doppler, and
cyclotron.

In Fig. 12 the net effect of collisions is to increase the
total damping. It can also be seen that the collisional
damping tends to smooth the variation of damping with
density, blurring the transition from Landau to cyclotron

field damping.
The shape of the collisionless result is dictated by the

velocity space resonance conditions. As n. increases, a
rapid rise in Landau damping is followed by a period of
almost constant damping until n, reaches the threshold for

G,, cyclotron damping, whereupon a second rapid rise in
damping occurs.

Since collisional damping does not rely on velocity
(58) space resonances, it can give rise to significant power ab-

sorption of the right-hand polarization at densities well
below those required for the Doppler shifted cyclotron

(59) damping. This can be seen in Fig. 13, where at low density
around 10% of the power dissipated is lost collisionally.

The collisional element of the damping rises steadily as
the collision frequency, itself an almost linear function of
density, with no resonance behavior. At the same time, by

(60) scattering electrons out of resonance with the wave, colli-
sions reduce the strength of Landau and cyclotron damp-
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FIG. 12. Real and imaginary parts of n, as functions of density for three
values of the ion charge; the collisionless values (solid line) are included
for comparison. The plasma has a 5 cm radius, a temperature of 9 eV, and
is in a magnetic field of 29 G. The wave frequency is 13.56 MHz (.Q/c
=6).

ing. This is consistent with the collisional flattening in Fig.
13 of the graphs of both the right-hand and longitudinal
components of the power loss.

A. Neutrals

Both electron-neutral and electron-ion collisions in-
volve scattering of electrons by slow moving massive par-
ticles. Exploiting this similarity, an estimate of the effiect of
electron-neutral collisions can be made.

The cross section for momentum transfer collisions be-
tween electrons and neutrals is dependent on the neutral
species and the electron temperature. For 9 eV electrons
colliding with argon neutrals, the cross section is
1.8 X 10- 15 cm2 . 12 Multiplying the cross section by the den-
sity of neutrals and the thermal velocity of the electrons
gives the electron-neutral collision frequency. Comparing
the electron-neutral collision frequency with the electron-
ion collision frequency gives the ratio

Ven fnn

Vei t
(61)

where Z is the ion charge, and nn and ne are the neutral
and electron densities, respectively.

FIG. 13. Right-handed and longitudinal components of the damping for
three values of the ion charge; the collisionless values (solid line) are
included for comparison. The plasma has a 5 cm radius, a temperature of
9 eV, and is in a magnetic field of 29 G. The wave frequency is 13.56 MHz
(fl/o = 6).

From Eq. (61) it can be seen that, at low temperature,
collisions with neutral particles can be ignored unless the
neutral density is higher than the electron density.

When electron-neutral collisions are significant, they
can be incorporated in the BGK collision model as an
addition to the electron-ion collision term. Such an addi-
tion corresponds to replacing the ion charge Z (cf. Figs. 12
and 13) with an effective charge Zf,

Zeff=Z+O.ln, (62)

If, for example, in Figs. 12 and 13 the ion charge was one
and the neutral density was ten times the electron density,
then the curves labeled Z=2 would be the appropriate
ones to consult.

Both ions and neutrals are modeled as having the same
temperature as the electrons. This approximation does not
affect the collision frequencies or scattering, and is neces-
sary for energy balance in the equilibrium.

Calculating the effects on wave propagation of ioniza-
tion of neutrals and further ionization of ions would re-
quire a far more sophisticated collision operator.

VII. LENGTH SCALES

The results given in this report were obtained for
13.56-MHz waves. Therefore, the corresponding damping
length is approximately
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352 For low temperature plasmas, collisions are an impor-
Imcn m (63) tant source of wave damping. Collisions become the dom-

Im Zn 5) inant damping mechanism in two distinct regimes. First,
When the real part of n, is much greater than the imagi- when there is no competition from other damping mecha-
nary part, it also makes sense to calculate the wavelength nisms; this occurs when n, is too small for cyclotron or

2211 Landau damping. Second, when the collision frequency ex-
=Re(n) cm. (64) ceeds the cyclotron frequency; this not only causes large

collisional damping, but also reduces the collisionless
If we apply Eqs. (63) and (64) to the results given in damping by scattering particles out of resonance before

Fig. 12 we find that when the density reaches 2.4 X 1012 they can be accelerated by the wave.
cm3 3the axial wavelength of the collisionless solution is Between the two collision dominated regimes there is
4.6 cm and the damping length is 8.7 cm. still a window for Doppler shifted cyclotron damping even

in low temperature plasmas.
For c9.(1, whistler waves become strongly cyclotron

VilI. CONCLUSIONS damped as the density approaches w2/fl3 (c/VT)2 .
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