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The stability and spatial structures of short wavelength ideal magnetohydrodynamic ballooning
modes~i.e., those modes with moderate to large values of the toroidal mode number,n! that can
exist in regions of zero or small magnetic shear are investigated. This is a situation relevant to
discharges with internal transport barriers~ITBs!. The generic properties of such instabilities are
discussed by considering thes–a equilibrium. In regions of lows the ballooning formalism fails for
large but finite, values ofn. In this limit a complementary approach is developed, based on solving
the recurrence relation describing the toroidal coupling of radially localized ‘‘modelets’’ on adjacent
mode rational surfaces. This technique extends the stability analysis to lowers and finite n,
capturing effects arising from the discreteness of mode rational surfaces. Consideration of
equilibrium trajectories in thes–a stability diagram corresponding to profiles of ITB discharges
allows one to determine the global stability of such discharges to these modes. It is shown that the
stability of ITBs can be parameterized in terms ofamax, the value of the peaka, and the steepness
of the barrier pressure profile relative to the shape of theq profile. Inclusion of the stabilizing effects
of favorable average curvature at finite aspect ratio,e, leads to stable high-pressure ITB
configurations. The stabilizing influence of low-order rational values ofqmin also emerges from the
theory. The influences of the bootstrap current and plasma flow shear at ITBs are briefly discussed.
@DOI: 10.1063/1.1683474#

I. INTRODUCTION

Internal transport barriers~ITBs! in tokamaks1–6 are as-
sociated with low values of the magnetic shear,s
5(r /q)dq/dr, whereq(r ) is the radial profile of the safety
factor, and by definition necessarily involve a localized
steepening of the pressure profile. Thus their stability to short
wavelength~i.e.,n@1, wheren is the toroidal mode number!
ideal magnetohydrodynamic~MHD! ballooning modes be-
comes an issue. The generic features of the stability can be
understood using the familiar ‘‘s–a ’’ stability diagram @a
52(2Rq2/B2)dp/dr is the normalized pressure gradient#
which is obtained using the ballooning representation.7 How-
ever this is normally considered in terms of solutions of the
lowest order~in 1/n) ballooning equation and does not take
account of the implications of the higher order theory for the
radial structure of the modes,A(x), wherex is a radial co-
ordinate. To determine this structure one must specify equi-
librium profiles as functions ofx and solve the lowest order
equation for its eigenvaluek(x,g), whereg is the growth
rate andk the radial wave number of the mode. A Wentzel–
Kramers–Brillouin~WKB! phase-integral determinesg and
the mode envelope,A(x);exp(i* k(x)dx).

At constants this mode envelope is centred on the maxi-
mum of thea(x) profile. To represent the pressure profile
near the ITB, which has a ‘‘pedestal’’ structure, we takea in
the form:

a5amaxsech2~x/L* !, ~1!

whereamax is the maximum value ofa in the ITB and the

length L* is characteristic of the barrier width. This form
describes a shallow, or ‘‘weak,’’ ITB asL* →` and a steep
and narrow, or ‘‘strong,’’ one asL* →0. It is important to
stress that the global stability of any profile requires every
point on it to be stable. Thus if one utilizes the second sta-
bility regime of thes–a stability diagram to achieve high
values ofamax, one must ensure a route in the diagram that
ensures the whole profile lies in stable regions.

The low values ofs often associated with ITBs have a
profound impact on the radial envelope of extended balloon-
ing modes;8–10 i.e., the envelope width,Dx/r , narrows as
(L* /rnqs)1/2exp(2c/usu), where Rec.0. As a consequence,
at small values ofs, the envelope width approaches the dis-
tance,Dmrs, between mode rational surfaces and the balloon-
ing representation begins to fail; indeed at sufficiently small
s the extended ballooning mode is replaced by a set of inde-
pendent ‘‘modelets’’ that are located at each of the rational
surfaces. The transition between extended ballooning mode
structures and weakly coupled modelets ass becomes
smaller, can be investigated by solving a simple recurrence
relation satisfied by adjacent modelets, a technique employed
earlier for drift waves.8,10

Experimentally it appears that ITBs may occur at a mini-
mum in q where one can write

q5qmin1q9x2/2 ~2!

so thats5(rq9/q)x, wherex is the radial distance from the
minor radiusr corresponding toqmin and primes denote ra-
dial derivatives. Sinces}x→0 nearqmin , we see that ex-
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tended ballooning modes cannot penetrate toqmin . The ac-
tual location of the ballooning mode is determined by a
competition between the variations of botha and s: the
steepness of the pressure gradient, or high values ofa, will
drive this location towardsqmin , while the zero ins there will
act to prevent this. As a result of the exponentially strong
effect of the latter ass→0, the shape of the resulting enve-
lope will be asymmetric, truncated somewhat on the side of
qmin . For situations where this competition leads to a mode
localized at small values ofs, the recurrence relation method
is more appropriate.

In Sec. II we introduce thes–a model for ideal balloon-
ing modes and present a mild generalization of the balloon-
ing transformation to accommodate the presence ofqmin .
The standard procedure for calculating the radial envelope,
and eigenvalueg, from the solutions of the lowest order
ballooning equation using the WKB phase integral is out-
lined. In Sec. III we consider a two-scale calculation that is
valid at lows and allows an analytic treatment. However this
approximation fails to provide the information needed to cal-
culate the radial envelope: the dependence onk(x,g) is ex-
ponentially small and lost in this analysis. A variational
approach9,11 allows one to recover this term. These results
enable us to deduce the form of the recurrence relation be-
tween modelets that complements the ballooning representa-
tion as it begins to fail. Analytic solutions of the WKB and
recurrence relation approaches are discussed in Sec. IV.

Using the ballooning representation and recurrence rela-
tion approaches, Sec. V examines the validity at lows of the
s–a diagram for finite, but moderate to large,n, obtaining
the finite-n modifications arising from the effects of thea
profile, characterized by the scale lengthL* , which are valid
at low s. Within the ballooning formalism the analysis of the
radial structure leads to finite-n corrections to the first stabil-
ity boundary of thes–a diagram,a1(s). These corrections
are favorable, shifting the marginala to a slightly higher
value. However, the radial analysis also predicts that the sec-
ond stability boundary,a2(s), is generally spurious, and that
no stable ‘‘global’’ equilibrium withamax.a2 can be found.
In contrast, analysis of the radial structure using the recur-
rence method reveals that, for a given value ofn, some sec-
ond stable regions do survive at low shear; i.e., globally
stable equilibria withamax.a2 do exist. This is an additional
finite-n effect associated with the discreteness of mode ratio-
nal surfaces. It is not captured by the ballooning representa-
tion, but is present in the recurrence approach. In a real to-
kamak these stable regions may not be robust to variations in
qmin , but could be of value in interpreting MHD code results.
We also explore the mode structures emerging from the re-
currence method.

As mentioned above, in order to explore the global sta-
bility of an equilibrium with an ITB in this model one needs
to consider the trajectories in the stability diagram corre-
sponding to thea and s of an ITB discharge. Section VI
explores the competition between the low values ofs near
qmin and the variation of the pressure gradient near the ITB
in determining the mode location, structure and stability. Of
more practical interest for ITBs in tokamaks, it is shown in

Sec. VII that including the stabilizing effects of favorable
average curvature~i.e., whenqmin.1) ~Ref. 12! allows one
to identify the conditions for global stability within this
simple equilibrium model. While one might naively obtain
similar results from the lowest order ballooning theory, the
higher order theory has completely failed in this situation
and the recurrence relation approach is essential to a consis-
tent theory. A briefer treatment of this section has been pub-
lished earlier.13 Section VIII studies the results of the effect
of a self-consistent treatment of the bootstrap current on the
magnetic shear near an ITB.

Finally effects arising from the presence of a sheared
plasma flow, which is often associated with an ITB, are
briefly explored in Sec. IX. Section X provides a discussion
and draws conclusions.

II. THE s – a EQUATION AND BALLOONING
REPRESENTATION

In this section we consider the high-n, ideal MHD bal-
looning equation for thes–a equilibrium7 and demonstrate
the methods described in Sec. III for determining the mode
structure. In terms of a radial coordinatex and a poloidal
angleu this equation takes the form of an equation for the
perturbed radial plasma displacementF(x,u,w,t)}exp(inw
1gt)F(x,u), whereg is the growth rate

S ]

]u
2 inq~x! D S 11F ir

nq

]

]x
1a sinuG2D S ]

]u
2 inq~x! D

1aH cosu1F ir

nq

]

]x
1a sinuGsinuJ F5ĝ2F. ~3!

Here a(x/L* ) is given by a form such as~1!. We have in-
troduced an eigenvalueĝ2 in Eq. ~3! that merely labels sta-
bility; this is sufficient for our main purpose of establishing
stability boundaries. A more physical interpretation that
properly describes the actual growth rate,g, is given in Ap-
pendix A and introduced into our final dispersion relation.
When later we examine the global stability ofq profiles with
a minimum, we shall generalize this equation to include the
formally small, in inverse aspect ratio, terms associated with
a stabilizing favorable curvature, i.e., the Mercier term.12

One approach to solving this equation is to Fourier de-
composeF(x,u) in terms of poloidal harmonics:

F~x,u!5(
m

cm exp~2 imu!um~x!, ~4!

where um(x) is normalized such that its square-integral is
unity, but the stability problem remains two-dimensional inx
andu.

However, when the magnetic shear is constant and other
equilibrium variations are slow on the scale of the separation
of rational surfaces,Dmrs, one can reduce this two-
dimensional problem to two consecutive one-dimensional
problems by using the ballooning transformation7,14,15
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F~x,u,w!5(
m

exp~2 imu!

3E
2`

`

dh exp~ imh!j~x,h,w! ~5!

in which h is defined on the range2`,h,`. One is then
permitted to introduce the nonperiodic eikonal form

j~x,h,w!

5expH inFw2q0h2q8xh1q8E k~x!dxG J z~h,k! ~6!

in which k(x), the radial wave number, describes the radial
amplitude variation.

The high-n ideal MHD eigenvalue equation for thes–a
equilibrium in ballooning space follows from applying the
ballooning representation~6! to Eq. ~3!. The result is the
familiar form7

d

dh
~11@s~h2k!2a sinh#2!

d

dh
z

1a$cosh@s~h2k!2a sinh#sinh%z5ĝ2z ~7!

which determinesz(h,k) and a local eigenvaluek(x,ĝ).
If there are WKB turning points, i.e., wherek50, so that

k(x) defines a closed loop in thek–x plane~with upper and
lower branches labeled byk1 and k2 , respectively!, one
obtains the usual WKB phase-integral condition15

nq8E
xL

xR
~k12k2!dx52pS ,1

1

2D , ~8!

where, is an integer andxL andxR are the left- and right-
hand turning points:k(xL,R)50. The integral~8! is over the
shaded area in Fig. 1~a!. If we suppose a simple model for
k:k25s2@(Dx/L)22(x/L)2# so thatDx corresponds to the
mode width, then one can estimateDx}(L/snq8)1/2 from
Eq. ~8!. We shall see later thats;exp(1/usu).

Alternatively, the trajectories in thek–x plane may be
periodic in k and WKB solutions will couple an infinity of
branches ofk(x) @see Fig. 1~b!#. A treatment of such a prob-
lem for constant magnetic shear and linear plasma profiles,
i.e., }x/L, has been given previously,9,16,17 resulting in the
eigenvalue condition

nq8F E
xL

xR
~k12k2!dx1pxLG52p,, ~9!

where nowxL,R are the left- and right-hand turning points
determined by cosk(xL,R)561, k1 andk2 are the two prin-
cipal branches ofk in Fig. 1~b! and, is again an integer. The
left-hand side, an integral overx, can be recognized as the
shaded area in Fig. 1~b!; one can readily convert this to a
form expressed as an integral overk.16 In this case one can
estimateDx}L, the radial distance for cosk to vary between
11 and21, corresponding to a more extended mode.

However, near a minimum,q can be represented by the
parabolic form~2! which leads to a linear dependence of
shear:s}x. The high-n mode stability problem appears to be
a two-dimensional problem, namely in poloidal angleu and
radiusx. However, as in conventional ballooning theory, it
can again be reduced to a succession of two one-dimensional
problems by introducing the eikonal representation for the
perturbation; but it takes a slightly different form to account
for the x variation ofs:

j~x,h,w!

5expH inFw2h~qmin1q9x2/2!1q9Ex

k~x!xdxG J
3z~h,k!. ~10!

This leads to the replacements:

ki52~ i /Rq!]/]h, kx52nq9x~h2k!,

kh52nq/r . ~11!

FIG. 1. WKB diagram for the case of~a! standard left and right turning pointsxL,R given byk(xL,R)50 and~b! the multiple branches associated with cosk(x),
in particular showing the principal branchesk1 andk2 and the corresponding turning points given by cosk(xL,R)561 ~Ref. 17!. The phase-integral is taken
over the shaded area ink–x space in each case.
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As a consequence one recovers the familiar ballooning equa-
tion ~7! for z(h,k) but with the substitution:

s→rq9x/q[mx/r ~12!

so that there is an additional equilibrium dependence onx in
the ballooning equation.

The phase-integral eigenvalue conditions~8! and~9! are
also modified: thus in place of these we have, respectively,

nq9E
xL

xR
~k12k2!xdx52p~,11/2!, ~13!

nq9F E
xL

xR
~k12k2!xdx1pxL

2/2G52p,. ~14!

The left-hand side integral overx in Eq. ~13! can now be
recognized as thex-moment over the area of the loop in Fig.
1~a!, that in Eq.~14! the same moment over the shaded area
in Fig. 1~b!; as before one could readily convert these to
forms expressed as integrals overk.16 If the turning points
are close and not too nearx50, so that they can be approxi-
mated by some average valuex0 , these conditions reduce to
the standard forms withx0q9'q8(x0).

III. ANALYSIS FOR LOW SHEAR

To apply the analysis discussed in Sec. II, it is helpful,
and instructive, to use analytic solutions for the eigenvalues
of the lowest order ballooning equation~7!. Fortunately such
an expression has been derived by Pogutse and Yurchenko11

using trial functions in a variational form for Eq.~7!. The
trial function is based on a two-scale solution of Eq.~7! valid
for small s. In this approach one introduces a slow depen-
dence ofz on a scaleu5s(h2k), the natural scale of the
secular terms in Eq.~7! ~i.e., there is a ‘‘stretching’’ param-
eter, s), in addition to the periodic variation on 2p. We
briefly sketch the outline of their approach here.

Defining G511@s(h2k)2a sinh#2 and introducing
V5zG1/2, we can write Eq.~7! in the ‘‘Schrödinger-type’’
form

G
d2V

dh2
1VH 1

4G S dG

dh D 2

2
1

2

d2G

dh2

1a@cosh1sinh~s~h2k!2a sinh!#1ĝ2J 50. ~15!

After redefining the origin ofh (h→h2k) it is convenient
to introduce the two-scale approach, writing]/]h→]/]h
1s]/]u and developing a self-consistent expansion,V5V0

1V11¯ in powers ofa with the orderings;a2. In leading
order dV0 /dh50, i.e., V05V0(u), while in first order one
obtains

V5V0~u!F11
a cosh

11u2 G . ~16!

Eventually one finds an equation forV0(u) in O(a4);11,18

however for our purposes one can follow Ref. 11 and adopt a
variational approach, using a trial function forV given by
Eq. ~16! with V051 chosen for simplicity.

It is instructive to calculate theF(x) that results from
this trial function. Inverting the ballooning transform forz
from V ~after accounting for the factorG!, by the necessary
Fourier transform, one finds

F~x,u!5e2 imuK0~ utu!1~a/2!S6e2 i ~m61!u@ utuK1~ utu!

6tK0~ utu!#, ~17!

wheret5(nq8x2m)/s andK0 andK1 are modified Bessel
functions. Figure 2 shows the radial shape of the Fourier
harmonics in Eq.~17!. An important point is that these local-
ized, isolated modes, located at each of the rational surfaces
are not pure Fourier modes, but ‘‘modelets’’ containing weak
sidebands.~If the coupling to sidebands were stronger and

FIG. 2. Them50 ~heavy solid line!, m511 ~dashed line! and m521 ~solid! harmonics of the ideal MHD ballooning mode eigenfunction,F(x,u),
corresponding to Eq.~17!. The abscissa ist5(nq8x2m)/s.
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the modelet had significant harmonic content, the localiza-
tion would continue to be primarily controlled by the small-
ness ofs.! The choice ofV0 in Eq. ~16! is satisfactory for
marginal stability,g50, but does not capture the correct con-
vergence ofV0 at larget due to inertial effects; as a result it
leads to the logarithmic singularities atx50 in K0,1, evident
in Fig. 2. A modification toV0 for g.0 which removes this
effect is discussed in Appendix A.

Equation~15! can be derived from the variational quan-
tity

H5E
2`

` F S dV

dh D 2

2
1

G H 1

4G S dG

dh D 2

2
1

2

d2G

dh2

1a@cosh1sinh~s~h2k!2a sinh!#1ĝ2J V2Gdh.

~18!

First we expandG215(11u2)21Snan(G21)n , retaining
terms up ton53, and insert this form intoH, collecting the
coefficients of the different harmonics inh. The contribu-
tions toH from terms harmonic inh can be readily evaluated
by contour integration, expressing them in terms of the resi-
dues at the poles of (11u2)21, i.e., whereh2k56 i /s.
Since a term such as cosph produces a contribution that is
exponentially smaller, i.e.,}exp(2p/usu), one need only re-
tain terms in cosh and sinh in the integrand ofH in Eq.
~18!. Thus, on substituting the trial functionV as given by
Eq. ~16! in the variational equation~18!, H50, we finally
obtain an eigenvalue equation

ĝ21s2/22~5a/4!exp~21/usu!cosk23sa2/41~19/128!a4

50, ~19!

where we have followed Ref. 11 in only retaining the contri-
butions linear ina in the cosk term. It is convenient for later
to introduceg0

252(s2/223sa2/41(19/128)a4), describing
the growth rate in the absence of the cosk term. In Appendix
A we show that the ‘‘fictitious’’ eigenvalueĝ2 corresponds to
gs, whereg is the actual linear growth rate normalized to the
Alfvén frequency. Appendix B presents a more accurate
treatment of the variational approach to this dispersion rela-
tion that indicates that Eq.~19! is indeed a reasonable ap-
proximation. Equation~19! can be solved fork(x,ĝ), where

thex-dependence originates from the profile ofa(x/L* ) if s
is constant, or froms5mx/r anda if there is a minimum in
q.

Equation~19! is close to the form derived in Ref. 11, but
differs slightly in the numerical coefficients. However it cap-
tures the key features of the fulls–a marginal stability dia-
gram to approximately 10% accuracy~indeed slightly more
accurately than Ref. 11!, as shown in Fig. 3~a!. Thus for
small s anda it obtains the first and second stability bound-
aries asa2/s50.77 and 4.56~i.e., to less than 4% accuracy
for a on the first stability boundary! and, furthermore, the
term in exp(21/usu) arising from the variational principle
ensures it is equally accurate at finite values ofs anda.

It is worth emphasizing again that it is only through the
variational approach that one can extract the nonanalytic de-
pendence ons in the exponential function in Eq.~19!; this
term, which represents the weakening of toroidal coupling at
low magnetic shear, was lost in the simple two-scale solution
V0(u) of Eq. ~16!. The key element supplied by the varia-
tional treatment of Ref. 11 is the reappearance, in the zero
order ballooning solution, of the true eigenvaluek(x,ĝ). As
a result a calculation of radial model structure becomes pos-
sible.

The asymptotic analysis in powers ofs1/2 for low shear
has been performed previously on thes–a equilibrium
model18 and also in an expansion of a general equilibrium
around the magnetic axis.19–22 Slightly different equations
for V0(u) emerge in these two problems, but in all cases no
dependence onk is found since theO(exp(21/usu)) coeffi-
cient ofk obtained by the variational method is not captured
by the asymptotic expansion method.

The s–a equilibrium neglects terms in the inverse as-
pect ratio,e. However including these introduces the stabi-
lizing ~if qmin.1) effect of favorable average curvature, or
the ‘‘Mercier’’ term, dM , where11

dM5ea~12q22!. ~20!

This appears as an additional term on the left-hand side of
Eq. ~7!, added to the term ina. This can be readily followed
through the analysis and modifies Eqs.~15!, ~18!, and ~19!,
leading to the substitution

g0
2→g0

22dM . ~21!

FIG. 3. ~a! Thes–a, infinite-n, marginal stability boundaries at low shear, using the variational method Eq.~19!. Dashed curves from two-scale power series
expansion withs;a2!1; solid curves include exp(21/usu) terms. Discrete points are from numerical solutions of the fulls–a equation.~b! Variational
stability boundaries in the presence of favorable average curvature:q53/2 ande50, 0.05, and 0.3, where the higher values ofe are further from the origin.
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The effect ofdM on thes–a diagram is shown in Fig. 3~b!.
We will return to the effect ofdM when we discuss ITBs with
a minimum inq in Sec. VII.

IV. SOME ANALYTIC RESULTS

If for the moment we suppose that the shear,s, is con-
stant and the pressure profile variation leads to a quadratic
dependence ofg on x/L, wherex is measured from the most
unstable position andL represents this equilibrium variation,
then neglectingdM for simplicity, we can write Eq.~19! in
the form

ĝ22g0
22~x/L !222l cosk50, ~22!

where we have defined g0
252(s2/223sa2/4

1(19/128)a4), L225d2g2/dx2 and l5(5a/8)exp
(21/usu). If we expand cosk'12k2/2 for smallk and intro-
duce this into the WKB condition~8!, we obtain an eigen-
value condition

ĝ25g0
212l2~2,11!~2l!1/2/~nq8L ! ~23!

and mode width

Dx/r 5@~2,11!~2l!1/2L/~nq8!#1/2

;exp~21/4usu!~L/rsnq!1/2. ~24!

Clearly this becomes very narrow ass→0 so that the valid-
ity condition for the ballooning representation@namely that
Dx, the width of the mode envelopeA(x), satisfiesDx
@Dmrs5r /(snq), the separation of mode rational surfaces#,
is then in question for physically reasonable, finite values of
n. In the case of the more extended modes that exist for a
linear profile ofg0

2, i.e., away from the maximum ing0
2, the

mode width is given by the range ofx needed for cosk to
range between61. One deduces

Dx54lL1;exp~21/usu!L1 , ~25!

where L1
215dg0

2/dx. As shown in Appendix C, Eq.~C5!,
the eigenvalue takes the form

ĝ25g0
21~x0 /L1!, ~26!

wherex0 is the arbitrary center of the mode. It is interesting
that this ‘‘extended’’ mode~25! can become narrower than
the ‘‘localized’’ mode~24! ass→0. Similarly we expect that
the radial mode structure will be strongly affected by the
presence of a stationary point inq(r ) @i.e., atx50, whens
5(rq9/q)x[mx/r ].

WhenDx;Dmrs one can consider a complementary ap-
proach based on a recurrence relation between the ampli-
tudes of modelets on each rational surface, i.e., thecm in Eq.
~4!.8,10 This relation could be determined by substituting the
form ~17! in Eq. ~4! and integrating overx andu. In general
this will couple the differentcm due to toroidal effects, the
strength of the coupling also involving overlap integrals be-
tween the correspondingum(x). As we have seen in Eq.~17!
and Fig. 2, at low s the um(x) are localized nearx
5m/(nqs) so that only adjacent values ofm will couple.
Furthermore, any dependence onx can be replaced by one on
the corresponding value ofm/(nqs).

However one can determine the resulting structure of the
recurrence relation from the dispersion relation directly from
Eq. ~19! as follows. In the ballooning limit thecm are slowly
varying; indeed, as equilibrium variations approach zero they
are constant up to a phase factor, i.e., one can setcm

5exp(ikm). If the resulting dispersion relation is to lead to
Eq. ~19!, then one can see that the recurrence relation must
have the ‘‘three-term,’’ or ‘‘tridiagonal’’ form

@ ĝ22g0
2~s,a!#cm2~5a/8!exp~21/usu!@cm111cm21#50,

~27!

where a5a(x/L* )→a(m/(nqsL* ). The validity of rela-
tion ~27! depends only on lows; unlike the ballooning rep-
resentation, this implies that no constraints are placed on the
parameterL* /Dmrs5nsqL* /r .

The brief discussion above was in terms of the coupling
between Fourier harmonics on adjacent surfaces. Strictly we
have seen that the modelets~17! contain sidebands of order
a, but these are still localized at the common surface. So the
recurrence relation represents the coupling of these modelets,
rather than simple Fourier modes. The contribution of the
sidebands is reflected in theO(a2) andO(a4) terms ing0

2.
More generally the modelets might contain stronger har-
monic content but because of the low shear they would re-
main localized and the recurrence relation would continue to
involve coupling of the appropriate modelets on adjacent ra-
tional surfaces, i.e., remain a three-term recurrence relation.

To discuss the nature of the solutions of the recurrence
relation it is convenient to expandg0

2 about its maximum in
x ~or m!. Schematically one can then rewrite relation~27! as

@ ĝ22g0
22km2#cm2l@cm111cm21#50, ~28!

wherek5(1/nq8)2d2g0
2/dx25(r /snqL)2. Clearly the solu-

tions depend only on a single parameter:n5l/k. The solu-
tion of such a recurrence relation can be expressed in terms
of Mathieu functions,23 as discussed in Ref. 8. However it is
clear that forn→0, it consists of a set of independentcm ,
each having an eigenvalue appropriate tox5m/(nqs). For
small but finiten, simple perturbation theory shows that23

ĝ25g0
22l2/~2k!. ~29!

On the other hand, whenn@1, thecm become slowly varying
in m and many m are coupled, producing an extended
ballooning-like structure. To estimate the widthDm in m,
one can consider the discretecm to be continuous functions
of m, c(m). Equation ~28! then becomes a second order
differential equation forc(m):

d2c

dm2
1S G2

m2

n D c50, ~30!

where the eigenvalueG5(ĝ22g0
2)/l22. It follows that

Dm;n1/4@1 and the lowest eigenvalue is given byG
5n21/2, corresponding to

ĝ25g0
212l2~lk!1/2 ~31!

1525Phys. Plasmas, Vol. 11, No. 4, April 2004 The stability of ideal MHD ballooning modes . . .

Downloaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



which is equivalent to the result~23!. Equations~23! or ~31!
reveal a stabilizing shift of the first stability boundary, with
magnitude

da1;~lk!1/2;~1/nqs!exp~21/2usu!. ~32!

These are the familiar 1/n stabilizing corrections to the
infinite-n ballooning theory. There is no similar prediction
for the second stability boundary. An equilibrium in which
amax.a2 will, of necessity, containa values which will cor-
respond to the maximum possible growth rate, and a finite-n
ballooning mode will appear at the corresponding part of the
pressure profile. Thus no ‘‘second stable’’ equilibria can ex-
ist.

For arbitraryn one can writeĝ25g0
21ka0(n), where

a0 is the lowest eigenvalue of the Mathieu equation, shown
in Fig. 20.1 of Ref. 23; in fact result~31! remains reasonably
accurate down ton;5. The marginally stables–a curve for
n515 predicted by the recurrence relation approach is plot-
ted in Fig. 4 and compared with the strongly coupled result
~31! and the weakly coupled result~29!. Then→` result is
shown for comparison~dotted curve!, indicating the stabiliz-
ing effects of finite-n. We note that at finite-n one must
specify the position of the nearest mode rational surfaces
m05nq(x) relative to amax. This is characterized byDq
5m02nq; Fig. 4 assumesDq50.

One can also consider the case whereg0
2 is a linear func-

tion of x, which led to the ‘‘extended’’ ballooning modes.
Equation~28! is replaced by

~ ĝ22g0
22k1m!cm2l~cm111cm21!50, ~33!

where k15(1/nq8)dg0
2/dx5(r /snqL1). As shown in Ap-

pendix C, one can obtain an analytic solution forĝ2 and the
cm for arbitraryn15l/k1 .24 We find cm5Jm2p(2n1), cor-
responding toDm;n1 , where the integerp labels the eigen-
value:

ĝ25g0
21pk1 . ~34!

Thus p specifies where, i.e.,m5p, along the linear profile
the mode is centered. The result~34! corresponds to Eq.~26!.

V. STABILITY AT LOW SHEAR

In the previous section we have discussed the impact of
low shear on the validity of the ballooning representation
used to calculate thes–a stability diagram. Its validity de-
pends on the parametern@1, i.e., s@$2 ln@r/(snqL)#%21 or,
alternatively,n@(r /sqL)exp(1/2usu). In principal one can
always choose sufficiently largen to satisfy this, but for re-
alistic values, sayn;50, this requiress@0.1. Even if we
assume sufficiently largen, the application of the simple
WKB condition ~8! has limited validity. Thus if we estimate
k;1/(nq8Dx) with Dx from Eq. ~24!, then ass→0, k is no
longer small; indeed oncek;1 one must retain the full cosk
function to solve fork(x). Then ask→p and cosk→21 one
loses the WKB potential well and one can only consider the
extended modes satisfying Eq.~33!. This is found to occur
when s51/$2 ln@(21/2/p2)r /(snqL)#%; such a boundary has
been confirmed by a full numerical solution of Eq.~7!, as
shown in Fig. 5. However, as Eq.~25! demonstrates, the
widths of the extended modes in this case are comparable
with Dmrs and the ballooning representation is again inappro-
priate.

It is therefore necessary to use the recurrence relation
approach to determine stability and mode structures at lows
for realisticn values. It is clear from Eqs.~23! and~31! and
Ref. 23 that for the case of a ‘‘quadratic potential,’’kx2, the
stability boundary given by the WKB approach remains valid

FIG. 4. Finite-n corrections to infinite-n stability, using the recursion
method (n515, q55/3, L* /r 50.2, andDq50). Solid curve from exact
solution of Eq. ~27!; dashed curve is the analytic result~29! for
nq exp(21/2usu)!1; chain curve is the analytic approximation~31! for
nq exp(21/2usu)@1; dotted curve is the infinite-n boundary.

FIG. 5. Comparison of thes–a stability boundary atn515, q55/3,
L* /r 50.2, andDq50, from solution of the full recursion equations~solid
line! and WKB ballooning formalism~solid points!. The WKB approxima-
tion fails for low s where the solid points terminate. The infinite-n boundary
is shown as a dashed curve.

FIG. 6. Second stable bands at finite-n: n515, q55/3, L* /r 50.2, and
Dq50. Solid points are by solution of the recursion equations; continuous
curves are by analytic construction using the infinite-n stability boundaries
and the discreteness of the mode rational surfaces.
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down ton5l/k;5–7, at which point the corrections to the
two-scale growth rate,g, are negligible. We return to the
more complete form~1! for a(x) with x5m/(nqs) and in-
sert it in the recurrence relation~27!. Figure 5 also shows a
comparison of the solution with the WKB approximation.
@Clearly, for sufficiently small values of the argument of
a(x/L* ) the result reduces to the quadratic form in Eq.~28!
and the analytic solution of Sec. IV.#

Figure 6 shows the resulting impact of finite-n on the
s–a stability diagram at lows. As discussed in Secs. III and
IV, both the destabilizing effects of ballooning, i.e., coupling
between adjacent rational surfaces, and the stabilizing effects
of finite-n become exponentially weak at low values ofs.
Thus the ‘‘first’’ stability boundary,a1(s), is close to the
original s–a curve. As noted earlier, the stabilizing effects
are the usual 1/n stabilizing corrections to the infinite-n bal-
looning theory, but there is no corresponding prediction for
the second stability boundary. An equilibrium profile with
amax.a2(s) will necessarily containa values in the unstable
range,a2.a.a1 , thus a finite-n ballooning mode will ap-
pear at that part of the profile corresponding to the maximum
possible growth rate.

However, because we are using the recurrence approach
which is valid at arbitrarily small shear, we find a different
finite-n effect and this does predict that a second stability
boundary survives at lows, as shown in Fig. 6. This can be
understood as follows. At finite values ofn the different ra-
tional surfaces correspond to discrete differences ina. Then
one can have a situation in whichamax.a2 while adjacent
rational surfaces correspond toa,a1 , so that one can ex-
pect the whole profile to be stable. If, for definiteness, we

suppose the surfacem50 to be atamax, then them561

surfaces havea5amaxsech2(r/nqL*s). These rational sur-
faces can be considered to be ‘‘beads’’ lying on a constants
slice through thes–a diagram, as shown in Fig. 7. Thus we
have a stable band if amax.a2 and a1

.amaxsech2(r/nqL*s). Similarly, if all three surfaces,a(m
50,61), lie in the regiona.a2 while a(m562) satisfy
a,a1 , a further band exists, and so on. The left-hand tips of
the higher bands rapidly migrate rightwards to very largea
and need not be considered for reasonable values ofamax.
These stable bands are shown in Fig. 6 and reflect the struc-
ture of the recurrence relation solutions. Of course, asamax

continues to increase one must consider higher and higher
bands with values ofa lying in the tail of the pressure profile
~1! so that adjacent harmonics will have almost the samea;
it then becomes impossible to bridge the unstable zone. But
because of the rightward migration of the bands this only
occurs for extremely largeamax. These finite-n results are
reminiscent of the stability of lown ‘‘infernal’’ modes that
occur at low shear.25

This argument supposed that theamax corresponded ex-
actly to a rational surface; ifm2nq5DqÞ0 the situation is
more complex. Because of the symmetry ofa(x) one need
only considerDq.0 and sinceDq→Dq11 merely corre-
sponds to a relabelling ofm0 , it is sufficient to consider 0
,Dq,1. Figures 8~a! and 8~b! show representative ex-
amples: namely forDq51/4 and 1/2. The bands are dis-
placed and change in width: forDq51/4 they are narrower
and lower, broadening and lifting forDq51/2. Thus asDq is
varied, the bands ofs–a stability in the second stable zone
distort and migrate in a complex manner. However it is clear
that if all values ofDq in @0,1# are admissible, then no sec-
onds–a stable region survives. One can see this as follows.
Suppose the stable band arises because the first mode ratio-
nal surface atamax lies in the second stability region,a2

,a, and the next one is below the first stability boundary,
a,a1 . Then asDq increases from 0 to 1 at constants, the
position of the first mode rational surface migrates to lower
values ina until it reaches the position of the next mode
rational surface, i.e.,a,a1 . Thus it must have passed
through the unstable band,a1,a,a2 , on the way. Since, in
general, a tokamak can adopt any value ofDq during the
evolution of itsq profile, particularly at highern values, this
cannot be regarded as a controllable parameter and these

FIG. 7. Location of the discrete mode rational surfaces,xm , in s–a space
for s50.2, xm given by a5amaxsech2(xm /L* ), with amax51.1, L* /r
50.2,n512, andq53/2. The infinite-n stability boundaries are also shown.

FIG. 8. Second stable bands atn515, q55/3, L* /r 50.2 for ~a! Dq51/4; ~b! Dq51/2.
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bands have little practical significance. However these in-
sights on stability may be of value in interpreting the output
of MHD stability codes. We will return to this topic when we
discuss ITBs at a minimum inq, where these finite-n effects
from Dq5m02nqmin may play an important role.

It is also interesting to examine the variation of the spec-
trum in m of the eigenmodes ass decreases. As shown in Fig.
9, this spectrum narrows ass decreases. Indeed, in the limit
s→0 only isolated modelets remain.

VI. STABILITY OF AN ITB AT A MINIMUM IN THE
SAFETY FACTOR

The form ~1! can also be used to examine the role of a
radial profile ina in the presence ofqmin whens is given by
Eq. ~12!, a situation relevant to ITBs. Since we are interested
in regions ofx corresponding to lows, we shall adopt the
recurrence relation approach alone as we have seen above
that it remains valid for alln. Since the rational surfaces
correspond tom5nq(x), whenDq5m02nqmin50 we can
replacex in Eqs.~1! and ~12! in terms ofm using

xm56~2m/nq9!1/2 ~35!

so the rational surfaces appear in pairs for givenm.0, one
on each side ofqmin . The s–a model predicts stability for
s,0, so we need only consider surfaces withx.0. Because
of the localization of the modelets, coupling to those with
x,0 through nonresonant poloidal harmonics,26 i.e., those
with m,nqmin so that they have no mode rational surface in
the plasma, is extremely weak. It should be noted the har-

monic content of each modelet also involves coupling to
nonresonant modes, but ones located at the same mode ra-
tional surface.

We introduce expressions~1!, ~12!, and ~35! into the
recurrence relation~27!. The dependence ofs on m intro-
duces a strongm-dependence into the coupling term. For
simplicity, we neglect the slight asymmetry in the coupling
of modelets centred atxm to those atxm61 due to the radial
variation of the shear betweenxm11 and xm21 ; for smaller
m, where it becomes more significant, the coupling is weak
anyway. We can identify three parameters:amax, r 2/(mL

*
2 ),

andm/(nq). The second parameter originates from the radial
variation ofa at fixednq and, likewise, the third results from
that ofs. While the last of these parameters clearly measures
the effect of finite-n, the first two define a trajectory in the
s–a stability diagram corresponding to the radial profiles of
s and a through the ITB. As we move fromqmin , wheres
50 and a5amax, the direction of this trajectory is con-
trolled by the parameterr 2(mL

*
2 ). Consequently, in the ab-

sence of finite-n effects, one moves from the second stability
region, through an unstable band ofa before emerging into
the first stability region.

As in the case of constants, it is possible to find stable
bands foramax.a2(s) at finite-n, due to the discrete spacing
of mode rational surfaces. This is displayed in Fig. 10 where
the trajectory ofa given by Eq.~1! when amax coincides
with qmin , is shown in thes–a stability diagram. The dis-
crete mode rational surfaces in this figure correspond to the
choicen512, qmin53/2. However, as pointed out in Sec. V,
although a particular mode number,n, corresponds to one

FIG. 9. The amplitudes,A(m), of three typical spectra of poloidal harmonics at marginal stability, showing a progressive narrowing as the shear is reduced.
~a! s51; ~b! s50.5; and~c! s50.2 (n550, q52, m51, L* /r 50.2, andDq50).
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particular value ofDq5m02nqmin , other choices ofn ~and
m0) produce many different values ofDq in the range 0
,Dq,1. If Dq is varied continuously from zero to unity the
mode rational surface atqmin moves continuously along the
trajectory in s–a space, and must inevitably pass through
the unstable band@a1 ,a2#. This suggests that in endeavor-
ing to interpret data from real discharges, we should regard
all values ofDq as available. In this case, finding a globally
stable equilibrium with an ITB atqmin becomes impossible.
However, it is worth remarking that when the minimum
value of q coincides with a low-order rational, the possible
values of Dq are greatly restricted. In the extreme case
where qmin is an integer, only one value ofDq ~i.e., Dq
50) is possible. In this case the discreteness of the mode
rational surfaces at finite-n may play an important role in
permitting higher values ofamax.

The corresponding spectra inm of the eigenmodes, see
Fig. 11 for an example, are offset fromm50, i.e.,qmin , and
are somewhat asymmetric, in contrast to the results in Fig. 9.
This asymmetry is because the coupling between adjacentm
vanishes exponentially, i.e., as exp(21/usu) on the smalls
side nearqmin . Larger values ofr 2/(mL

*
2 ), corresponding to

steeper pressure profiles in the ITB, push the peak of the
spectrum nearerm50. Thus, the resulting spectrum is the
outcome of a competition between the presence ofqmin ,
which excludes the mode fromm50, and the steepness of
the pressure profile at the ITB which drives the mode to-

wardsm50. While the latter can have an effect, it can never
win because of the exponentially weak coupling nearqmin .
However, since the spectrum peaks whereg0

2 is a maximum,
its shape is largely dominated by thea profile and the asym-
metry is relatively weak.

VII. EFFECT OF FAVORABLE AVERAGE CURVATURE

We have seen that for sufficiently largen the s–a equi-
librium is inevitably unstable for ITB profiles at some radial
point. However, the picture is changed by the inclusion in the
model of stabilizing favorable curvature whenqmin.1, i.e.,
the Mercier term,dM , in Eq. ~21! that is formally small in
the inverse aspect ratio,e. This is because this term has the
effect of preventing the unstable region reaching all the way
to s5a50, allowing a globally stable route from
a5amax, s50 to higher s and lower a. Since Eq.~20!
showsdM}e, in what follows we use the parametere alone
to label the effects ofdM . This is strictly true for largeq: the
effect of finite q can be recovered by the substitution
e→e(12q22). Figure 3~b! shows the effect of thedM term
on thes–a diagram for two values ofe. Figure 12 shows the
stability boundaries ate50.1, together with two examples of
marginally stable pressure profiles (a5a(x/L* )), one with
r 2/(mL

*
2 )525 and the other havingr 2/(mL

*
2 )51/100. The

locations of the discrete mode rational surfaces are shown as
points on the two curves, for the choicen512. At highn the
mode rational surfaces become closely spaced, requiring that
the a5a(s) trajectories are tangential to the stability curve
at marginal stability. At lower values ofn, amax may be in-
creased, until one of the mode rational surfaces lies on the
marginals–a boundary. This discreteness of the mode ratio-
nal surfaces suggests higheramax values are possible. How-
ever, as noted earlier, ifDq5m02nq is regarded as continu-
ously varying, each mode rational surface may be moved
continuously to the next location, ensuring that marginal sta-
bility is again determined by the tangent condition. Again we
note the importance ofqmin passing through integer~or low-
order rational! values. This greatly restricts the possible val-
ues ofDq and ensures that greater values ofamax are pos-
sible.

We have mapped out the stable operating regime in
terms of the parametersamax and r 2/(mL

*
2 ). This is shown

FIG. 10. Thes–a stability diagram from the recurrence relation and the
equilibrium trajectory and location of the mode rational surfaces ins–a
space near a minimum inq (n512, q53/2, m51, L* /r 50.2, amax51,
Dq50).

FIG. 11. The amplitudesA(m) of the m-spectrum forn5100 (q53, m51,
L* /r 50.3, Dq50, amax51).

FIG. 12. Trajectories and locations of mode rational surfaces~dots! in s–a
space for two marginally stable profiles:amax52.13, L* /r 50.2 andamax

50.46, L* /r 510 (n512, q53/2, m51, Dq50). The stability boundary
modified by favorable average curvature,dM , is shown fore50.1.
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in Fig. 13 for fixed values ofn, q, and two representative
values ofe. Figure 13 demonstrates that there is always sta-
bility if a is sufficiently low @amax,acrit(`), the dashed
horizontal asymptotes#, no matter how large the value of
L* /r , even whenn→`. One can obtain an analytic scaling
for acrit(`) from the high-n limit of the eigenvalue condition
~19!. acrit(`) is given by the minimum ofa with respect to
s on the marginal stability curve,g50. Since for smalle we
are considering lows, the toroidal coupling term propor-
tional to exp(21/usu) can be ignored. One then finds

acrit~`!51.96e1/3. ~36!

However there is also stability foramax.acrit(`) if
r 2/(mL

*
2 ) is sufficiently large to ensure a trajectory that

skirts the nose of the marginal stability boundary. It is also
possible to obtain an expression for this limiting value of
amax, as a function ofL* /r , in the limit of smallL* /r , i.e.,
corresponding to a strong ITB. Substitutingx5sr/m, this
limiting value,acrit, is determined by the intersection of the
resultinga(s) given by Eq.~1! with the marginal stability
curve includingL* /r . Assumingsr/L* @1 it is possible to
solve foracrit(r /(mL* ),e) in this limit:

acrit50.37sc
1/2exp@2scr /~mL* !#, ~37!

wheresc.0 satisfies the transcendental equation

0.29sc
3/211.25 exp~21/sc!5e. ~38!

For small e, sc52.28e2/3 so that acrit}e1/3, while for sc

.0.1 it is remarkably well fitted bysc50.231e, as shown

in Fig. 14. Equation~36! indicates that the asymptoteamax

5acrit(`) scales ase1/3 while Eq. ~37! shows how large val-
ues of amax are possible for narrow ITBs, i.e., asmL* /r
becomes small. This demonstrates that an ITB can sustain
high pressure gradients that are stable to ideal MHD balloon-
ing modes, provided the barrier is sufficiently steep. It is also
clear from Eqs.~36! and~37! that the increment ina through
the ITB (Da;amaxL* /r) has a minimum as a function of
r 2/(mL

*
2 ), but increases without limit asr /L* →`.

To summarize, there is stability ifa is sufficiently low
(amax,acrit(`)), for any value ofL* /r , but low values of
L* /r permit arbitrarily steep barriers, as indicate by Eq.
~37!. Although we have derived the above results using the
lowest order ballooning theory, the very existence of a con-
sistent description of the radial mode structure at lows de-
pends on there being a solution of the recurrence relation.

VIII. EFFECT OF THE BOOTSTRAP CURRENT

The steep plasma gradients associated with an ITB drive
a large bootstrap current,j bs,

27 which can modify the mag-
netic shear. In a large aspect ratio tokamak,j bs takes the
form28

j bs52
e21/2q

B0
F2.44~Te1Ti !

dne

dr

10.69ne

dTe

dr
20.42ne

dTi

dr G , ~39!

wherene is the electron density andTe,i are the electron and
ion temperatures. This can be expressed as

j bs5
aB0

qR
f ~t,he ,h i !, ~40!

where

f ~t,he ,h i !5
2.44~11t!10.69het20.42h i

2~11t1het1h i !
~41!

with t5Te /Ti andh j5d(ln Tj)/d(ln ne). As a result the mag-
netic shear,s, can be written as

s5s`2~a/e1/2! f ~t,he ,h i !, ~42!

wheres` is the background shear in the absence of the ITB.
Thus large values ofa can lead to negative values ofs, even
if s`.0. The effect ofj bs is largest for electron density bar-
riers: taking t51 for simplicity, f→0.07 if he5h i@1,
whereasf→0.61 forhe,i>0.

One could deduce the trajectory ins–a corresponding
to a generals`(x) anda(x) and determine the conditions for
stability to high-n modes. However, sincej bs can lead tos
,0, even for constants` , we consider just this case to illus-
trate its impact. Clearly Eq.~42! then follows a linear trajec-
tory whose gradient depends onf (t,he ,h i) ande, provided
dM.0, this can remain in a stable region ofs–a if s` is not
too large, as shown in Fig. 15. Here the profile trajectory
starts froms` anda` ~the value ofa remote from the ITB!
at its left-hand end, traverses tos(amax) andamax at its right-
hand end, i.e., the center of the ITB, and then returns tos`

anda` as it emerges from the ITB on the other side. Clearly

FIG. 13. The infinite-n operating diagram inamax2L* /r space fore50.05
~lower curve! and 0.3~upper curve! (Dq50, q53/2, m51!. The limits ~36!
and ~37! are shown as dashed lines.

FIG. 14. The critical shear,sc , as a function ofe ~solid curve!, the
asymptotic limitsc52.28e2/3 valid ase→0 ~intermittent dashed line!, and
the approximate result,sc50.231e, accurate fore>0.1 ~dashed line!.
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this imposes no limit onamax: increasingamax merely takes
the trajectory into the stables,0 region. Again one can
calculate the limiting stable trajectory, namely when Eq.~42!
is tangential to thes–a stability boundary,a(s).

Comparing Figs. 15~a!, 15~b! with Figs. 15~c!, 15~d! we
see that varyinge ~at fixesq! has only a weak effect on the
critical value,s`c , of s` . For example, whenhe,i520, s`c

varies from 0.46 to 0.59 ase varies from 0.1 to 0.3. This can
be understood as follows: as discussed in Sec. VII, the sta-
bility boundary migrates towardss5a50 as dM

1/3}e1/3,
whereas the slope of the trajectory increases ase21/2, so that
the net effect is very weak, proportional toe21/6. However,
there is a stronger effect ifq→1, since this impliesdM→0
without having an effect on the profile trajectory~42!. The
value of s`c has a much stronger dependence onhe,i , as
shown by comparing either of the pairs Figs. 15~a! and 15~b!
or Figs. 15~c! and 15~d!. Taking the casee50.1 as an ex-
ample,s`c>0.46 for he, j520, whereass`c51.50 for he,i

50.
Thus consideration of a self-consistent treatment of the

bootstrap current together with favorable average curvature,
shows that there is no limit onamax, provided the back-
ground magnetic shear exceeds a critical value; this critical
value is larger for density barriers than thermal ones.

IX. FLOW SHEAR EFFECTS

Internal transport barriers are associated with a region of
strongly sheared toroidal plasma flow. Such flows tend to
stabilize ideal MHD ballooning modes.29,30Their main effect
in the stability analysis is to introduce a radially varying
Doppler shift to the mode frequency:

g→g1 inV~x!, ~43!

whereV is the toroidal angular velocity of the flow, normal-
ized to the Alfvén frequency, into the dispersion relation
~19!. This in turn modifies the coefficient ofcm in the recur-
rence relation~27!. Because of the explicitn in the replace-
ment ~42!, this dependence will often dominate profile ef-
fects froma(x), e.g., if flows exceed diamagnetic levels.

In the simple case of both constant magnetic shear and
flow shear,29,30 an analysis similar to that in Appendix C
leads to a set of modes with the structures~C7! @i.e., with
Fourier amplitudes Jm(l/kV)[I m(l/ukVu), where kV

52 idV/dq;O(1) andI m is a modified Bessel function23#,
each centered on a different mode resonant surface, saym
5p, and having a corresponding real frequencyV5V0

1pdV/dq. Since these frequencies differ byO(1) the
modes do not couple significantly, so that each corresponds
to an eigenmode. The value ofp corresponding to the maxi-
mum value ofg0 will give the most unstable mode. Because
l}exp(21/usu) the harmonic content of these ‘‘extended’’
modes is in fact limited tom5p for finite (dV/dq).

In the presence of an ITB the plasma flow is normally
localized near the barrier and a more realistic model for the
toroidal angular velocity of the flow is given by a similar
form to Eq.~1! for a(x), namely:

V5V0 sech2~x/LV!. ~44!

The flow shear can then have a similar effect to thea profile
in destroying extended ballooning structures. For simplicity
we consider constant but low values ofs, retain terms qua-
dratic in x from Eq. ~44! and neglect the variation ina(x).
Replacingĝ2 in the recurrence relation by the correct inertial
form gs but with the substitution~43! we see that we replace

FIG. 15. The effect of the bootstrap current on stability, showing the profile trajectory and infinite-n stability boundaries for different parameters:~a! e50.1,
he,i520, leading tos`c50.46; ~b! e50.3, he,i520, leading tos`c50.59; ~c! e50.1, he,i50, leading tos`c51.50; ~d! e50.3, he,i50, leading tos`c

51.63 (a`50.2, amax51.0, q52, t51 in all cases!.
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k in Eq. ~28! by kV52 i (V0/2)(r /nqsLV)2. Therefore we
expect to obtain a transition to a narrow spectrum of modes
when unVu;1, wherenV5l/kV , i.e.,

r /~qsLV!;n~5a/4V0!1/2exp~21/2usu!. ~45!

Solutions of the recurrence relation could be solved with the
form ~2! for q nearqmin , but basically one would find a mode
with a real frequencyV0 whose growth rate is given bygs
5g0

2.

X. DISCUSSION AND CONCLUSIONS

We have explored the stability of configurations with
low magnetic shear,s, including those with a minimum inq,
which are of interest to tokamak discharges with ITBs. Be-
fore discussing our results in detail we list the principle out-
comes of this work.

~1! At low s, a novel recurrence relation approach has been
developed; this replaces and complements the ballooning
transformation, which fails in precisely this regime for
reasonable values ofn.

~2! This has been used to analyze the stability of thes–a
equilibrium at lows: considerations of the global stabil-
ity of an entirea profile imply that the concept of second
stability is of limited significance.

~3! However the recurrence approach incorporates effects
from the discreteness of mode rational surfaces, entirely
absent from the ballooning transformation, even at
high-n.

~4! This does allow the possibility of bands of stability in
the second stable region, but for constant shear these are
not of practical significance, other than interpreting re-
sults from more sophisticated MHD codes.

~5! However, analysis of the situation with a minimum inq
demonstrates that low order rational values ofqmin are
particularly stable as a consequence of these discreteness
effects.

~6! Inclusion of the stabilizing effects of favorable average
curvature in the case ofqmin allows high stable values of
a when the ITB is sufficiently narrow.

~7! Consideration of the bootstrap contribution to the mag-
netic shear in the presence of favorable curvature shows
that stable ITB configurations with finite shear are pos-
sible; the required shear is lower for density barriers than
for thermal ones.

~8! Plasma flow shear can readily break up ballooning mode
structures, particularly at lows.

Now we discuss these points in more detail. The fact that
s}x nearqmin , wherex is the distance fromqmin as shown in
Eq. ~12!, has necessitated exploration of the validity of the
ballooning representation at lows. At small s the stability of
ballooning modes can be studied using a two-scale analysis
of the lowest order ballooning equation. A straightforward
application of this approach fails to provide an equation for
the radial envelope of a ballooning mode. One can recover
the exponentially small terms that determine this by invoking
a variational approach with the two-scale solution as a trial
function; this provides an analytic expression, Eq.~19!, for

the WKB wave-numberk(x,g) of the ballooning modes as a
function of the radial profiles ofs and a. @In the case of
equilibria with a qmin surface, a minor modification of the
eikonal in the ballooning transformation is necessary, Eq.
~10!, but this merely leads to an eigenvalue equation that
recognizes thex dependence ofs.#

It transpires from a WKB analysis that stringent condi-
tions on the largeness ofn must be imposed~see Fig. 5! if the
ballooning representation is to be valid for modes located at
low s. These values ofn (nq.exp(1/usu)) can be well be-
yond those needed for the applicability of a simple MHD
plasma model@for example, the condition that the wave-
length is greater than the ion Larmor radius,r, i.e., n
,(a/rq), could be typicallyn,102; diamagnetic effects
could enter at even lower values#. Furthermore, ass de-
creases the ballooning representation predicts a transition
from modes localized near the maximum value ofa to a type
of mode located on a linear part of thea profile which, at
s;1, would be more extended. However, at smalls these are
in fact narrower modes than those located at the maximuma
and therefore less important.

At lower values ofn the extended ballooning mode col-
lapses onto isolated modelets at each rational surface~Fig.
2!. The effect of finite-n and profile effects on these struc-
tures can be analyzed using the three-term recurrence rela-
tion, Eq. ~27! satisfied by the amplitudes of these modelets.
The validity of this three-term recurrence relation depends
precisely on smalls, so this technique provides just the re-
quired complementary approach to the ballooning represen-
tation that itself fails in this very situation.@Indeed for more
complex geometries the localized modelets may contain a
rich harmonic content, but the recurrence relation will con-
tinue to involve onlycm andcm61-space couplings tocm6p

will be ;exp(2p/usu), hence exponentially smaller for small
s.# This approach allows us to follow the transition from
extended ballooning mode structures to a narrow spectrum of
modelets as magnetic shear reduces and finite-n effects in-
crease. For the simple cases of constants and ana profile
with a maximum and one that is linear, analytic solutions can
be obtained; in more general cases, such as the profiles as-
sociated with an ITB, numerical solutions are readily ob-
tained. For the case of constants and ana profile given by
Eq. ~1!, Fig. 5 compares stability boundaries resulting from
the recurrence relation with those from the ballooning repre-
sentation, while Fig. 9 shows how mode structures narrow as
s decreases.

It is worth emphasizing that when the stability of a
whole profile is considered second stability can become
meaningless at highn: even ifamax lies in ‘‘second stability’’
@amax.a2(s)#, unstable lower values ofa are inevitable
somewhere in the profile. However consideration of moder-
ate n effects, sayn;15, shows that stable bands can exist
even fora.a2(s) as shown in Fig. 6. Figure 8 shows the
effect on the bands of different values ofDq5m02nq. Both
these figures show how the predictions from the recurrence
relation for the stable bands can be well represented by ana-
lytic results obtained from the positions in thes–a stability
diagram of the mode rational surfaces nearqmin . Thus, if for
example, the mode rational surface nearest toamax lies be-
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yond a2 , yet the adjacent ones lie belowa1 , then the con-
figuration should be stable as no harmonic lies in the un-
stable zone. However, it is unlikely that one can controlDq
during the evolution ofq andamax in a tokamak, particularly
for highern, so these bands will have little practical signifi-
cance. Nevertheless, these results may be of value for inter-
preting the output of MHD stability codes used to analyze
ITBs.

Turning to the situation of interest, profiles correspond-
ing to an ITB at a discharge with a minimum inq, the recur-
rence relation has been solved using representativea and s
profiles given by Eqs.~1! and~12!, respectively. At constant
n andq, this situation is parameterized by two key quantities:
amax andr 2/(mL

*
2 ). These govern the trajectory of the equi-

librium profiles in thes–a stability diagram. For largeamax

and r 2/(mL
*
2 ) the trajectory crosses the unstable region at

highers values: the location being dominated by thea pro-
file. For such a situation an unstable mode is found, located
away from qmin and more extended inm; nevertheless the
exponentially weak toroidal coupling at lows results in a
somewhat asymmetricm-spectrum. For lowerr 2/(mL

*
2 ) the

trajectory crosses the unstable region at lowers and the pres-
ence ofqmin dominates the behavior: the spectrum is located
near s50 and is somewhat narrower and asymmetric, as
shown in Fig. 11.~Of course, moving inwards into regions of
negatives, one only encounters stable regions in thes–a
model.! In all cases the extremely weak coupling at lows
prevents ballooning mode structures penetrating toqmin .
Again it is possible to locate bands of stability due to mod-
eraten whenamax lies beyonda2 . Unlike the case of con-
stant shear, the existence of this effect indicates that dis-
charges with low order rational values ofqmin will have
particularly favorable stability properties. It is interesting
that, experimentally, ITB formation appears to be facilitated
in these circumstances.

The simples–a model clearly does not allow globally
stable ITB equilibrium profiles at highn. However inclusion
of the formally small, in inverse aspect ratioe, terms associ-
ated with favorable average curvature, Eq.~21!, has a dra-
matic effect on the lows part of the stability boundary, as
shown in Fig. 3~b!. In fact it allows a stable route from high
amax and lows, characteristic of the ITB pedestal profile, to
low a and moderates as appropriate to magnetic surfaces
away from the ITB itself. The solution of the recurrence
relation then allows us to construct an operating diagram
~Fig. 13!, parametrized in terms ofamax, e, and r 2/(mL

*
2 )

~for given n and q!, for ITB discharges that are globally
stable to high-n ideal MHD modes. This diagram shows that
ITBs with highamax can be stable ifr 2/(mL

*
2 ) is sufficiently

high, i.e., the barrier is narrow. Equations~36! and~37! pro-
vide analytic scalings for the limiting values ofamax with e,
namelye1/3 for small e, in the two limits of small and large
L* /r .

One can, of course, reach similar conclusions based on
the lowest orders–a stability diagram. However a key point
is that at lows no consistent higher order theory exists within
the ballooning representation: one is certainly not describing
radially extended ballooning modes at lows. The recurrence
relation technique provides a sound approach, which pre-

cisely complements the failing ballooning theory at lows.
Although stability boundaries remain approximately the
same, the modes only couple a small number of rational
surfaces.

The self-consistent treatment of the effect of the boot-
strap current on the required magnetic shear near an ITB
shows that, in the presence of favorable curvature, one can
have stable profiles at finite background shear. There is then
no limit on the maximum pressure gradient in the ITB, pro-
vided that the background shear,s` , is less than a critical
value,s`c . The values ofs`c typically lie above 0.5, with
thermal barriers requiring lower values than density barriers,
as shown in Fig. 15.

Finally, we have briefly investigated the impact of a
sheared plasma rotation,V, with the profile given in Eq.
~44!, on the mode frequency and growth, estimating when
this disrupts extended ballooning modes in Eq.~45!.

In summary, we have explored the stability of ideal
MHD ballooning modes at moderate to highn for a situation
corresponding to an internal transport barrier near a mini-
mum inq. This configuration has been modelled by thes–a
equilibrium, self-consistently taking account of the low shear
nearqmin , Eq. ~12!, and the steep pressure gradients in the
barrier in the radial profiles ofa(x), Eq. ~1!. The stability of
such profiles depends on following their trajectory in the
s–a stability diagram, suitably modified for finite-n profile
effects. The effects of including the stabilizing finite-n and
favorable average curvature at lows have been shown to be
important for the overall stability of an ITB configuration.
Low order rational values ofqmin have been shown to have
particularly favorable stability properties. Furthermore, the
combination of favorable average curvature and the boot-
strap current is shown to allow unlimited values ofamax for
finite values of magnetic shear. The effects of plasma flow
shear have also been briefly addressed.
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APPENDIX A: THE INERTIAL TERM

The eigenvalueĝ2 introduced in Eq.~3! is a fictitious
growth rate, it really only measures instability. A correct
form of the inertia operator that includes contributions from
toroidal and poloidal displacements is

g2F11S ir

nq

]

]x
1a sinu D 2G . ~A1!

If this is followed through to the variational expression in
ballooning space, Eq.~18!, we modify the inertial term:

ĝ2→g2G. ~A2!

However with the trial functionV from Eq. ~16! the integral
over h no longer converges for the inertial term. With this
correct inertia the trial function should reflect the appropriate
asymptotic behavior at largeh:
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V}exp~2guhu!. ~A3!

We therefore replace the trial functionV0(u)51, by the ana-
lytic form

V0~u!5sech~gsu!. ~A4!

Providedgs!1, the integrals over the other terms in Eq.
~18! are essentially unchanged. Thus the harmonic terms can
still be evaluated by contour integration, but the new poles
arising from the form~A4! occur atu5(2n11)p i /(gs).
These are more remote than those retained atu56 i when
gs!1, which is assumed since we are interested in near
marginal stability. The other, nonharmonic, terms merely ac-
quire corrections ofO(gs). The inertial term now converges
to give a contributiongs in Eq. ~19!, where g now does
represent the linear growth rate.

APPENDIX B: A MORE EXACT VARIATIONAL s – a
DISPERSION RELATION

The dispersion relation of Sec. III was derived using the
ballooning transformation and a variational expression of the
form,

H~a,s,k!5 (
n50

4

a2nHn~s!

2 (
n51

8

I n~a,s!exp~2n/usu!cos~nk!, ~B1!

where the integrals in Eq.~18! were evaluated by expanding
G21(a,s) up to O(a3) in order to generate an expression
which predicts first and second stability boundaries at low
shear. Because marginal stability at low shear requires the
orderinga2/s'O(1) the termsH0 , H1 , andH2 are all re-
quired in Eq.~B1!. For s!1, the dominant appearance of
cos(nk) in H(s,a,k) is clearly determined byI 1(a,s), and
so we retained only these terms (H0 , H1 , H2 , andI 1) in the
variational treatment, and for use in deriving the recursion
equation. In particular the neglect of all higher order cou-
pling terms (I n , for n>2) generates a tridiagonal matrix in
the recursion problem, permitting analytic solution in some
cases~Sec. IV! and rapid numerical solution in general.
However, an exact evaluation of the coupling coefficient
I 1 (a,s) leads to a rather cumbersome expression so, follow-
ing Pogutse and Yurchenko,11 we approximatedI 1 by its
lowest power ina, and neglected contributions of order
s,(,5123) relative to 1 within this term. Thus we obtained
I 1(a,s).5a/4.

In this appendix we demonstrate that, at the values ofs
of interest, this is a satisfactory approximation forI 1 . In
order to avoid the need to sum the infinite series ina arising
from the expansion ofG21, we revert to a different varia-
tional object, derived directly from thes–a equation~7!
without introducing the transformation of Ref. 11,z
→V/AG; i.e., we use

Ĥ~a,s,k!5E
2`

`

dhH @11~ t2a sinh!2#S ]z

]h D 2

2az2@cosh1sinh~ t2a sinh!#J , ~B2!

with t[s(h2k), and we employ the trial function

z5z01z11z21z3 , ~B3!

where

z051/A11t2,

z15
az0

~11t2!
@cosh1t sinh#,

~B4!

z25
3

4

a2z0

~11t2!2
@cos 2h1t sin 2h#2

1

2

a2z0

~11t2!
cos 2h,

z35
a3z0

~11t2!3 H 7

12
@cos 3h1t sin 3h#

2
3

2
@cosh1t sinh#J

1
a3z0

~11t2!2 H 5

8
cosh1

1

4
t sinh2

11

24
cos 3h

2
1

4
t sin 3hJ 1

2asz0

~11t2!2
$cosh12t sinh%.

This choice of trial function makes use of the systematic
expansion of thes–a equation for low magnetic shear, with
a2/s50(1). Inserting this expression forz into Eq.~B2! and
evaluating all the integrals*2`

` dh analytically, generates a
finite series of terms inan containing harmonic terms pro-
portional to cos(nk) for n50, up ton58, so that it is clear
that the form~B1! must result. Then50 terms, i.e., those
independent ofk, are conveniently gathered using an order-
ing in which a2/s50(1). This yields the result,

Ĥ5
1

2
s22

3

4
a2s1

18

128
a410~a6!

2 (
n51

`

I ne2n/usu cosnk. ~B5!

For comparison, using the choice of trial function from Ref.
11 in H yields an expression that, apart from the cosnk cou-
pling terms, only differs in thea4 contribution ~having the
coefficient 19/128!. However Eq.~B5! predicts the low mag-
netic shear stability boundaries with slightly greater accu-
racy.

As noted above, an exact evaluation of all terms in Eq.
~B2! contributing toI 1 (a,s) is lengthy and leads to a some-
what unwieldy expression. However, its exact form has been
calculated and takes the form:

I 1~a,s!52a (
n50

3

(
m50

n15 S a2

s2 D n

smcnm , ~B6!
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where thecnm are rational numbers with

c0m5$24;5;10;5;0;0%44,

c1m5$104;21334;24618;26408;23945;12040;

2420%41536,
~B7!

c2m5$212 077;2134 197;756 981;1 429 740;

4 958 175;10 891 665;6 965 550;280 350%

44 423 680,

c3m5$21134;2103 946;2833 126;23 054 465;

25 401 935;24 701 810;210 599 930;

228 206 045;23 241 350%453 084 160,

where we explicitly exhibit the rationality.
An extremely accurate dispersion relation, predicting

stability boundaries which agree closely with those obtained
by numerical solution of the fulls–a equation, is obtained
by using this evaluation ofI 1(a,s) together with all terms in
the k-independent part ofĤ, up to and including 0(a8)
@within an s;0(a2) ordering scheme#; i.e.,

Ĥ~a,s,k!5
1

2
s2F12

3

4
s1

18

128
s2G

1s2a2F2
3

4
1

25

64
s2

5

64
s2G

1a2s3@263360191278s244622s2

19113s3#/737282I 1~a,s!exp~21/usu!cosk,

~B8!

with s5a2/s. The marginal stability boundary predicted by
Eq. ~B8! is shown in Fig. 16~dashed curve!, along with
exact results from solution of thes–a equation~7! ~dots!
and the approximation forH, Eq. ~19!, used in the text~solid
curve!.

The result of evaluatingI 1(a,s)/1.25a along the stabil-
ity boundary in Fig. 16 is shown in Fig. 17. This demon-
strates that the approximationI 1.1.25a, used in the recur-

sion calculations, is fairly accurate throughout the range ofs
where harmonic coupling is significant. At very smalls,
whereI 1Þ1.25a, this coupling is negligible.

APPENDIX C: RECURRENCE RELATION SOLUTION
WITH A LINEAR PROFILE

In this appendix we derive the solution of the recurrence
relation with a linear profile of the growth rateg0

2, namely
Eq. ~33! reproduced below

~ ĝ22g0
22k1m!cm2l~cm111cm21!50. ~C1!

This can be recognized as the recursion relation that follows
from the Fourier series solution to the differential equation

ik1

du

dt
1@~ ĝ22g0

2!22l cost#u50. ~C2!

This has the solution

u~t!5expS i

k1
E t

dt@ĝ22g0
222l cost# D ~C3!

which must be periodic on 2p, providing the eigenvalue con-
dition

R dt@ĝ22g0
2#52ppk1 ~C4!

for any integerp, i.e.,

ĝ25g0
21pk1 ~C5!

corresponding to Eq.~34!. The lowest order (p50) eigen-
function follows from the Bessel function expansion23 of Eq.
~C3!:

u~t!5expF ipt2 i S 2
l

k1
D sintG

5 (
m52`

`

exp~2 imt!Jm2pS 2l

k1
D ~C6!

so that

FIG. 16. Comparison of stability boundaries using:~i! Ĥ(a,s,k50) with
the exactI 1(a,s) ~dashed curve! and ~ii ! H(a,s,k50) with I 151.25a
~solid curve!, with ~iii ! the numerical solution of thes–a equation~7!
~dots!.

FIG. 17. Comparison of the approximationI 151.25a with the exact
I (a,s), Eq. ~B6!, evaluated along the first stability boundary,a5a1(s),
showing reasonable agreement over the range of relevanta values.
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cm5Jm2pS 2l

k1
D . ~C7!

The asymptotic behavior ofJm2p in the WKB limit, 2l/k1

@1, shows that thecm decay exponentially forumu
.2l/k1@1 and that adjacentcm have the same sign for
large positivem, while they alternate for large negativem.24
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