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Plasma configurations with shear reversal are prone to the excitation of unusual diemmodes

by energetic particles. These modes exhibit a quasiperiodic pattern of predominantly upward
frequency sweepin(Alfvén cascadeésas the safety factay changes in time. This work presents a
theory that employs two complementary mechanisms for establishing Mifascades(1) a
nonstandard adiabatic response of energetic particles with large orbits(2ndoroidal
magnetohydrodynamic effects that are second-order in inverse aspect ratio. The developed theory
explains the transition from Alfuecascades to the toroidicity induced Alfveigenmode$TAES),
including modifications of the TAEs themselves near the shear reversal poi@00® American
Institute of Physics.[DOI: 10.1063/1.1597495

I. INTRODUCTION from Eq.(1) that such modes are more sensitive to the safety
factor profile than they are to the plasma density profile.

There are several reasons why Alfveigenmodes are of . . .
: . . . N Thus any location wherg is nearly flat should be viewed as
interest in magnetic fusion research. The first is the concern o .
potential site for a shear Alfmemode.

that these modes can degrade energetic ion confinémenﬁ ) .
g g The aforementioned special role of flat(zero shear

articularly the confinement of fusion-produced alpha . . .
P y P P sites concurs with numerous observations of so-called Alfve

particles in burning plasma experimeftShe second is the , . . .
observation that benign Alfve eigenmodes can provide cascadeqAC) in tokamak discharges with nonmonotonic

unique diagnostic opportunities via so-called magnetohydrod-Profiles. The cascades were discovered on JT-60&. 7)
dynamic{MHD)-spectroscop. Finally, there is an impres- and then also found on the JEY,where they have been
sive amount of high-quality and still not totally explained Studied extensively. The cascade modes typically appear in
experimental data from various machinglint European ~Punches.” They emerge outside the TAE gap and exhibit a
Torus(JET), Tokamak Fusion Test ReactéfFTR), JT-60U, quasiperiodic pattern of frequency sweeping, as shown in
DIII-D, and other3 that necessitates a detailed theoreticalFig. 1. It has been reveal€tthat the mode frequencies ac-
analysis of the Alfve modes themselves and of their inter- tually trace the temporal evolution @, due to the time
actions with the energetic ion population. dependencegy(t) of the safety factor at the zero shear point.

The shear Alfva wave frequency range has been exten-However, the experiments exhibit only a subset of the fre-
sively explored in the experiments, with a particularly strongguencies described by E(L). In particular, most of the ob-
interest in toroidicity induced Alfve eigenmodegTAE).*  served frequencies move upward when the safety factor de-
The TAEs are associated with the gaps in the Alfwon-  creases in time. This feature indicates that some of the
tinuum, which facilitates their excitation by reducing dissi- candidate frequencies given by E4) may not be suitable
pation from continuum damping. The role of continuum for establishing an eigenmode. It is also noteworthy that the
damping would also be greatly reduced if modes arise a@allowed modes are not GAEs which would produce fre-
radial locations where there happens to be minimal spatiajuency sweeping in the opposite direction.

variation of the local shear Alfwewave frequency, In order to establish the “rules” for the mode existence,
Va(r) m one has to look specifically at the physics mechanisms that
wp= n— _) (1)  maintain the eigenmode structure. We note that in a plasma
R q(r) that is cold and spatially uniform there is a degeneracy in the

wheren andm are the toroidal and the poloidal mode num- shear Alfven wave spectrum. In such a plasma, an arbitrary
bers,V, is the Alfven velocity, R is the major radius, and radial mode structure is compatible with the eigenfrequency
is the safety factor. A good example of such a case is thdetermined by Eq(1). The reason why the mode structure is
global Alfven eigenmodeGAE).>® The frequencies of pri- not robust in this case is that different flux surfaces do not
mary interest for many experiments are roughly of the ordecommunicate via shear Alfvesignals. Two of the ways for

of the TAE frequencywmae=Va/(2qR). When the mode them to communicate are via radial excursions of particle
numbers are substantially larger than unity it is apparenorbits (including gyro-orbit$ and via toroidal MHD-effects.

1070-664X/2003/10(9)/3649/12/$20.00 3649 © 2003 American Institute of Physics
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Cascades \ ]

B! F )/
i | T

FIG. 1. Alfven cascades of sweeping-up and of
sweeping-down types, observed in a JET discharge si-
multaneously with TAEs. The right part of the figure is
a zoom of the left part. It shows TAEs, some of which
arise from the AC.
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The first option was examined in Ref. 10 as a primary canimas with a nonmonotonic safety factor profiliee., with
didate for the interpretation of Alfwe cascades below the magnetic shear reversalThis formalism will also be rel-
TAE gap in a plasma with a significant population of ener-evant to the case of monotonic safety factor with an extended
getic particles. Here we examine the second option and denarea of very low shear. For the sake of simplicity, we will
onstrate that the manifestation of toroidal MHD-effects awayrestrict the derivation to the limiting case of zero plasma
from the TAE gap is mathematically similar to that of the pressure and high mode numbers. We will therefore neglect
energetic particles, so that both effects can be convenientlgll pressure effects in this paper. It should be pointed out that
described by the same eigenmode equateee Sec. Il our equations will include second order corrections in in-
The closer to the TAE gap, the more significant is the role ofverse aspect ratio. We will then demonstrateSec. 1l that
coupling between the neighboring poloidal harmonics. How-+these corrections alone can support a localized mode below
ever, the mode structure within the TAE gap differs consid-the TAE gap if the magnetic shear is sufficiently low.

erably from that of conventional TAEs because the magnetic We choose a gauge in which the scalar potential equals
shear is very small at the mode location. In Sec. IV, wezero, so that the perturbed electric and magnetic fields can be
present a corresponding generalization of TAE theory. Wewritten in terms of a vector potentidA as follows:

also show that there is a continuous transformation of the

Alfvén cascade modes into TAE modes as the safety factor sp— _ 1 99A
changes in time at the shear reversal point. This transition is c at’

illustrated by the numerical results, presented in Sec. V. \ve assume that the parallel component of the perturbed elec-
In describing the ACs and TAEs we adopt a conventionyic field vanishes due to high electron conductivity along the

n>0 and consider waves with both positive and negativgnagnetic field lines. The perturbed vector potengial can

frequenciesw. These two cases correspond, respectively, tQnan pe represented by a single scalar funcfign

waves propagating along and opposite to the equilibrium to-

roidal magnetic field. The TAE dispersion relation is a func- ~ SA=V®—b(b-V®), (€
tion of only w? so that both positive and negative frequency
waves will exist. In contrast with TAEs, the AC dispersion
relation contains linear dependence @nwhich breaks the
symmetry between positive and negative frequencies, so th
only waves of one particular sign af may exist. In order to

oB=curl 5A. (2)

whereb=B/B is a unit vector in the direction of the equi-
librium magnetic field B. This representation eliminates
compressional Alfve perturbations that would otherwise be
atescribed by another scalar functioh, with an additional
term VWb on the right-hand side of Eq3). The shear

identify all AC eigenmodes, the>0 andw<0 cases willbe  »r,an mode equation fofb comes from the quasineutrality
investigated separately. condition

In the body of the text we describe the linear modes
without regard to their excitation. Experimentally, the modes  div §j;+div &j, =0, 4
have been excited by a hot particle population, which intro-

duces additional constraints on the observable modes. Th)@h?(e A ﬁmld 513 are the dgorrllpotn etnrfs gf thet:. pert?rtl;ed cur-
issue will be discussed in Sec. VI. Once the relevant linearlyc' - (Parali€l and perpendicular to the direction ot the equi-

unstable modes are identified, their saturation level in iibrium r_nagnetic field, respectivg)LyThe perturbed parallel

weakly nonlinear regime can be calculated straightforwardlf urrent is related te by the Ampee law,

with the technique described in Ref. 11. c
4

1. BASIC EQUATIONS

c

This section deals with a derivation of the eigenmode =— Eb(b-curl curlb(b-V®))). (5)
equations for shear Alfwe perturbations in a large-aspect-
ratio torus. Our goal here is to present a formalism that weCalculation of the perturbed perpendicular current involves
will then use to link Alfven cascade modes to TAEs in plas- the momentum balance equation,
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ddv 1 1 poloidal harmonics, so that we can truncate the right-hand
p— = cLaIXBl+ —[curlBX 5B] (6)  side of Eq.(11) to just three terms. We will label these
terms by the subscriptm—1, m, and m+1 respectively,
with reflecting the fact that the toroidal effects couple primarily
c 1 _ the neighboring harmonics. The corresponding three equa-
ov, =— E[bx oE]= E[bx Vad]. (7)  tions for ®,,_1(r),®(r), and®,, 1(r) will be further re-

duced to either a single equation fdr,(r) (if the mode
Substitution ofsj, and §j, into Eq.(4), with some additional frequency is not too close to the TAE gapr to a set of two
straightforward algebra, gives coupled equations fob,,,_,(r) and®(r) (if the mode fre-

5 quency is within the TAE gap or very close to the gap

diviz bx|V —5Xb In order to derive the equations fdp,,_1(r), ®q(r),
Va at and® ., ,(r) we multiply Eq.(9) by (J/Rp) exp(~in{+iwt
+il §), where the integel runs fromm—1 throughm+1,
1 1 )
=(B-V)=zdiv|BX|grad = (b-V®) | XB and we average the result over the angular varialgl@s and
B B over time. It is convenient to write the ensuing equations in a
1 matrix form,
—grac(—(b-V(I))) -V?B R
B Li;j®;(r)=0, (12
1/1 where summation oveyr is implied with j running fromm
+(B- —(b- V2 A
(B-V) §2< B(b VCD))(B v B)}’ ® —1 throughm+ 1. The matrixL,.; is related to the operator

whereV, is the Alfven velocity. We will limit our consider- L by

ation to modes with a global scale-length along the magnetic ~ _ 1 .

field lines but with large poloidal and toroidal mode numbers  Li;j= g—(J(r; #)exp(il 6)L exp(—ij ), (13

n andm. We therefore neglect the last term on the right-hand 0

side of Eq.(8) and obtain where the angular brackets denote the poloidal angle averag-

2 ing procedure. Every element of the matEin is a second-

R 1 X . ) . .
Ld=—div—y|bX|V—=Xb order differential operator in. The explicit expressions for
Va at these operators are presented in Appendices B and C.
1 1 Our treatment of Eq(12) will employ characteristic or-
+(B~V)¥div BX gran<§(b~V<I>) X B dering features of the operatofs;j in a large-aspect-ratio

tokamak. We observe that all the off-diagonal operators are
5 proportional to the inverse aspect ratio, which makes them
-VB=0, 9 generally smaller than any diagonal operator unless it is par-

_ _ _ ticularly close toQ);=V,/R|n— (1/q) | for any of the three
where we have introduced a self-explanatory linear differenyiowed |-values. Furthermore, it is allowable to drop the

tial operatorL to shorten the forthcoming calculations. operatorsL _q.msq1 and Lys1m_1 Since the toroidicity-

Our analysis of Eq(9) in an axisymmetric torus will jnduced coupling between the poloidal harmonics involves
employ straight field-line coordinates with the following ex- primarily the closest neighbors. If the frequencies

1
—gra g(b-VCD)

pression for the unperturbed magnetic field: Qn1,Qp, andQ,,,, are all significantly differentfor a
r given value ofqg), then only one of the diagonal operators
B= Boq(—r)erV(qe—g), (10 can be uncharacteristically small. It is also possible that two

of the three diagonal operators become small simultaneously
where { and 6 are the toroidal and poloidal angles, respec-but this requires that the corresponding frequencies come
tively, r is the flux coordinateq(r) is the safety factor, and close to each other. The case of well-separdedi.e., fre-
B, is the value of the unperturbed field on the magnetic axisquencies sufficiently far from the TAE gapis relevant to
The Jacobiad and the metric coefficients for this coordinate cascade modes, whereas the other case represents TAE
system in a large aspect ratio tokamak are given in Appendixnodes. In what follows, we first consider each of these two
A. cases separately and then describe the transition between the

The function®, which is a periodic function of and 6,  two.

can be represented by a Fourier series as follows:

O(r;0;t)=expinl—iwt) Y, ®(r)exp—imb)+c.c., lll. CASCADE MODES
" (11) In this subsection, we will assume that the only “small”
diagonal operator iEm;m. We then transform Eq12) to the

where w is the mode frequency, an®,(r) is the radial
eigenfunction for themth poloidal harmonic.

An important feature of the low shear eigenmodes is L.\ ®n(r)+Lnm 1@ 1(N)+ Lemi 1®ms (1) =0,
that each of them contains no more than three significant (14

following set:
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P, 4(r)=— I:r;il;mfl[l:mfl;mq)m(r)]a (15) result by neg!ectlng some of thosé—co'nFr'lbutlons that are
only responsible for frequency redefinitiqisee Appendix

(Dm‘*'l(r): - I:r71}—1;m+ 1[|:m+1;m(bm(r)], (16) B)' which gives

inversion is a suitable procedure for the “large” operators; n—-—

where the superscript- 1"denotes an inverse operator. The ¢ [wZ 1 ( m) 2
(Cm-1m-1 and Lpyy1.me1) Since it does not introduce a

_2 2
ARO

“small denominators.” We thereby reduce E¢$4)—(16) to 2 2+ 2A e 1 m\ 2
a single equation fob ,(r), Xrl—|1+2—— | ——|n——| |®
) o ) v\o Tan-2m?-1) R\ a) |7
Lm;mq)m(r):Lm;mfl{LrTqil;mfl[mel;mq)m(r)]}
=0. (21)

L {Cmd 1me 1l L 1@ 1}
17 In this equation, the tgroidal effects, which shift the mode
frequency from the Alfvae continuum, scale as?, whereas
It is remarkable that, for the problem of interest, thisthe existence of toroidal Alfwe eigenmodes is associated
equation is actually equivalent to a second order differentialith the linear ine effects. Since the?-terms that are re-
equation despite the fact that the term on the right-hand sidsponsible for the Alfve cascades are quite small, one can
is generally an integrodifferential operator. We find that theexpect that an energetic particle response may compete with
only difference between E@l7) and a similar second order the toroidicity effect in Eq.(21). Indeed, it was shown in

differential equation, Ref. 10 that fast ions themselves can be responsible for the
. existence of the Alfve cascade mode. On the other hand, it
Liym®m(r)=0, (18)  is more difficult for the energetic particle response to com-
is in the coefficients that describe thé-corrections to this P&te With theO(e) toroidicity effect associated with TAEs.

otherwise “cylindrical” eigenmode equation. By adding the theory developed in Ref. 10 to our analysis
In order to explicitly calculate the right-hand side con- one finds that the contribution from the fast ions modifies the
tribution to Eq.(17), we note that each of the two terms on €i9€nmode equation to

the right-hand side is already quadratic in the inverse aspect 2

2
ratio. It is therefore allowable to treat all the coefficients in & | ©_ _ i L ritb
the operators on the right-hand side as constants as long ds V/’i RS q dr "
the function® ,(r) is localized in the vicinity of the zero )
shear point and the radial width df,(r) is much smaller m? |w? 1 m
than the minor radius. In addition, it is allowable to use the r_zr V__z_ R2 n— a P
lowest order dispersion relation, A 0
Vi m\ 2 m? w? e?+2eA’ ) N 47e ®
2 2__ =—r — - —m
W === |N——|, (19 2 _ 2_ m m
0 Ré( QO) re val (2qn—2m)°-1 cB
to simplify the right-hand side of Eq17) since small devia- d 1 m|
tions from this relation can be safely ignored in the Xa @(Np) — a n— E Chn) |- (22

g2-corrections. The quantit)7A in Eqg. (19) is the flux sur-
face averaged Alfwevelocity, as defined in Appendix C. The The angular brackets in this equation denote flux surface
described simplifications allow us to straightforwardly Ca|CU-averaging’ and the two contributions to the second term on
late the right-hand side of Eq17) via Fourier transforma- the right-hand side represent the density and the parallel cur-
tion in radius. We then convert the Fourier image back into &ent of the fast ions, respectively. For the rest of the paper we

real space representation to obtain assume a typical ion cyclotron resonance heatit@RH)
. - . scenario, withv o/ Va<<1, so that the energetic particle par-
Loem-1{bmZ1m-1[Lbm-1:m@Pm(r) 1} allel current will be neglected.
. - . In order to demonstrate the existence of an eigenmode in
+Lmme i bmytmealLms 1m@ml(r) 1} Eq. (22), we expand the parallel wave number parameter,
W2 [ a2 (A +8)? (1/R(2))(n— [m/q(r)])?, about. the poi.nt_ of zero magnetic
_o 17 +8(2A +e) shearr =rq, whereq(rg)=qq is the minimum value of the
V2 ar?[ (2qn—2m)?—1 safety factor,
)| s 2wl =mlra)
| =| | === e(2A +&) | | Dp. (20 2| = 5| ==(n——
r (an_zm)Z_l 8( 8) m ( ) RO Q(I’) RO qq
’ 2
Next, we combine Eq20) with a separately-derived expres- . mdz(r) (r— 20) (n— m) 29
sion for I:m;mcbm(r) [see Eq.(B2)] and we rearrange the Yo Ro do
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We assume that this expression is accurate over a region Q >0
where the mode is localized, which requireSrj§?<|ng, A

—m|(go/mag). We can then seb = wy and replace the co- 2 |
efficient in front of®,, on the right-hand side of E§22) by
its value atr =r to obtain

d_do w2R20% 2+ 2e,A!
b, m_qu)m:2 oRofo 0 020 o,
dx dx V2 (2gon—2m)%—1

w§REA5 wen o[ d{pp) () m=M-1
t— D, "~._ nomode
VA (20] m pdr =r / N
0 4 .
(24) Qo >0 Qpoc <0
H H H H QKOI'>O Qt0r<o
wherex=(r—rgo)m/rg is the normalized radial coordinate, L3 q,
we¢p is the hot ion gyrofrequency,, andp are the hot ion and % w M—n1
the bulk plasma mass densities, and the quamityx) is (@)
given by
22 2.1 0
qgR r 1| o<
Dim(X)=| 2(@— wg)wo——= — (gon—m) ——x2|. A
2
A 0 2
(25 (b) m=M-1 | (c) m=M )
Equation(24) has exactly the same structure as Ep) in < no mOd?."'
Ref. 10, where the Alfve cascades due to the hot ions alone Qe >0 " Que <0
were described. We can then immediately generalize the g Q. <0
mode existence criterion from Ref. 10 to the following in- o
equality: 1
QeﬁE Qhot+ Qtor> 1/4’ (26)
where
d(ny) 47TeF%q8 wg
Qhot: - " N > q
dr / __ cBrggg (m—ndqp) M M-1/2 M-1 0
0 n n n

— 2

Vi(m_ ngp) r(z)qg p dr FIG. 2. Schematic plot of the AC mode frequencies for two selected poloi-
dal mode numberd! and M —1. The different quadrants correspond to

(27 different signs ofQ; and Q. Solid lines indicate possible AC modes,

dashed lines indicate the Alfaecontinuum, the circles indicate the regions

a5RS do { ( _r d(Ph>> ﬂ] (b)

o
-0

is the hot ion contribution introduced in Ref. 10, and where the cascade mode approximation fails. The relevant valuesaoé
_— shown in each quadranta) represents positive frequencies ail is for
o, 206Rg do eolegt2A¢) negative frequencies.
tor= Mwo — 2. 7, (28
VA(m—nqg) odo [1—(200n—2m)7]
is a geometric contribution due to toroidicity. rants, depending on signs &, and Q,,; for the corre-

We note that for a given value @f,, Eqg. (24) can de- spondingm-value. The characterization of each quadrant,
scribe cascade modes with differantvalues and with dif- starting at the lower left corner and moving clockwise is as
ferent frequenciegeither above or below the TAE gapn  follows:
preparation to our subsequent discussion of the transition (a) M/n>qy>(M—1/2)/n; |Q|<1, m=M,
from the cascades to TAEsee Sec. Y, we select two neigh- (b) M/In>qp>(M—1/2)/In; |Q|>1, m=M—1,
boring m-values M andM —1) and we consider the range () (M—1/2)In>qy>(M—1)/n; |Q]>1, m=M,
M/n>qy>(M—1)/n with an exception of a small area (d) (M—=1/2)In>go>(M—1)/n; |Q|<1, m=M—-1.
aroundqrag= (M —1/2)/n [whereQ,,, becomes singular and The solid curves in Fig. 2 indicate how the cascade mode
the cascade approximation used to derive &) breaks frequency varies when the frequency is sufficiently far from
down). In order to identify all the cascade modes that arethe TAE gap assuming that the conditié®6) is satisfied.
possible agy, varies, we turn to Fig. 2, which shows sche- Clearly, there cannot be a cascade mode in the quadrants
matically the normalized mode frequencl@s- w/wtag as a  where bothQ,,, andQ;,.; are negative. Botk,,, andQy,; are
function ofqg in the range of interest. Figuré& is for >0  positive in quadrani{a) for »>0 and in quadrantb) for
and Fig. Zb) is for w<<0. Each figure is divided into quad- <0, so that in these quadrants both effects help support a
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cascade mode. To have a cascade mode in the other quad- The conventional TAE modes are known to be associ-
rants requires one of th@®-values to be sufficiently larger ated with “special” values ofjf = gag=(2m—1)/2n] that
than the other to satisfy E§26). represent the strongest linear coupling betweemttiteand
The spectrum of eigenfrequencies for E@4) is de- (m—1)th poloidal harmonics. Motivated by the experiments,
scribed in Ref. 10. To apply that theory here we only need tave assume that thg-profile has a minimum ag(r)=qq
replace the quantit) of Ref. 10 by Q.+ Qior- It is also  within the plasma cross section and thgtdecreases in time.
instructive to apply a WKB analysis to E(R2) to infer the In its motion, the lowest point in thg-profile can go from
mode frequency shift from the Alfvecontinuum(indicated  above to belowgae. One might argue that there should be
in Fig. 2. We then find from Eq(22), no TAE mode untilgy reacheg 1o, and that there should be

) ) , two modes wherg, is below gag. However, the actual
m)_ 1+ (e7+24%¢) _ d(pn) @ch picture is more subtle as the TAEs do not emerge suddenly at
[1-4(qon—m)2] 2m pdr wg

the crossing. Instead, we find that there is a continuous tran-
sition from cascade-type modes to TAEs. The conventional
w3q3R3 } TAE theory is insufficient to describe the transition because

the shear is exactly zero at the crossing and the slope of the

g-profile can no longer be treated as a constant at the mode
(29 location. A conceptually relevant approach to the case of
very low shear was developed in Ref. 12, where it was
pointed out that the radial mode width in this case is typi-
cally larger than the poloidal wavelength. Another important
feature of the low shear case is the existence of multiple
TAEs in the same gap. In what follows, we adapt the ap-
proach of Ref. 12 to address the transition frqg» gag to

Jo<<OtaE-
Only two of the three poloidal harmonics are significant

[ wo( @— wo)G3RG+Vam(m—ndo)(q—0o)]

wherek, is the radial wave number. To obtain a mode in
WKB theory, we need<r2 to be positive within a region of
mode localization and to be negative outside this region
When Qo+ Qpoe>0, the expression in the bracket can in-
deed be made positive fay in the vicinity of gy with a
suitable choice of & — wg)/wy. With a reversed shear pro-
file, we see thatj—q, increases away from the shear rever-

sal surface, so that there are reflection ponk%z(O) ON " in the TAE case. We will choose their poloidal mode num-

both sides of the surface, which is needed for a standin%ers to bem andm— 1. The essence of the problem is cap-

wave to exist. These WKB considerations lead to the fre- . :
. . .~ tured by the following set of equations for these two harmon-
guency shifts ofw from wq that are schematically shown in ics

Fig. 2. '

To conclude this section, we note down that it is not ¢ d g0t Ay . g0+ 2A} ,
always necessary to have magnetic shear-reversal in trEF)‘(Dmd—)(‘bm—Dm‘I’m+ Tq)m—l_T m-1
plasma to establish a mode outside the TAE gap. Even a
monotonic safety factor profile can support such modes pro- Ag
vided that this profile is sufficiently flat in the plasma core. + 7‘Dm—1:0’ (30)
This possibility arises in the absence of hot ions due to an
interplay between the radial dependence indfterm in Eqs. d d gotA]

(22) and(29) and the radial dependencedlr), which cre- &Dm—laq)m—l_ Dm-1®m-1t 2 Py
ates a “potential well” to support a radially localized eigen-

mode. To demonstrate this effect we note that the right-hand eot24g | Ag
side of Eq.(29) can indeed be positive whem (- wg) and 2 Pyt 2
g—qo are sufficiently small. Note that—qy is positive for a ] ]
monotonically increasing profile. Then, with o — )/ wq wherein XE(V_—fo)m/ro. the SU_bscrlpt “0” refers to the
small and positive the second term in the bracket is positivé€ro shear point, and the quantitiég, andD,, -, are given
definite if m/gg—n>0. We also note that this term is small by

=0, (31)

near the originwheree andr (d{p,)/dr) approach zerpand 2052 2
o e o aoRs Moo
it is small far away from the origiiwhereq—qp is large. Dm=| @®———(gon—m)?—(gon—m) —x?|,
As a result,kr2 is negative in these bounding regions. In the Vi om
intermediate regionk,2 can be made positive by a proper (32
choice of w, which indicates the existence of a radially- -
localized mode. , %R0
Dm-1=| @
%
A

IV. TAEs NEAR SHEAR REVERSAL POINT

C s . . . 2.
The role of toroidicity-induced coupling becomes crucial Qo= M+ 1)2— (gon—m+1) 090

when the frequency of the cascade mode approaches the TAE gom
gap. However, the conventional analytic description of TAEs

does not cover the shear reversal case, which points out theor the radially-extended modes with a mode widtk>1,
need to modify the theory in order to accurately connect thave can formally treat all the derivative terms in these equa-
cascade modes to TAEs. tions as small compared to nonderivative terms. This ap-

x?|. (33
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nqo-m+1/2>0
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nqo-m+1/2<0
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0 Safety factor qo(t)

wO

FIG. 3. Transformation of the effective potential for radially extended |G, 4. Transition of Alfe cascade modes to TAEs for positive frequency
modes from a single wellngo—m+1/2>0) to a double well igo—m modes. Solid curves present eigenfrequencies for lowest order radial modes
+1/2<0). with n=4, m=(12;11), and with the following values of input parameters:
r2qe/go=0.25, Qne=2, £o=0.13, A;=0.03. Thin dashed curves mark

] ) o ) Alfvén continuum frequencies. Thick dashed curve represents the mode
proximation allows us to explicitly expreds,,, ; in terms of  shown in quadrantc) of Fig. 2(a).
@, and its derivatives and obtain a Sctinger-type equa-
tion for &, S . .
cally for a model reversed-shear equilibrium with circular

go(eot240) d?®, 1 flux surfaces. We choose a fixed radial profile of the toroidal
4 P P | 1-2/nGo—m+ > current and vary the total value of the current, which changes
the value of the safety factor at the zero shear point. This
1 rgquz r(z)q’x’xz 2 calculation gives a sequence of eigenfrequencies and radial
X| Qon—m+ — + eigenmodes for the selected valuesggfas qg changes in
2/ qom 2qom

time. This reduced numerical model has been verified with
the full geometry codes MISHKARef. 13 and CASTOR*

(e0+2A¢) riqpx ST ;
+ The long-wavelength approximation provides a relevant

2 Qom qualitative guidance for our numerical analysis.
5 22 Each calculated eigenmode can be labeled by its toroidal
@ %R0 de numb ir of poloidal mode numb i
——d | | —2C— (ngy—m)? mode numben, a pair of poloidal mode num efassuming
2 that the mode contains predominamfgh and (n— 1)th po-
loidal componentk and a radial labdl, which is the number
©*qgR5

A(’)) z (34 of zeros(nodes in the radial eigenfunctions for each of the

2 —(ngo—m+1)? _(? mth and (m—1)th pqloidal components, respective_ly. Fig-
A ures 4 and 5 show eigenfrequencies for lowest radial modes
We now observe that a changedg from g¢>Qgtae t0
0o<gtag Changes the structure of the “potential energy”
term from a single well to a double well, as shown in Fig. 3.
The double-well case represents two preferred locations for
TAEs on the opposite sides of the zero shear point. The
single well case indicates that an eigenmode can exist even
before q, crosses the valuegj;ae. However, the long- 1.5
wavelength approximation has a rather restrictive applicabil-
ity condition in the single-well case. It requires®m
>4(qon—m-+1/2) (r3qs/de), which is difficult to satisfy
unless the mode is very close to the TAE gap orghaofile
is nearly flat, so that§q8<qo. The effects that allow the 0.5
mode to survive outside the TAE gap have already been dis-
cussed in Sec. Ill.

w<0

I=(0,1)

,
~
~
N
~

19}
T T T V[ T T T F [T T P [ v roT

HIE N R BT FEA

) 2.95 2.9 2.85 2.8 2.75
V. TRANSITION FROM ALFVE N CASCADES TO TAEs Safety factor qo(t)

wO

In order to trace the transition from the nearly cylindrical FIG. 5. Transition of Alfve cascade modes to TAEs for negative frequency
cascade modes to TAEs we add the hot particle COﬂtribUtiOH].Odes' Solid curv?s present e_lgenfrequenm_es for lowest order ra_dlal_modes
.1 N . with n=4, m=(12;11), and with the same input parameters as in Fig. 4.
Qnot to the “diagonal _ opergtors in Eqs(12) and solve a _ Thin dashed curves mark Alfwecontinuum frequencies. Thick dashed curve
truncated(two-harmoni¢ version of these equations numeri- represents the mode shown in quadr@htof Fig. 2(b).
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(@) . : T (a)
No mode No mode :

Strong continuum damping Strong continuum damping

T T T
TR B B |

(d)

FIG. 6. Snapshots of the mode structure for a positive frequency mode witlrlG. 7. Snapshots of the mode structure for a negative frequency mode with
n=4 andm=(12;11) during the transition from a cascade mode to TAE. n=4 andm=(12;11) during the transition from a cascade mode to TAE.
The left column shows the radial profiles of thre= 12 andm=11 poloidal ~ The left column shows the radial profiles of the=12 andm=11 poloidal
components for the lowefl =(0;1)] mode of Fig. 4. The right column components for the lowell =(0;1)] mode of Fig. 4. The right column
shows the upper modé=(1;0)]. The values ofj, for the snapshots ale) shows the upper modé =(1;0)]. The values ofj, for the snapshots are:
—(u=2.915; (b) —u=2.875;(c) —(o=2.86; (d) — p=2.84. (8 —gp=2.915; (b) —p=2.875;(c) —qo=2.86; (d) —qp=2.84.

with the same values af andm. The two solid curves trace
the frequencies of the modes witk-(0;1) (lower curve
and|=(1;0) (upper curveg as a function ofj,. The dotted
curves in the figure mark the Alfvecontinuum frequencies  gjte signs of the poloidal components cause mode localiza-
for the selected vaIue; of andm. This figure demonstrates tion on the inner part of the toryswhereas the lower fre-

a stron_g asymmetry in the model frequency behawor:_ th%uency mode exhibits a ballooning structur@node
mode first stays close to the continuum frequency Wil |5cajization on the outer part of the tojusigure 7 shows

reachesqrag, and then detaches from the continuum andy, negative frequency modes of Fig. 5 undergo a very simi-
moves into the TAE gap rather than tracking the continuuM 5 transition in the mode structure

which would reverse the direction of frequency chirping.

This pattern is consistent with the evolution of the po-
tential_ well in Eq.(_5), and the same general trend is clearly,, DISCUSSION AND SUMMARY
seen in the experimental data in Fig. 1. The calculated evo-
lution of the mode structure along the solid curves of Figs. 4  In this work we have extended the theory of Alfve
and 5 provides additional evidence that the cascade modesscade that have been observed in a variety of tokamak
indeed convert “adiabatically” into TAEs. Figure 6 illus- experiments with reversed magnetic shear. Initially their ex-
trates how the initial cylindrical cascade mode with a poloi-istence was attributed to the response of large orbit hot par-
dal mode numbem=12 (indicated by the eigenfunction ticles. The modified theory now includes toroidal MHD ef-
subscript gains a second component due to toroidal couplingects in addition to energetic particle effects. It demonstrates
as the mode frequency approaches the TAE gap. Once in thkat the cascade modes can also exist without the energetic
gap, the mode then exhibits the typical signature of TAE, i.e.particles, although the energetic particles can substantially
two nearly equal and strongly coupled poloidal componentsfacilitate their manifestation. In addition, the extended theory
Another characteristic feature in Fig. 6 is that the mode acpredicts that the cascades can exist even without magnetic
quires a double-hump structure when the effective “potentiashear reversal if thg-profile is nearly flat in the center. The
energy” in Eq.(5) changes from a single well to a double presented theory also describes the adiabatic transformation
well. Later in its evolution theP;,-component returns to a of Alfvén cascades into TAEs as well as modifications of
single hump structure that is now shifted from the zero sheafAEs themselves near the shear reversal point. It is pointed
point. The shift comes from an asymmetry of the doubleout that, for a given toroidal mode number, the Alive
potential well, which forces the lower frequency mode tocascade spectrum accommodates both positive and negative
concentrate predominantly in one of the two adjacent wellsfrequency modes above and below the TAE range of
The upper frequency mode obviously “prefers” the otherfrequencies.

half of the well and it is therefore shifted to the left from the
zero shear point. Also, the upper frequency mode has an
antiballooning poloidal structure in the TAE gé&he oppo-
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In order to discuss experimental data when ACs and thend order toroidal MHD effect allows for cascade modes to
TAEs are excited by energetic particles, an additional selecexist even without energetic particles. Also, the more com-
tion rule for the mode excitation needs to be applied. If oneplete spectrum of Alfve modes that is described, which in-
assumes that the excitation is due to the universal instabilitglude negative and positive frequencies, can be employed in
drive I for an energetic particle profile that decreases radiMHD spectroscopybased on mode excitation with an exter-
ally then, in the notation of this paper, only the positive nal antennae. The observation that MHD effects alone can
frequency waves should be selected. Nonetheless, it shoutsstablish an AC eigenmode is particularly relevant to the
be kept in mind that it is possible for the radial profile of the experimental case with a very low density of hot ions, e.g.,
energetic particles to be inverted and that an additional instaalpha-driven ACs in TFTR DT experiments with a nearly flat
bility drive due to hot particle anisotropy in phase space carentralg-profile’
conceivably lead to the excitation of the negative frequency Both the detailed linear stability analysis and nonlinear
waves. theory of Alfven cascades go beyond the limited scope of

As already pointed out, Fig. 1 demonstrates that the AGhis paper. These extensions would be particularly desirable
modes below the TAE frequency sweep upward wiagn for diagnostic applications of Alfiecascades. It is notewor-
decreases in time. These modes are compatible with the caiey that the cascades already provide a valuable diagnostic
shown in quadranta) of Fig. 2(a). In this case the signs of tool even at the present level of their understanding. An im-
both Q,,, and Qy,; are favorable for the existence of the pressive example of that is the observed correlation between
mode and the universal instability mechanism provides dhe cascades and the internal transport ba(tieB) trigger-
drive for the mode. We also see in Fig. 1 that some upwardhg events in reversed shear discharges in ¥&Hhis corre-
sweeping modes convert into TAES, which is compatiblelation has been successfully used to optimize the discharge
with the behavior shown in Fig. 4, although in experimentparameters for the transport barrier formatton.
there are cases where some modes disappear as the fre-
qguency reaches the TAE g&p phenomenon that still needs ACKNOWLEDGMENTS
explanation.

The cascade modes that start on top or above the TAI%r Trg’)r\:\t’glétwﬁs Sgiegg%%ge?g-l;g'zge%art-rpheemjr:iferg
gap in Fig. 1 and sweep downward gsdecreases appear to 9y ' » DY

be compatible with the mode shown in quadrémtof Fig. Kingdo_m Engineering and Physical Sciences Research
2(a), whereQy, is larger thanQp,J. It still remains to de- Council and by Euratom_. The work was conducted partly
tor ho

termine why these downward sweeping modes terminattla"n'der the European Fusion Development Agreement.
rather than gradually convert into TAEs. _

The most recent theoretical discussion of the modes e -EEE’;?E(N'?_A%FOR'\'?IGHT FIELD LINE
cited by the universal instability drive is presented in Ref. 16
that deals solely with the positive frequency modes. In the In the straight field line representatidiq. (10)], the
work presented here we have shown that the additional sethree individual terms in Eq9) have the following form:

d'leazq)b—la 1V2(92c1>VV PP
W7z | P Y 5z <P = 5 56 vz | (VO g i T VYO 5
+1aJ1 V2a¢92<b+vvgaa2<b
Jar | Ivz| VD g G YOVVO G G
+13\]1 , 0 PP BS&+1(9)1 1 (9+1(9)(92c1> AL
33| °v2 VO 5wz | T 3\ ae Tqae) 382l ez T q g A
.00 L gl mxl (Lo va gl 2B @ L2 L[ a[ R o R
(B-V) gz BX|[g(0-V) [ XB|| =557 4 70)82| T 70| B |96 VO T or (VYO
Bo[d 14 113JBZ(9FV2(9FVV
T3z qae/ez 3 ar |8 o (VT gV Vo)
+Bo o7+lo7 11(9J82&FV2
J\at qae)B?|J a ag( &
B5(ag 1 a\1[dF 14F A2
“ 3zt qae)3laz T g6 (A2)
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dF-AB= aFV AB &FV AB (?FV AB A3
~gradF - AB=— - (Vr-AB)— 5 (V0-AB)~ —(V{-AB). (A3)

In these expressions, the JacobiBnthe absolute value of function of 6, all the terms withVr-V 6 in Egs.(Al1)—(A3)
the equilibrium magnetic field, and the supplementary vanish as a result of averaging. The remaining terms take the

function F are given by following form:
1 Loy ®
= wrxverve CONE
_&szvz(mzrzvzad)m
i “ar Rz YN Ra YT o
B2=Bg{ [(Vr)2(V8)>—(Vr-V6)?]
m2 w2 ) m 2 r2 5
1 , , _r_2<JROV'2,_\(rV0) —<n—a) R—O\](rVG) >(Dm
+ S[(VO)A(V), (A5)
q (B1)
1 _ Bo 9P 199 Equation(B1) implicitly includes the required(e?2) contri-
F= ¥(B'V¢)_ iB? (9_§+ q a6/ (AB)  putions in the inverse aspect ratio expansion. The neglected

: o terms contain either an additional factorrf}/<1 or ¢ with
In a large aspect ratio tokamak with circular flux sur- respect to the retaine@(s2) terms.

faces, the following expressions hold for the Jacobian and To zeroth order in, the quantities in the first and the
the metric coefficients: ’

1
J=W:mo(”

second terms of EqB1) are equal to each other. A vanishing
bracket gives the Alfve continuum dispersion relation. The
' (A7) geometrical toroidal corrections to the averaged expressions
in angular brackets ar@®(&?) since theO(e) terms are odd
Vr-Vr=1+2A"' cosé, (A8)  functions of 6. It should be pointed out that any small cor-
rections that contribute equally to the two bracketed expres-
, (A9) sions do not affect the structure of E®1) as these correc-
tions can be absorbed by a trivial redefinition ©f. We
therefore need to select the corrections that create a differ-
, (A10) ence between the bracketed terms. A simple analysis shows
that all such corrections come only from the products of the
) linear (in &) contributions to the Jacobian and to the metric

2r

Ro cosé

cosé

r
1—2(R—0+A

1
V0~V(9=r—2

Vr-Vo= Sin0<r +(ra"y’
rvo=-——lg, (ra’)

1 2r
Vg’-V§=—2(1——cosa (A1l)  coefficients. This observation means that the accuracy of

R R
0 0 Egs. (A8)—(A10) is actually sufficient to calculate the re-
Vr-V{=V6-VI=0, (A12) quired corrections. The resulting expression for the diagonal
matrix element has the form,

whereinR, is the radius of the magnetic axi&(r) is the

Shafranov shift, and the prime denotes a radial derivative. In w2 (n-m/q)?| 4
the absence of plasma pressuké,is simply proportional to Lonm=—| —=(1+4&A")— —2) r—
r for circular flux surfaces. It is therefore permissible to re- ar\va Ro or
place fA')’ by 2A" in Eq. (All) and in the subsequent
expressions. m’ [ ? .. (n—m/g)?
It should be noted that we have omitted all second-order - | 5 (Ir4e(e+AT) - R2 :
A

terms in inverse aspect ratio in Eq&8)—(A12). Neverthe-
less, it turns out that these expressions are still accurate (B2)
enough for the calculation of the relevast-terms in the

eigenmode equation. The only effect from the neglected conappENDIX C: OFF-DIAGONAL MATRIX ELEMENTS
tributions to Egs.(A8)—(A12) is an insignificant renormal-

ization of the eigenmode frequency. There are four off-diagonal elements that are relevant to

the eigenmode equation. These atg, 1.m, Lmm_ 1,

APPENDIX B: DIAGONAL MATRIX ELEMENTS Lm;erl! andLm+1;m. Their evaluation involves the Straight—
. N forward integration of the expression in E43) with L and
The diagonal matrix elements L{m,Lm-1m-1,  J defined by Eqs(9) and (A8). Only lowest order nonvan-
I:mﬂ;mﬂ) are obtained by applying the averaging procedurdshing terms in inverse aspect ratio expansion need to be
[see Eq(12)] to the components of the eigenmode equatiorretained in these calculations. An additional simplification

described by Eq94A1)—(A3). SinceVr-VHxsinfis an odd comes from the conditiom>1, which allows one to neglect
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the difference betweem,m—1 andm+1 everywhere ex- unity (not of the order ofm) for the modes of interest. The
cept in the quantitiesn— (m/q), n— (m—1)/q, and n resulting expressions for the off-diagonal elements are deter-
— (m+1)/q as these quantities are typically of the order of mined by the following equations:

; ® d 2 +A’)w2 aq) 1 m) d A’a m—1 ®
;m— —1=_Tlce —d, 1——|n——|—rA'—|n——— B
mm—-1¥m-1 ar _i&r m—1 Rg q/ar or q m—1
w?A'—¢ 5 1 A'+e ) m—1 m
= mdn 1—— m2n———|| n——|®, 4
Vi r Ro q q
o’ 9 1 m d m—1
M (rA)) — Oyt 5m n=— | (e+(1A")) —| n———|dp 4, (1)
Vi or Ro q ar q
" 72 +A,)w2 an 1/ m|a A,a( m+1)q)
: =—r(2¢ —— -—=|n-——|—rA'—{n-——
m;m+1+"m+1 or Vio”r m+1 Rg q) o ar q m+1
w? A'—g 2 1A'+e m+1 m
L i L | Ly LS
VA r RO r q
+w2 (6+(rA)) &q) 1 ( m (5+(rA)) d m+1 ® .
—mMm(e r —_— — M| nN—— e r —| n— ’
V'ZA ar m+1 Rg q Py —q m+1
R SULIP Y CHCARKIP SO L 0N L) P S
~1m®Pm=-f(2e — Oy~ —|n———|—rA'—|n—— — m
T o vzor "R q Jor o\ oq) " W2 o m
1 A'+e 5 m—1 ( m o +w2 ( +( A,),) &(D
T2 min-———f/{n-— —m(e—+(r —
Ry r q q " A a
1 m—1 d m
- —mn-—— (e+(rA"))—| n——| D, (C3)
Ro q ar q
~ d w? 9 1 m+1\ o 9 m
Lm+1;mq)m:_r(28+A,)__(Dm__2 —— | —rA'—|n——|d,
or V2 or Rg q Jor or q
WA -e 1 A'+e m+1 m
= md,— — m’(n———|| n——|®,
Va 0 q q
w? (e+(rA")) t?q) N 1 m+1 (s +(rA")") a( m)(b o
——Mm(e r — —m|n——| (¢ r —|n-— ]
Vi o " R q ar q) "

A
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