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Theory of Alfve´n eigenmodes in shear reversed plasmas
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Plasma configurations with shear reversal are prone to the excitation of unusual Alfve´n eigenmodes
by energetic particles. These modes exhibit a quasiperiodic pattern of predominantly upward
frequency sweeping~Alfvén cascades! as the safety factorq changes in time. This work presents a
theory that employs two complementary mechanisms for establishing Alfve´n cascades:~1! a
nonstandard adiabatic response of energetic particles with large orbits and~2! toroidal
magnetohydrodynamic effects that are second-order in inverse aspect ratio. The developed theory
explains the transition from Alfve´n cascades to the toroidicity induced Alfve´n eigenmodes~TAEs!,
including modifications of the TAEs themselves near the shear reversal point. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1597495#
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I. INTRODUCTION

There are several reasons why Alfve´n eigenmodes are o
interest in magnetic fusion research. The first is the conc
that these modes can degrade energetic ion confinem1

particularly the confinement of fusion-produced alp
particles in burning plasma experiments.2 The second is the
observation that benign Alfve´n eigenmodes can provid
unique diagnostic opportunities via so-called magnetohyd
dynamic-~MHD!-spectroscopy.3 Finally, there is an impres
sive amount of high-quality and still not totally explaine
experimental data from various machines@Joint European
Torus~JET!, Tokamak Fusion Test Reactor~TFTR!, JT-60U,
DIII-D, and others# that necessitates a detailed theoreti
analysis of the Alfve´n modes themselves and of their inte
actions with the energetic ion population.

The shear Alfve´n wave frequency range has been exte
sively explored in the experiments, with a particularly stro
interest in toroidicity induced Alfve´n eigenmodes~TAE!.4

The TAEs are associated with the gaps in the Alfve´n con-
tinuum, which facilitates their excitation by reducing diss
pation from continuum damping. The role of continuu
damping would also be greatly reduced if modes arise
radial locations where there happens to be minimal spa
variation of the local shear Alfve´n wave frequency,

vA5
VA~r !

R S n2
m

q~r ! D , ~1!

wheren andm are the toroidal and the poloidal mode num
bers,VA is the Alfvén velocity,R is the major radius, andq
is the safety factor. A good example of such a case is
global Alfvén eigenmode~GAE!.5,6 The frequencies of pri-
mary interest for many experiments are roughly of the or
of the TAE frequency,vTAE[VA /(2qR). When the mode
numbers are substantially larger than unity it is appar
3641070-664X/2003/10(9)/3649/12/$20.00
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from Eq.~1! that such modes are more sensitive to the sa
factor profile than they are to the plasma density profi
Thus any location whereq is nearly flat should be viewed a
a potential site for a shear Alfve´n mode.

The aforementioned special role of flatq ~zero shear!
sites concurs with numerous observations of so-called Alf´n
cascades~AC! in tokamak discharges with nonmonoton
q-profiles. The cascades were discovered on JT-60U~Ref. 7!
and then also found on the JET,8,9 where they have been
studied extensively. The cascade modes typically appea
‘‘bunches.’’ They emerge outside the TAE gap and exhibi
quasiperiodic pattern of frequency sweeping, as shown
Fig. 1. It has been revealed10 that the mode frequencies ac
tually trace the temporal evolution ofvA due to the time
dependenceq0(t) of the safety factor at the zero shear poin
However, the experiments exhibit only a subset of the f
quencies described by Eq.~1!. In particular, most of the ob-
served frequencies move upward when the safety factor
creases in time. This feature indicates that some of
candidate frequencies given by Eq.~1! may not be suitable
for establishing an eigenmode. It is also noteworthy that
allowed modes are not GAEs which would produce f
quency sweeping in the opposite direction.

In order to establish the ‘‘rules’’ for the mode existenc
one has to look specifically at the physics mechanisms
maintain the eigenmode structure. We note that in a plas
that is cold and spatially uniform there is a degeneracy in
shear Alfvén wave spectrum. In such a plasma, an arbitr
radial mode structure is compatible with the eigenfreque
determined by Eq.~1!. The reason why the mode structure
not robust in this case is that different flux surfaces do
communicate via shear Alfve´n signals. Two of the ways for
them to communicate are via radial excursions of parti
orbits ~including gyro-orbits! and via toroidal MHD-effects.
9 © 2003 American Institute of Physics
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FIG. 1. Alfvén cascades of sweeping-up and
sweeping-down types, observed in a JET discharge
multaneously with TAEs. The right part of the figure
a zoom of the left part. It shows TAEs, some of whic
arise from the AC.
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The first option was examined in Ref. 10 as a primary c
didate for the interpretation of Alfve´n cascades below th
TAE gap in a plasma with a significant population of en
getic particles. Here we examine the second option and d
onstrate that the manifestation of toroidal MHD-effects aw
from the TAE gap is mathematically similar to that of th
energetic particles, so that both effects can be convenie
described by the same eigenmode equation~see Sec. III!.
The closer to the TAE gap, the more significant is the role
coupling between the neighboring poloidal harmonics. Ho
ever, the mode structure within the TAE gap differs cons
erably from that of conventional TAEs because the magn
shear is very small at the mode location. In Sec. IV,
present a corresponding generalization of TAE theory.
also show that there is a continuous transformation of
Alfvén cascade modes into TAE modes as the safety fa
changes in time at the shear reversal point. This transitio
illustrated by the numerical results, presented in Sec. V.

In describing the ACs and TAEs we adopt a convent
n.0 and consider waves with both positive and negat
frequenciesv. These two cases correspond, respectively
waves propagating along and opposite to the equilibrium
roidal magnetic field. The TAE dispersion relation is a fun
tion of only v2 so that both positive and negative frequen
waves will exist. In contrast with TAEs, the AC dispersio
relation contains linear dependence onv, which breaks the
symmetry between positive and negative frequencies, so
only waves of one particular sign ofv may exist. In order to
identify all AC eigenmodes, thev.0 andv,0 cases will be
investigated separately.

In the body of the text we describe the linear mod
without regard to their excitation. Experimentally, the mod
have been excited by a hot particle population, which int
duces additional constraints on the observable modes.
issue will be discussed in Sec. VI. Once the relevant linea
unstable modes are identified, their saturation level in
weakly nonlinear regime can be calculated straightforwar
with the technique described in Ref. 11.

II. BASIC EQUATIONS

This section deals with a derivation of the eigenmo
equations for shear Alfve´n perturbations in a large-aspec
ratio torus. Our goal here is to present a formalism that
will then use to link Alfvén cascade modes to TAEs in pla
Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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mas with a nonmonotonic safety factor profile~i.e., with
magnetic shear reversal!. This formalism will also be rel-
evant to the case of monotonic safety factor with an exten
area of very low shear. For the sake of simplicity, we w
restrict the derivation to the limiting case of zero plasm
pressure and high mode numbers. We will therefore neg
all pressure effects in this paper. It should be pointed out
our equations will include second order corrections in
verse aspect ratio. We will then demonstrate~in Sec. III! that
these corrections alone can support a localized mode be
the TAE gap if the magnetic shear is sufficiently low.

We choose a gauge in which the scalar potential equ
zero, so that the perturbed electric and magnetic fields ca
written in terms of a vector potentialdA as follows:

dE52
1

c

]dA

]t
, dB5curldA. ~2!

We assume that the parallel component of the perturbed e
tric field vanishes due to high electron conductivity along t
magnetic field lines. The perturbed vector potentialdA can
then be represented by a single scalar functionF,

dA5¹F2b~b•¹F!, ~3!

whereb[B/B is a unit vector in the direction of the equ
librium magnetic field B. This representation eliminate
compressional Alfve´n perturbations that would otherwise b
described by another scalar function,C, with an additional
term ¹C3b on the right-hand side of Eq.~3!. The shear
Alfvén mode equation forF comes from the quasineutralit
condition,

div d ji1div d j'50, ~4!

whered ji andd j' are the components of the perturbed cu
rent ~parallel and perpendicular to the direction of the eq
librium magnetic field, respectively!. The perturbed paralle
current is related toF by the Ampère law,

d ji5
c

4p
b~b•curldB!

52
c

4p
b~b•curl curl~b~b•¹F!!!. ~5!

Calculation of the perturbed perpendicular current involv
the momentum balance equation,
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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r
]dv
]t

5
1

c
@d j3B#1

1

4p
@curlB3dB# ~6!

with

dv'52
c

B
@b3dE#5

1

B
@b3¹Ḟ#. ~7!

Substitution ofd ji andd j' into Eq.~4!, with some additional
straightforward algebra, gives

div
1

VA
2 Fb3F¹ ]2F

]t2 3bG G
5~B•¹!

1

B2 divFB3FgradS 1

B
~b•¹F! D3BG G

2gradS 1

B
~b•¹F! D •¹2B

1~B•¹!F 1

B2 S 1

B
~b•¹F! D ~B•¹2B!G , ~8!

whereVA is the Alfvén velocity. We will limit our consider-
ation to modes with a global scale-length along the magn
field lines but with large poloidal and toroidal mode numbe
n andm. We therefore neglect the last term on the right-ha
side of Eq.~8! and obtain

L̂F[2div
1

VA
2 Fb3F¹ ]2F

]t2 3bG G
1~B•¹!

1

B2 div FB3FgradS 1

B
~b•¹F! D3BG G

2gradS 1

B
~b•¹F! D •¹2B50, ~9!

where we have introduced a self-explanatory linear differ
tial operatorL̂ to shorten the forthcoming calculations.

Our analysis of Eq.~9! in an axisymmetric torus will
employ straight field-line coordinates with the following e
pression for the unperturbed magnetic field:

B5B0

r

q~r !
¹r 3¹~qu2z!, ~10!

wherez and u are the toroidal and poloidal angles, respe
tively, r is the flux coordinate,q(r ) is the safety factor, and
B0 is the value of the unperturbed field on the magnetic a
The JacobianJ and the metric coefficients for this coordina
system in a large aspect ratio tokamak are given in Appen
A.

The functionF, which is a periodic function ofz andu,
can be represented by a Fourier series as follows:

F~r ;u;z;t !5exp~ inz2 ivt !(
m

Fm~r !exp~2 imu!1c.c.,

~11!

where v is the mode frequency, andFm(r ) is the radial
eigenfunction for themth poloidal harmonic.

An important feature of the low shear eigenmodes
that each of them contains no more than three signific
Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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poloidal harmonics, so that we can truncate the right-ha
side of Eq. ~11! to just three terms. We will label thes
terms by the subscriptsm21, m, and m11 respectively,
reflecting the fact that the toroidal effects couple primar
the neighboring harmonics. The corresponding three eq
tions for Fm21(r ),Fm(r ), andFm11(r ) will be further re-
duced to either a single equation forFm(r ) ~if the mode
frequency is not too close to the TAE gap! or to a set of two
coupled equations forFm21(r ) andFm(r ) ~if the mode fre-
quency is within the TAE gap or very close to the gap!.

In order to derive the equations forFm21(r ), Fm(r ),
andFm11(r ) we multiply Eq. ~9! by (J/R0) exp(2inz1ivt
1ilu), where the integerl runs from m21 throughm11,
and we average the result over the angular variables~z;u! and
over time. It is convenient to write the ensuing equations i
matrix form,

L̂ l ; jF j~r !50, ~12!

where summation overj is implied with j running fromm

21 throughm11. The matrixL̂ l ; j is related to the operato
L̂ by

L̂ l ; j[
1

R0
^J~r ;u!exp~ i l u!L̂ exp~2 i j u!&, ~13!

where the angular brackets denote the poloidal angle ave
ing procedure. Every element of the matrixL̂ l ; j is a second-
order differential operator inr . The explicit expressions fo
these operators are presented in Appendices B and C.

Our treatment of Eq.~12! will employ characteristic or-
dering features of the operatorsL̂ l ; j in a large-aspect-ratio
tokamak. We observe that all the off-diagonal operators
proportional to the inverse aspect ratio, which makes th
generally smaller than any diagonal operator unless it is p
ticularly close toV l[ VA /R un2 (1/q) u for any of the three
allowed l -values. Furthermore, it is allowable to drop th
operatorsL̂m21;m11 and L̂m11;m21 since the toroidicity-
induced coupling between the poloidal harmonics involv
primarily the closest neighbors. If the frequenci
Vm21 ,Vm , and Vm11 are all significantly different~for a
given value ofq), then only one of the diagonal operato
can be uncharacteristically small. It is also possible that t
of the three diagonal operators become small simultaneo
but this requires that the corresponding frequencies co
close to each other. The case of well-separatedV l ~i.e., fre-
quencies sufficiently far from the TAE gaps! is relevant to
cascade modes, whereas the other case represents
modes. In what follows, we first consider each of these t
cases separately and then describe the transition betwee
two.

III. CASCADE MODES

In this subsection, we will assume that the only ‘‘sma
diagonal operator isL̂m;m . We then transform Eq.~12! to the
following set:

L̂m;mFm~r !1L̂m;m21Fm21~r !1L̂m;m11Fm11~r !50,
~14!
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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Fm21~r !52L̂m21;m21
21 @ L̂m21;mFm~r !#, ~15!

Fm11~r !52L̂m11;m11
21 @ L̂m11;mFm~r !#, ~16!

where the superscript ‘‘21’’denotes an inverse operator. Th
inversion is a suitable procedure for the ‘‘large’’ operato
(L̂m21;m21 and L̂m11;m11) since it does not introduce
‘‘small denominators.’’ We thereby reduce Eqs.~14!–~16! to
a single equation forFm(r ),

L̂m;mFm~r !5L̂m;m21$L̂m21;m21
21 @ L̂m21;mFm~r !#%

1L̂m;m11$L̂m11;m11
21 @ L̂m11;mFm~r !#%.

~17!

It is remarkable that, for the problem of interest, th
equation is actually equivalent to a second order differen
equation despite the fact that the term on the right-hand
is generally an integrodifferential operator. We find that t
only difference between Eq.~17! and a similar second orde
differential equation,

L̂m;mFm~r !50, ~18!

is in the coefficients that describe the«2-corrections to this
otherwise ‘‘cylindrical’’ eigenmode equation.

In order to explicitly calculate the right-hand side co
tribution to Eq.~17!, we note that each of the two terms o
the right-hand side is already quadratic in the inverse as
ratio. It is therefore allowable to treat all the coefficients
the operators on the right-hand side as constants as lon
the functionFm(r ) is localized in the vicinity of the zero
shear point and the radial width ofFm(r ) is much smaller
than the minor radius. In addition, it is allowable to use t
lowest order dispersion relation,

v25v0
2[

V̄A
2

R0
2 S n2

m

q0
D 2

, ~19!

to simplify the right-hand side of Eq.~17! since small devia-
tions from this relation can be safely ignored in t
«2-corrections. The quantityV̄A in Eq. ~19! is the flux sur-
face averaged Alfve´n velocity, as defined in Appendix C. Th
described simplifications allow us to straightforwardly calc
late the right-hand side of Eq.~17! via Fourier transforma-
tion in radius. We then convert the Fourier image back int
real space representation to obtain

L̂m;m21$L̂m21;m21
21 @ L̂m21;mFm~r !#%

1L̂m;m11$L̂m11;m11
21 @ L̂m11;mFm~r !#%

52r
v2

V̄A
2 H ]2

]r 2 F ~D81«!2

~2qn22m!221
1«~2D81«!G

2S m

r
D 2F ~D8!2

~2qn22m!221
2«~2D81«!G J Fm . ~20!

Next, we combine Eq.~20! with a separately-derived expre
sion for L̂m;mFm(r ) @see Eq.~B2!# and we rearrange th
Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
l
e

e

ct

as

-

a

result by neglecting some of those«2-contributions that are
only responsible for frequency redefinition~see Appendix
B!, which gives

]

]r Fv2

V̄A
2

2
1

R0
2 S n2

m

q
D 2G r

]

]r
Fm2

m2

r 2

3r Fv2

V̄A
2
S 112

«212D8«

~2qn22m!221
D 2

1

R0
2 S n2

m

q
D 2GFm

50. ~21!

In this equation, the toroidal effects, which shift the mo
frequency from the Alfve´n continuum, scale as«2, whereas
the existence of toroidal Alfve´n eigenmodes is associate
with the linear in« effects. Since the«2-terms that are re-
sponsible for the Alfve´n cascades are quite small, one c
expect that an energetic particle response may compete
the toroidicity effect in Eq.~21!. Indeed, it was shown in
Ref. 10 that fast ions themselves can be responsible for
existence of the Alfve´n cascade mode. On the other hand
is more difficult for the energetic particle response to co
pete with theO~«! toroidicity effect associated with TAEs
By adding the theory developed in Ref. 10 to our analy
one finds that the contribution from the fast ions modifies
eigenmode equation to

d

dr Fv2

V̄A
2

2
1

R0
2 S n2

m

q
D 2G r

d

dr
Fm

2
m2

r 2
r Fv2

V̄A
2

2
1

R0
2 S n2

m

q
D 2GFm

5
m2

r 2
r

v2

V̄A
2
S 2

«212«D8

~2qn22m!221
D Fm1

4pe

cB
mFm

3
d

dr
Fv^nh&2

1

eR0
S n2

m

q
D ^ j ih&G . ~22!

The angular brackets in this equation denote flux surf
averaging, and the two contributions to the second term
the right-hand side represent the density and the parallel
rent of the fast ions, respectively. For the rest of the paper
assume a typical ion cyclotron resonance heating~ICRH!
scenario, withVihot/VA!1, so that the energetic particle pa
allel current will be neglected.

In order to demonstrate the existence of an eigenmod
Eq. ~22!, we expand the parallel wave number parame
(1/R0

2) (n2 @m/q(r )#)2, about the point of zero magneti
shear,r 5r 0 , whereq(r 0)[q0 is the minimum value of the
safety factor,

1

R0
2 S n2

m

q~r ! D
2

>
1

R0
2 S n2

m

qq
D 2

1
mq9~r !

q0
2

~r 2r 0!2

R0
2 S n2

m

q0
D . ~23!
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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We assume that this expression is accurate over a regionDr
where the mode is localized, which requires (Dr )2,unq0

2mu(q0 /mq09). We can then setv5v0 and replace the co
efficient in front ofFm on the right-hand side of Eq.~22! by
its value atr 5r 0 to obtain

d

dx
Dm

dFm

dx
2DmFm52

v0
2R0

2q0
2

V̄A
2

«0
212«0D08

~2q0n22m!221
Fm

1
v0

2R0
2q0

2

V̄A
2

vch

v0

r 0

m
S d^rh&

rdr
D

r 5r 0

Fm ,

~24!

wherex[(r 2r 0)m/r 0 is the normalized radial coordinate
vch is the hot ion gyrofrequency,rh andr are the hot ion and
the bulk plasma mass densities, and the quantityDm(x) is
given by

Dm~x!5F2~v2v0!v0

q0
2R0

2

V̄A
2

2~q0n2m!
r 0

2q09

q0m
x2G .

~25!

Equation~24! has exactly the same structure as Eq.~12! in
Ref. 10, where the Alfve´n cascades due to the hot ions alo
were described. We can then immediately generalize
mode existence criterion from Ref. 10 to the following i
equality:

Qeff[Qhot1Qtor.1/4, ~26!

where

Qhot5S 2
d^nh&

dr
D

r 5r 0

4peR0
2q0

3

cBr0q09

v0

~m2nq0!

[v0
2

q0
2R0

2

V̄A
2~m2nq0!

q0

r 0
2q09

F S 2
r

r

d^rh&

dr
D

r 5r 0

vch

v0
G ,

~27!

is the hot ion contribution introduced in Ref. 10, and

Qtor5mv0
2

2q0
2R0

2

V̄A
2~m2nq0!

q0

r 0
2q09

«0~«012D08!

@12~2q0n22m!2#
~28!

is a geometric contribution due to toroidicity.
We note that for a given value ofq0 , Eq. ~24! can de-

scribe cascade modes with differentm-values and with dif-
ferent frequencies~either above or below the TAE gap!. In
preparation to our subsequent discussion of the trans
from the cascades to TAEs~see Sec. V!, we select two neigh-
boring m-values (M and M21) and we consider the rang
M /n.q0.(M21)/n with an exception of a small are
aroundqTAE5(M21/2)/n @whereQtor becomes singular an
the cascade approximation used to derive Eq.~24! breaks
down#. In order to identify all the cascade modes that a
possible asq0 varies, we turn to Fig. 2, which shows sch
matically the normalized mode frequenciesV5v/vTAE as a
function ofq0 in the range of interest. Figure 2~a! is for v.0
and Fig. 2~b! is for v,0. Each figure is divided into quad
Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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n

e

rants, depending on signs ofQtor and Qhot for the corre-
spondingm-value. The characterization of each quadra
starting at the lower left corner and moving clockwise is
follows:

~a! M /n.q0.(M21/2)/n; uVu,1, m5M ,
~b! M /n.q0.(M21/2)/n; uVu.1, m5M21,
~c! (M21/2)/n.q0.(M21)/n; uVu.1, m5M ,
~d! (M21/2)/n.q0.(M21)/n; uVu,1, m5M21.

The solid curves in Fig. 2 indicate how the cascade mo
frequency varies when the frequency is sufficiently far fro
the TAE gap assuming that the condition~26! is satisfied.
Clearly, there cannot be a cascade mode in the quadr
where bothQtor andQhot are negative. BothQtor andQhot are
positive in quadrant~a! for v.0 and in quadrant~b! for
v,0, so that in these quadrants both effects help suppo

FIG. 2. Schematic plot of the AC mode frequencies for two selected po
dal mode numbersM and M21. The different quadrants correspond
different signs ofQhot and Qtor . Solid lines indicate possible AC modes
dashed lines indicate the Alfve´n continuum, the circles indicate the region
where the cascade mode approximation fails. The relevant values ofm are
shown in each quadrant.~a! represents positive frequencies and~b! is for
negative frequencies.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions



u
r

t

in
f
on
n-

-
r

in
re
n

o
t

n
r
e
a

n-
an

tiv
ll

he
er
y-

ia
T
E
t t
th

ci-

ts,

.

e
e
l
ly at
ran-
nal
se

f the
ode
of

as
pi-
nt

iple
p-

nt
-

p-
n-

ua-
ap-

3654 Phys. Plasmas, Vol. 10, No. 9, September 2003 Breizman et al.
cascade mode. To have a cascade mode in the other q
rants requires one of theQ-values to be sufficiently large
than the other to satisfy Eq.~26!.

The spectrum of eigenfrequencies for Eq.~24! is de-
scribed in Ref. 10. To apply that theory here we only need
replace the quantityQ of Ref. 10 byQhot1Qtor . It is also
instructive to apply a WKB analysis to Eq.~22! to infer the
mode frequency shift from the Alfve´n continuum~indicated
in Fig. 2!. We then find from Eq.~22!,

kr
25

m2

r 2 H 211F ~«212D8«!

@124~q0n2m!2#
2

r

2m

d^rh&

rdr

vch

v0
G

3
v0

2q0
2R0

2

@v0~v2v0!q0
2R0

21V̄A
2m~m2nq0!~q2q0!#

J ,

~29!

where kr is the radial wave number. To obtain a mode
WKB theory, we needkr

2 to be positive within a region o
mode localization and to be negative outside this regi
When Qtor1Qhot.0, the expression in the bracket can i
deed be made positive forq in the vicinity of q0 with a
suitable choice of (v2v0)/v0 . With a reversed shear pro
file, we see thatq2q0 increases away from the shear reve
sal surface, so that there are reflection points (kr

250) on
both sides of the surface, which is needed for a stand
wave to exist. These WKB considerations lead to the f
quency shifts ofv from v0 that are schematically shown i
Fig. 2.

To conclude this section, we note down that it is n
always necessary to have magnetic shear-reversal in
plasma to establish a mode outside the TAE gap. Eve
monotonic safety factor profile can support such modes p
vided that this profile is sufficiently flat in the plasma cor
This possibility arises in the absence of hot ions due to
interplay between the radial dependence in the«-term in Eqs.
~22! and~29! and the radial dependence inq(r ), which cre-
ates a ‘‘potential well’’ to support a radially localized eige
mode. To demonstrate this effect we note that the right-h
side of Eq.~29! can indeed be positive when (v2v0) and
q2q0 are sufficiently small. Note thatq2q0 is positive for a
monotonically increasingq profile. Then, with (v2v0)/v0

small and positive the second term in the bracket is posi
definite if m/q02n.0. We also note that this term is sma
near the origin@where« andr (d^rh&/dr) approach zero# and
it is small far away from the origin~whereq2q0 is large!.
As a result,kr

2 is negative in these bounding regions. In t
intermediate region,kr

2 can be made positive by a prop
choice of v, which indicates the existence of a radiall
localized mode.

IV. TAEs NEAR SHEAR REVERSAL POINT

The role of toroidicity-induced coupling becomes cruc
when the frequency of the cascade mode approaches the
gap. However, the conventional analytic description of TA
does not cover the shear reversal case, which points ou
need to modify the theory in order to accurately connect
cascade modes to TAEs.
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The conventional TAE modes are known to be asso
ated with ‘‘special’’ values ofq@q5qTAE[(2m21)/2n# that
represent the strongest linear coupling between themth and
(m21)th poloidal harmonics. Motivated by the experimen
we assume that theq-profile has a minimum atq(r )5q0

within the plasma cross section and thatq0 decreases in time
In its motion, the lowest point in theq-profile can go from
above to belowqTAE . One might argue that there should b
no TAE mode untilq0 reachesqTAE , and that there should b
two modes whenq0 is below qTAE . However, the actua
picture is more subtle as the TAEs do not emerge sudden
the crossing. Instead, we find that there is a continuous t
sition from cascade-type modes to TAEs. The conventio
TAE theory is insufficient to describe the transition becau
the shear is exactly zero at the crossing and the slope o
q-profile can no longer be treated as a constant at the m
location. A conceptually relevant approach to the case
very low shear was developed in Ref. 12, where it w
pointed out that the radial mode width in this case is ty
cally larger than the poloidal wavelength. Another importa
feature of the low shear case is the existence of mult
TAEs in the same gap. In what follows, we adapt the a
proach of Ref. 12 to address the transition fromq0.qTAE to
q0,qTAE .

Only two of the three poloidal harmonics are significa
in the TAE case. We will choose their poloidal mode num
bers to bem andm21. The essence of the problem is ca
tured by the following set of equations for these two harmo
ics,

d

dx
Dm

d

dx
Fm2DmFm1

«01D08

2
Fm219 2

«012D08

2
Fm218

1
D08

2
Fm2150, ~30!

d

dx
Dm21

d

dx
Fm212Dm21Fm211

«01D08

2
Fm9

1
«012D08

2
Fm8 1

D08

2
Fm50, ~31!

wherein x[(r 2r 0)m/r 0 , the subscript ‘‘0’’ refers to the
zero shear point, and the quantitiesDm andDm21 are given
by

Dm5Fv2
q0

2R0
2

V̄A
2

2~q0n2m!22~q0n2m!
r 0

2q09

q0m
x2G ,

~32!

Dm215Fv2
q0

2R0
2

V̄A
2

2~q0n2m11!22~q0n2m11!
r 0

2q09

q0m
x2G . ~33!

For the radially-extended modes with a mode widthDx@1,
we can formally treat all the derivative terms in these eq
tions as small compared to nonderivative terms. This
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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proximation allows us to explicitly expressFm21 in terms of
Fm and its derivatives and obtain a Schro¨dinger-type equa-
tion for Fm ,

«0~«012D08!

4

d2Fm

dx2
2FmF S 122Unq02m1

1

2
U D

3S q0n2m1
1

2
D r 0

2q09x
2

q0m
1S r 0

2qx9x
2

2q0m
D 2

1
~«012D08!

2

r 0
2q09x

q0m
G

52FmH Fv2q0
2R0

2

V̄0
2

2~nq02m!2G
3Fv2q0

2R0
2

V̄A
2

2~nq02m11!2G2S D08

2
D 2J . ~34!

We now observe that a change inq0 from q0.qTAE to
q0,qTAE changes the structure of the ‘‘potential energ
term from a single well to a double well, as shown in Fig.
The double-well case represents two preferred locations
TAEs on the opposite sides of the zero shear point. T
single well case indicates that an eigenmode can exist e
before q0 crosses the valueqTAE . However, the long-
wavelength approximation has a rather restrictive applica
ity condition in the single-well case. It requires«3m
@4(q0n2m11/2) (r 0

2q09/q0), which is difficult to satisfy
unless the mode is very close to the TAE gap or theq-profile
is nearly flat, so thatr 0

2q09!q0 . The effects that allow the
mode to survive outside the TAE gap have already been
cussed in Sec. III.

V. TRANSITION FROM ALFVÉ N CASCADES TO TAEs

In order to trace the transition from the nearly cylindric
cascade modes to TAEs we add the hot particle contribu
Qhot to the ‘‘diagonal’’ operators in Eqs.~12! and solve a
truncated~two-harmonic! version of these equations nume

FIG. 3. Transformation of the effective potential for radially extend
modes from a single well (nq02m11/2.0) to a double well (nq02m
11/2,0).
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cally for a model reversed-shear equilibrium with circul
flux surfaces. We choose a fixed radial profile of the toroi
current and vary the total value of the current, which chan
the value of the safety factor at the zero shear point. T
calculation gives a sequence of eigenfrequencies and ra
eigenmodes for the selected values ofq0 as q0 changes in
time. This reduced numerical model has been verified w
the full geometry codes MISHKA~Ref. 13! and CASTOR.14

The long-wavelength approximation provides a relev
qualitative guidance for our numerical analysis.

Each calculated eigenmode can be labeled by its toro
mode numbern, a pair of poloidal mode numbers@assuming
that the mode contains predominantlymth and (m21)th po-
loidal components#, and a radial labell , which is the number
of zeros~nodes! in the radial eigenfunctions for each of th
mth and (m21)th poloidal components, respectively. Fi
ures 4 and 5 show eigenfrequencies for lowest radial mo

FIG. 4. Transition of Alfvén cascade modes to TAEs for positive frequen
modes. Solid curves present eigenfrequencies for lowest order radial m
with n54, m5(12;11), and with the following values of input parameter
r 0

2q09/q050.25, Qhot52, «050.13, D0850.03. Thin dashed curves mar
Alfvén continuum frequencies. Thick dashed curve represents the m
shown in quadrant~c! of Fig. 2~a!.

FIG. 5. Transition of Alfvén cascade modes to TAEs for negative frequen
modes. Solid curves present eigenfrequencies for lowest order radial m
with n54, m5(12;11), and with the same input parameters as in Fig
Thin dashed curves mark Alfve´n continuum frequencies. Thick dashed cur
represents the mode shown in quadrant~d! of Fig. 2~b!.
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with the same values ofn andm. The two solid curves trace
the frequencies of the modes withl 5(0;1) ~lower curve!
and l 5(1;0) ~upper curve! as a function ofq0 . The dotted
curves in the figure mark the Alfve´n continuum frequencies
for the selected values ofn andm. This figure demonstrate
a strong asymmetry in the mode frequency behavior:
mode first stays close to the continuum frequency untilq0

reachesqTAE , and then detaches from the continuum a
moves into the TAE gap rather than tracking the continu
which would reverse the direction of frequency chirping.

This pattern is consistent with the evolution of the p
tential well in Eq.~5!, and the same general trend is clea
seen in the experimental data in Fig. 1. The calculated e
lution of the mode structure along the solid curves of Figs
and 5 provides additional evidence that the cascade m
indeed convert ‘‘adiabatically’’ into TAEs. Figure 6 illus
trates how the initial cylindrical cascade mode with a pol
dal mode numberm512 ~indicated by the eigenfunction
subscript! gains a second component due to toroidal coupl
as the mode frequency approaches the TAE gap. Once in
gap, the mode then exhibits the typical signature of TAE, i
two nearly equal and strongly coupled poloidal compone
Another characteristic feature in Fig. 6 is that the mode
quires a double-hump structure when the effective ‘‘poten
energy’’ in Eq. ~5! changes from a single well to a doub
well. Later in its evolution theF12-component returns to a
single hump structure that is now shifted from the zero sh
point. The shift comes from an asymmetry of the dou
potential well, which forces the lower frequency mode
concentrate predominantly in one of the two adjacent we
The upper frequency mode obviously ‘‘prefers’’ the oth

FIG. 6. Snapshots of the mode structure for a positive frequency mode
n54 andm5(12;11) during the transition from a cascade mode to TA
The left column shows the radial profiles of them512 andm511 poloidal
components for the lower@ l 5(0;1)# mode of Fig. 4. The right column
shows the upper mode@ l 5(1;0)#. The values ofq0 for the snapshots are~a!
2q052.915; ~b! 2q052.875; ~c! 2q052.86; ~d! 2q052.84.
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half of the well and it is therefore shifted to the left from th
zero shear point. Also, the upper frequency mode has
antiballooning poloidal structure in the TAE gap~the oppo-
site signs of the poloidal components cause mode local
tion on the inner part of the torus!, whereas the lower fre-
quency mode exhibits a ballooning structure~mode
localization on the outer part of the torus!. Figure 7 shows
that negative frequency modes of Fig. 5 undergo a very si
lar transition in the mode structure.

VI. DISCUSSION AND SUMMARY

In this work we have extended the theory of Alfve´n
cascades10 that have been observed in a variety of tokam
experiments with reversed magnetic shear. Initially their
istence was attributed to the response of large orbit hot
ticles. The modified theory now includes toroidal MHD e
fects in addition to energetic particle effects. It demonstra
that the cascade modes can also exist without the ener
particles, although the energetic particles can substant
facilitate their manifestation. In addition, the extended the
predicts that the cascades can exist even without magn
shear reversal if theq-profile is nearly flat in the center. Th
presented theory also describes the adiabatic transforma
of Alfvén cascades into TAEs as well as modifications
TAEs themselves near the shear reversal point. It is poin
out that, for a given toroidal mode number, the Alfve´n
cascade spectrum accommodates both positive and neg
frequency modes above and below the TAE range
frequencies.

ith
.
FIG. 7. Snapshots of the mode structure for a negative frequency mode
n54 andm5(12;11) during the transition from a cascade mode to TA
The left column shows the radial profiles of them512 andm511 poloidal
components for the lower@ l 5(0;1)# mode of Fig. 4. The right column
shows the upper mode@ l 5(1;0)#. The values ofq0 for the snapshots are
~a! 2q052.915; ~b! 2q052.875; ~c! 2q052.86; ~d! 2q052.84.
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In order to discuss experimental data when ACs and
TAEs are excited by energetic particles, an additional se
tion rule for the mode excitation needs to be applied. If o
assumes that the excitation is due to the universal instab
drive,15 for an energetic particle profile that decreases ra
ally then, in the notation of this paper, only the positi
frequency waves should be selected. Nonetheless, it sh
be kept in mind that it is possible for the radial profile of t
energetic particles to be inverted and that an additional in
bility drive due to hot particle anisotropy in phase space
conceivably lead to the excitation of the negative freque
waves.

As already pointed out, Fig. 1 demonstrates that the
modes below the TAE frequency sweep upward whenq0

decreases in time. These modes are compatible with the
shown in quadrant~a! of Fig. 2~a!. In this case the signs o
both Qtor and Qhot are favorable for the existence of th
mode and the universal instability mechanism provide
drive for the mode. We also see in Fig. 1 that some upw
sweeping modes convert into TAEs, which is compati
with the behavior shown in Fig. 4, although in experime
there are cases where some modes disappear as the
quency reaches the TAE gap~a phenomenon that still need
explanation!.

The cascade modes that start on top or above the T
gap in Fig. 1 and sweep downward asq0 decreases appear t
be compatible with the mode shown in quadrant~b! of Fig.
2~a!, whereQtor is larger thanuQhotu. It still remains to de-
termine why these downward sweeping modes termin
rather than gradually convert into TAEs.

The most recent theoretical discussion of the modes
cited by the universal instability drive is presented in Ref.
that deals solely with the positive frequency modes. In
work presented here we have shown that the additional
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ond order toroidal MHD effect allows for cascade modes
exist even without energetic particles. Also, the more co
plete spectrum of Alfve´n modes that is described, which in
clude negative and positive frequencies, can be employe
MHD spectroscopy3 based on mode excitation with an exte
nal antennae. The observation that MHD effects alone
establish an AC eigenmode is particularly relevant to
experimental case with a very low density of hot ions, e
alpha-driven ACs in TFTR DT experiments with a nearly fl
centralq-profile.17

Both the detailed linear stability analysis and nonline
theory of Alfvén cascades go beyond the limited scope
this paper. These extensions would be particularly desira
for diagnostic applications of Alfve´n cascades. It is notewor
thy that the cascades already provide a valuable diagno
tool even at the present level of their understanding. An
pressive example of that is the observed correlation betw
the cascades and the internal transport barrier~ITB! trigger-
ing events in reversed shear discharges in JET.18 This corre-
lation has been successfully used to optimize the discha
parameters for the transport barrier formation.19
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APPENDIX A: STRAIGHT FIELD LINE
REPRESENTATION

In the straight field line representation@Eq. ~10!#, the
three individual terms in Eq.~9! have the following form:
div
1

VA
2 Fb3F¹ ]2F

]t2 3bG G5
1

J
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]u FJ
1

VA
2 F ~¹u!2
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q
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J

1
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1
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In these expressions, the JacobianJ, the absolute value o
the equilibrium magnetic fieldB, and the supplementar
function F are given by

J[
1

@¹r 3¹u#•¹z
, ~A4!

B2[B0
2H @~¹r !2~¹u!22~¹r •¹u!2#

1
1

q2 @~¹r !2~¹z!2#J , ~A5!

F[
1

B2 ~B•¹F!5
B0

JB2 F]F

]z
1

1

q

]F

]u G . ~A6!

In a large aspect ratio tokamak with circular flux su
faces, the following expressions hold for the Jacobian
the metric coefficients:

J[
1

@¹r 3¹u#•¹z
5rR0S 11

2r

R0
cosu D , ~A7!

¹r •¹r 5112D8 cosu, ~A8!

¹u•¹u5
1

r 2 F122S r

R0
1D8D cosuG , ~A9!

¹r •¹u52
sinu

r S r

R0
1~rD8!8D , ~A10!

¹z•¹z5
1

R0
2 S 12

2r

R0
cosu D , ~A11!

¹r •¹z5¹u•¹z50, ~A12!

whereinR0 is the radius of the magnetic axis,D(r ) is the
Shafranov shift, and the prime denotes a radial derivative
the absence of plasma pressure,D8 is simply proportional to
r for circular flux surfaces. It is therefore permissible to r
place (rD8)8 by 2D8 in Eq. ~A11! and in the subsequen
expressions.

It should be noted that we have omitted all second-or
terms in inverse aspect ratio in Eqs.~A8!–~A12!. Neverthe-
less, it turns out that these expressions are still accu
enough for the calculation of the relevant«2-terms in the
eigenmode equation. The only effect from the neglected c
tributions to Eqs.~A8!–~A12! is an insignificant renormal
ization of the eigenmode frequency.

APPENDIX B: DIAGONAL MATRIX ELEMENTS

The diagonal matrix elements (L̂m;m ,L̂m21;m21 ,
L̂m11;m11) are obtained by applying the averaging proced
@see Eq.~12!# to the components of the eigenmode equat
described by Eqs.~A1!–~A3!. Since¹r •¹u}sinu is an odd
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r
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function of u, all the terms with¹r •¹u in Eqs.~A1!–~A3!
vanish as a result of averaging. The remaining terms take
following form:

L̂m;mFm

5
]

]r K J
v2

R0VA
2 ~¹r !22S n2

m

q D 2 r 2

R0J
~¹r !2L ]Fm

]r

2
m2

r 2 K J
v2

R0VA
2 ~r¹u!22S n2

m

q D 2 r 2

R0J
~r¹u!2L Fm .

~B1!

Equation~B1! implicitly includes the requiredO(«2) contri-
butions in the inverse aspect ratio expansion. The negle
terms contain either an additional factor (1/m)!1 or « with
respect to the retainedO(«2) terms.

To zeroth order in«, the quantities in the first and th
second terms of Eq.~B1! are equal to each other. A vanishin
bracket gives the Alfve´n continuum dispersion relation. Th
geometrical toroidal corrections to the averaged express
in angular brackets areO(«2) since theO~«! terms are odd
functions ofu. It should be pointed out that any small co
rections that contribute equally to the two bracketed expr
sions do not affect the structure of Eq.~B1! as these correc
tions can be absorbed by a trivial redefinition ofv2. We
therefore need to select the corrections that create a di
ence between the bracketed terms. A simple analysis sh
that all such corrections come only from the products of
linear ~in «! contributions to the Jacobian and to the met
coefficients. This observation means that the accuracy
Eqs. ~A8!–~A10! is actually sufficient to calculate the re
quired corrections. The resulting expression for the diago
matrix element has the form,

L̂m,m5
]

]r S v2

V̄A
2

~114«D8!2
~n2m/q!2

R0
2 D r

]

]r

2
m2

r S v2

V̄A
2

~124«~«1D8!!2
~n2m/q!2

R0
2 D .

~B2!

APPENDIX C: OFF-DIAGONAL MATRIX ELEMENTS

There are four off-diagonal elements that are relevan
the eigenmode equation. These areL̂m21;m , L̂m;m21 ,
L̂m;m11 , andL̂m11;m . Their evaluation involves the straigh
forward integration of the expression in Eq.~13! with L̂ and
J defined by Eqs.~9! and ~A8!. Only lowest order nonvan-
ishing terms in inverse aspect ratio expansion need to
retained in these calculations. An additional simplificati
comes from the conditionm@1, which allows one to neglec
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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the difference betweenm,m21 andm11 everywhere ex-
cept in the quantitiesn2 (m/q) , n2 (m21)/q, and n
2 (m11)/q as these quantities are typically of the order
of

pe
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unity ~not of the order ofm) for the modes of interest. The
resulting expressions for the off-diagonal elements are de
mined by the following equations:
L̂m;m21Fm215
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]r
r ~2«1D8!

v2
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2
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Fm212
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mS n2
m

q
D ~«1~rD8!8!

]

]r
S n2

m21

q
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R.
.
a-

rent

W.
In these expressions, we use a notationV̄A for the flux
surface averaged Alfve´n velocity, which is the Alfve´n veloc-
ity calculated for a local mass densityr(r ) but for the on-
axis magnetic fieldB0 . We retain the radial dependence

V̄A(r ) as well as the radial dependence of the inverse as
ratio «[r /R0 , the Shafranov shift factorD8(r ), and the
safety factorq(r ).
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