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The stability and spatial structures of short wavelength ideal magnetohydrodynamic ballooning
modes(i.e., those modes with moderate to large values of the toroidal mode numlkikat can

exist in regions of zero or small magnetic shear are investigated. This is a situation relevant to
discharges with internal transport barri€f§Bs). The generic properties of such instabilities are
discussed by considering tBe a equilibrium. In regions of lows the ballooning formalism fails for

large but finite, values ai. In this limit a complementary approach is developed, based on solving
the recurrence relation describing the toroidal coupling of radially localized “modelets” on adjacent
mode rational surfaces. This technique extends the stability analysis to kwad finite n,
capturing effects arising from the discreteness of mode rational surfaces. Consideration of
equilibrium trajectories in the—« stability diagram corresponding to profiles of ITB discharges
allows one to determine the global stability of such discharges to these modes. It is shown that the
stability of ITBs can be parameterized in termsagf,,, the value of the peak, and the steepness

of the barrier pressure profile relative to the shape ofjtheofile. Inclusion of the stabilizing effects

of favorable average curvature at finite aspect ratip,leads to stable high-pressure ITB
configurations. The stabilizing influence of low-order rational valueg,@f also emerges from the
theory. The influences of the bootstrap current and plasma flow shear at ITBs are briefly discussed.
[DOI: 10.1063/1.1683474

I. INTRODUCTION length L, is characteristic of the barrier width. This form
describes a shallow, or “weak,” ITB als, — and a steep
Internal transport barrief§TBs) in tokamak$™®are as-  and narrow, or “strong,” one a, —O0. It is important to
sociated with low values of the magnetic shea, stress that the global stability of any profile requires every
=(r/q)dag/dr, whereq(r) is the radial profile of the safety point on it to be stable. Thus if one utilizes the second sta-
factor, and by definition necessarily involve a localizedbility regime of thes—a stability diagram to achieve high
steepening of the pressure profile. Thus their stability to showalues ofa,,,, ONe must ensure a route in the diagram that
wavelength(i.e.,n>1, wheren is the toroidal mode number ensures the whole profile lies in stable regions.
ideal magnetohydrodynami@MHD) ballooning modes be- The low values ofs often associated with ITBs have a
comes an issue. The generic features of the stability can hgrofound impact on the radial envelope of extended balloon-
understood using the familiars=a” stability diagram[a  ing mode€~19i.e., the envelope widthAx/r, narrows as
=—(2R¢f/B?)dp/dr is the normalized pressure gradient (L, /rngs)¥2exp(—c/|s), where Re&>0. As a consequence,
which is obtained using the ballooning representafiblow-  at small values o8, the envelope width approaches the dis-
ever this is normally considered in terms of solutions of thetance A ,,,s, between mode rational surfaces and the balloon-
lowest order(in 1/n) ballooning equation and does not take ing representation begins to fail; indeed at sufficiently small
account of the implications of the higher order theory for thes the extended ballooning mode is replaced by a set of inde-
radial structure of the mode#\(x), wherex is a radial co- pendent “modelets” that are located at each of the rational
ordinate. To determine this structure one must specify equisurfaces. The transition between extended ballooning mode
librium profiles as functions ot and solve the lowest order structures and weakly coupled modelets ssbecomes
equation for its eigenvaluk(x,y), wherey is the growth  smaller, can be investigated by solving a simple recurrence
rate andk the radial wave number of the mode. A Wentzel-relation satisfied by adjacent modelets, a technique employed
Kramers—Brillouin(WKB) phase-integral determinesand  earlier for drift wave$:°
the mode envelopé)(x) ~exp(S k(x)dX). Experimentally it appears that ITBs may occur at a mini-
At constants this mode envelope is centred on the maxi-mum in q where one can write
mum of thea(x) profile. To represent the pressure profile
near the ITB, which has a “pedestal” structure, we takin q=Omin+ q"X?/2 2
the form:
so thats=(rq”/q)x, wherex is the radial distance from the
minor radiusr corresponding t@,,, and primes denote ra-
where a . IS the maximum value ok in the ITB and the dial derivatives. Sincesxx—0 nearq,, we see that ex-

= amaSeCR(X/L, ), )
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tended ballooning modes cannot penetrate . The ac- Sec. VII that including the stabilizing effects of favorable
tual location of the ballooning mode is determined by aaverage curvaturé.e., whengy,,>1) (Ref. 12 allows one
competition between the variations of bothand s: the 10 identify the conditions for global stability within this
steepness of the pressure gradient, or high values wifill s?m_ple equilibrium model. While one might r_1aive|y obtain
drive this location towardg,,,, while the zero irsthere will ~ Similar results from the lowest order ballooning theory, the
act to prevent this. As a result of the exponentially stronghigher order theory has completely failed in this situation
effect of the latter as— 0, the shape of the resulting enve- and the recurrence relation approach is essential to a consis-
lope will be asymmetric, truncated somewhat on the side ofént theory. A briefer treatment of this section has been pub-
Omin. FOr situations where this competition leads to a moddished earlieft® Section VIII studies the results of the effect
localized at small values af the recurrence relation method of a self-consistent treatment of the bootstrap current on the
is more appropriate. magnetic shear near an ITB.

In Sec. Il we introduce the—a model for ideal balloon- Finally effects arising from the presence of a sheared

ing modes and present a mild generalization of the balloonP/asma flow, which is often associated with an ITB, are
ing transformation to accommodate the presenceqf. briefly explored in _Sec. IX. Section X provides a discussion
The standard procedure for calculating the radial envelopénd draws conclusions.

and eigenvaluey, from the solutions of the lowest order

ballooning equation using the WKB phase integral is out-

lined. In Sec. Il we consider a two-scale calculation that isll. THE s—a EQUATION AND BALLOONING

valid at lows and allows an analytic treatment. However thisREPRESENTATION

approximation fails to provide the information needed to cal-

culate the radial envelope: the dependence is ex- , ; .
5 P ©07) looning equation for the—« equilibrium’ and demonstrate

ponentially small and lost in this analysis. A variational . ; o
approach! allows one to recover this term. These resultsth® methods described in Sgc. I for. determining the_ mode
structure. In terms of a radial coordinateand a poloidal

enable us to deduce the form of the recurrence relation bé . . .
tween modelets that complements the ballooning representg—ngle‘9 this equaﬂon takes the form of an equation for the
tion as it begins to fail. Analytic solutions of the WKB and perturbed radial pla_sma displacemeh(x, 6, ¢, 1) exp(ne
recurrence relation approaches are discussed in Sec. IV. TAP(.0), wherey is the growth rate

Using the ballooning representation and recurrence rela-
tion approaches, Sec. V examines the validity at 0§ the
s—a diagram for finite, but moderate to large, obtaining
the finiten modifications arising from the effects of the
profile, characterized by the scale length, which are valid +a
at low s. Within the ballooning formalism the analysis of the
radial structure leads to finite<corrections to the first stabil-
ity boundary of thes—a diagram,e4(s). These corrections Herea(x/L,) is given by a form such a€l). We have in-
are favorable, shifting the marginal to a slightly higher troduced an eigen_valugz in Eq. (3) that merely labels sta-
value. However, the radial analysis also predicts that the se®ility; this is sufficient for our main purpose of establishing

ond stability boundarye,(s), is generally spurious, and that stability bounqlaries. A more physical i_nter_preta_tion that
no stable “global” equilibrium withe,.,>a, can be found. Properly describes the actual growth rajejs given in Ap-
In contrast, analysis of the radial structure using the recurP€ndix A and introduced into our final dispersion relation.
rence method reveals that, for a given valuso§ome sec- Whgn_ later we examine the gllobal §tab|I|ty§pprof|I§s with
ond stable regions do survive at low shear: i.e., globally? Minimum, we shall generalize this equation to include the
stable equilibria withw,,,>>a, do exist. This is an additional formal!;_/ §mal|, In inverse aspect r_atlo, terms as;ouated with
finite-n effect associated with the discreteness of mode ratio? stabilizing favorable curyaturg, €., thg Mgrmer téﬁm'
nal surfaces. It is not captured by the ballooning representa- One approagh to solving th'§ equation IS to Fourier de-
tion, but is present in the recurrence approach. In a real togomposeﬂb(x,e) in terms of poloidal harmonics:
kamak these stable regions may not be robust to variations in
Omin, but could be of value in interpreting MHI? code results. D(x,0)=D cexp—imo)u(x), (4)
We also explore the mode structures emerging from the re- m
currence method.

As mentioned above, in order to explore the global stawhere u,(x) is normalized such that its square-integral is
bility of an equilibrium with an ITB in this model one needs unity, but the stability problem remains two-dimensionakin
to consider the trajectories in the stability diagram corre-and 6.
sponding to thex and s of an ITB discharge. Section VI However, when the magnetic shear is constant and other
explores the competition between the low valuesaiear  equilibrium variations are slow on the scale of the separation
Jmin @nd the variation of the pressure gradient near the ITBf rational surfaces,A,, one can reduce this two-
in determining the mode location, structure and stability. Ofdimensional problem to two consecutive one-dimensional
more practical interest for ITBs in tokamaks, it is shown in problems by using the ballooning transformafich'®

In this section we consider the high-ideal MHD bal-
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FIG. 1. WKB diagram for the case ¢f) standard left and right turning points r given byk(x, g) =0 and(b) the multiple branches associated with &69,
in particular showing the principal branchies andk™ and the corresponding turning points given by ko g)==*1 (Ref. 17. The phase-integral is taken

over the shaded area ki-x space in each case.

D(X,0,0)= >, exp(—imo)

x f:dnexp(imms(x,n,«p) (5)

in which % is defined on the range «<n<. One is then
permitted to introduce the nonperiodic eikonal form

(X, 7,9)

=exp[in

<p—qov7—Q’X77+Q’f k(X)dX]é“(n,k) (6)

Alternatively, the trajectories in thk—x plane may be
periodic ink and WKB solutions will couple an infinity of
branches ok(x) [see Fig. 1b)]. A treatment of such a prob-
lem for constant magnetic shear and linear plasma profiles,
i.e., xx/L, has been given previously®!’resulting in the
eigenvalue condition

XR
f (K" =k )dx+ 7x, | =27¢,

XL

ng’ 9

where nowx g are the left- and right-hand turning points
determined by cok(x_g)==1, k™ andk™ are the two prin-
cipal branches ok in Fig. 1(b) and¢ is again an integer. The

in which k(x), the radial wave number, describes the radialieft-hand side, an integral oves can be recognized as the

amplitude variation.
The highn ideal MHD eigenvalue equation for tree-«

shaded area in Fig.(i); one can readily convert this to a
form expressed as an integral odel® In this case one can

equilibrium in ballooning space follows from applying the estimateAx«L, the radial distance for cdsto vary between

ballooning representatiof6) to Eq. (3). The result is the
familiar form’

d o d
E(1+[s(7;—k)—asmn] )%5
+afcosn[s(n—k)—asinylsiny}{=5?{ (7)

which determineg(#,k) and a local eigenvaluk(x, y).

If there are WKB turning points, i.e., wheke=0, so that
k(x) defines a closed loop in tHe-x plane(with upper and
lower branches labeled b™ and k™, respectively, one
obtains the usual WKB phase-integral condition

: 8

€+1
2

XR
nq’f (kT —k)dx=2m
XL

where( is an integer anc,_ andxg are the left- and right-
hand turning pointsk(x_g) =0. The integral8) is over the
shaded area in Fig.(d). If we suppose a simple model for
k:k?=a?[ (Ax/L)?—(x/L)?] so thatAx corresponds to the
mode width, then one can estimatxo(L/anq’)*? from
Eqg. (8). We shall see later that~exp(1]s|).

+1 and—1, corresponding to a more extended mode.
However, near a minimung can be represented by the
parabolic form(2) which leads to a linear dependence of
shear:sex. The highn mode stability problem appears to be
a two-dimensional problem, namely in poloidal angland
radiusx. However, as in conventional ballooning theory, it
can again be reduced to a succession of two one-dimensional
problems by introducing the eikonal representation for the
perturbation; but it takes a slightly different form to account
for the x variation ofs:

X, m,¢)
X
=exp{in o— n(qmm+q”x2/2)+q”f k(x)xdx]
X {(n.K). (10
This leads to the replacements:
kj=—(/Ra)dldn, ke=—ng"x(n—k),
k,=—ndglr. (11
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FIG. 2. Them=0 (heavy solid ling, m=+1 (dashed ling and m=—1 (solid) harmonics of the ideal MHD ballooning mode eigenfunctidrn(x, 6),
corresponding to Eq17). The abscissa is=(nq’'x—m)/s.

As a consequence one recovers the familiar ballooning equa- Defining G=1+[s(5—k)—a siny]* and introducing

tion (7) for Z(#,k) but with the substitution: V={GY? we can write Eq(7) in the “Schradinger-type”
s—rq"x/q=ux/r (12 form

so that there is an additional equilibrium dependence ion GdZ—V+V 1 (dG\? 1d°G

the ballooning equation. d7? 4G\ dy 2 d7?

The phase-integral eigenvalue conditidBsand(9) are
also modified: thus in place of these we have, respectively, . ) "
+a[cosy+siny(s(p—k)—asiny)]+ vy =0. (15
X
ng' | (k" =k )xdx=2m(€+1/2), (13) N N N ,

X, After redefining the origin ofy (7— 7»—Kk) it is convenient
« to introduce the two-scale approach, writidgdn— d/dn
J R(k+ —k7)xdx+ wxE/Z =2a¢. (14) +sdldu and developing a self-consistent expansids; V
XL +V;+- - in powers ofa with the orderings~ a2 In leading

The left-hand side integral overin Eq. (13) can now be orderdVq/d»=0, i.e.,Vo=Vo(u), while in first order one
recognized as the-moment over the area of the loop in Fig. oPtains

n q//

1(a), that in Eq.(14) the same moment over the shaded area o cosy
in Fig. 1(b); as before one could readily convert these to  V=V,(u)| 1+ 5 (16)
forms expressed as integrals ovel® If the turning points +u

are close and not too nere 0, so that they can be approxi- Eventually one finds an equation fofy(u) in O(a?);1118

mated by some average valug, these conditions reduce 0 ,yever for our purposes one can follow Ref. 11 and adopt a
the standard forms withoq"~q’(Xo)- variational approach, using a trial function for given by
Eq. (16) with Vy=1 chosen for simplicity.
It is instructive to calculate thé(x) that results from
Ill. ANALYSIS FOR LOW SHEAR this trial function. Inverting the ballooning transform fgr

o ) o from V (after accounting for the factd®), by the necessary
To apply the analysis discussed in Sec. Il, it is helpful, = iier transform. one finds

and instructive, to use analytic solutions for the eigenvalues _ A

of the lowest order ballooning equati¢f). Fortunately such D(x,0)=e""MKy(|t]) + (al2)Z e MV tK ()
an expression has been derived by Pogutse and Yurchenko K 1
using trial functions in a variational form for Eq7). The FKo(ltD], (17)
trial function is based on a two-scale solution of Ef.valid  wheret=(ng'x—m)/s andK, andK; are modified Bessel

for small s. In this approach one introduces a slow depen<functions. Figure 2 shows the radial shape of the Fourier
dence of{ on a scaleu=s(7n—k), the natural scale of the harmonics in Eq(17). An important point is that these local-
secular terms in Eq.7) (i.e., there is a “stretching” param- ized, isolated modes, located at each of the rational surfaces
eter, s), in addition to the periodic variation onzm2 We  are not pure Fourier modes, but “modelets” containing weak
briefly sketch the outline of their approach here. sidebands(If the coupling to sidebands were stronger and
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FIG. 3. (a) Thes—a;, infinite-n, marginal stability boundaries at low shear, using the variational metho@LB)g.Dashed curves from two-scale power series
expansion withs~ @?<1; solid curves include exp(l/s|) terms. Discrete points are from numerical solutions of the dulb: equation.(b) Variational
stability boundaries in the presence of favorable average curvatarg/2 ande=0, 0.05, and 0.3, where the higher values@ire further from the origin.

the modelet had significant harmonic content, the localizathe x-dependence originates from the profileag(x/L ) if s
tion would continue to be primarily controlled by the small- is constant, or frons= ux/r and« if there is @ minimum in
ness ofs.) The choice ofV, in Eq. (16) is satisfactory for q.

marginal stability,y=0, but does not capture the correct con- Equation(19) is close to the form derived in Ref. 11, but
vergence olV, at larget due to inertial effects; as a result it differs slightly in the numerical coefficients. However it cap-
leads to the logarithmic singularities»at=0 in Ky ;, evident  tures the key features of the fud-a marginal stability dia-
in Fig. 2. A modification toV, for y>0 which removes this gram to approximately 10% accura@yndeed slightly more

effect is discussed in Appendix A. accurately than Ref. }1las shown in Fig. @&). Thus for
Equation(15) can be derived from the variational quan- smalls and « it obtains the first and second stability bound-
tity aries asa’®/s=0.77 and 4.58i.e., to less than 4% accuracy

for a on the first stability boundajyand, furthermore, the
_-_ - term in exp1/s|) arising from the variational principle
2 dg? ensures it is equally accurate at finite values ahd «.

It is worth emphasizing again that it is only through the
variational approach that one can extract the nonanalytic de-
pendence ors in the exponential function in Eq19); this
term, which represents the weakening of toroidal coupling at

18 jow magnetic shear, was lost in the simple two-scale solution
First we expandG '=(14u? 13,e"(G™1),, retaining Vy(u) of Eq. (16). The key element supplied by the varia-
terms up ton=3, and insert this form intdd, collecting the tional treatment of Ref. 11 is the reappearance, in the zero
coefficients of the different harmonics in. The contribu-  order ballooning solution, of the true eigenvaki(g, y). As
tions toH from terms harmonic imy can be readily evaluated a result a calculation of radial model structure becomes pos-
by contour integration, expressing them in terms of the resisible.
dues at the poles of (#u?) 1, i.e., wherep—k=*i/s. The asymptotic analysis in powers s¥? for low shear
Since a term such as cpg produces a contribution that is has been performed previously on tlse-« equilibrium
exponentially smaller, i.exexp(—p/|s), one need only re- model® and also in an expansion of a general equilibrium
tain terms in cos and siny in the integrand oH in Eq.  around the magnetic axt€-?? Slightly different equations
(18). Thus, on substituting the trial functiovi as given by  for Vy(u) emerge in these two problems, but in all cases no
Eqg. (16) in the variational equatioril8), H=0, we finally =~ dependence ok is found since theD(exp(—1/s|)) coeffi-
obtain an eigenvalue equation cient ofk obtained by the variational method is not captured
N 2 a by the asymptotic expansion method.
Y+ 8%2- (Sal4)exp(— 1ls|)cosk—3sa’/a+(19/128 ’ The szapequilibrizm neglects terms in the inverse as-
=0, (19 pect ratio,e. However including these introduces the stabi-
lizing (if qmn>1) effect of favorable average curvature, or
the “Mercier” term, d, , wheré!

1 (de)2 1 d%G

4Gldy

dvi? 1
& &

H- |

+ a[cospy+siny(s(np—k)—asiny)]+ 3/2] V2

G

dx».

where we have followed Ref. 11 in only retaining the contri-
butions linear ina in the cok term. It is convenient for later
to introduceyj = — (s%/2— 3sa?/4+ (19/128)*), describing dy=ea(1—q~2). (20)

the growth rate in the absence of the kaerm. In Appendix

A we show that the “fictitious” eigenvalug? corresponds to  This appears as an additional term on the left-hand side of
vs, wherey is the actual linear growth rate normalized to the Eq. (7), added to the term ia. This can be readily followed
Alfvén frequency. Appendix B presents a more accuratéhrough the analysis and modifies E¢5), (18), and(19),
treatment of the variational approach to this dispersion relaleading to the substitution

tion that indicates that Eq19) is indeed a reasonable ap- .

proximation. Equatiorf19) can be solved fok(x, ), where Yo— Yo~ dm- (21)
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The effect ofdy, on thes—a diagram is shown in Fig.(8). However one can determine the resulting structure of the
We will return to the effect ofl,, when we discuss ITBs with recurrence relation from the dispersion relation directly from
a minimum inq in Sec. VII. Eq. (19 as follows. In the ballooning limit the,, are slowly

varying; indeed, as equilibrium variations approach zero they
are constant up to a phase factor, i.e., one cancset
IV. SOME ANALYTIC RESULTS =exp(km). If the resulting dispersion relation is to lead to

. Eqg. (19), then one can see that the recurrence relation must
If for the moment we suppose that the shesiis con- have the “three-term,” or “tridiagonal” form

stant and the pressure profile variation leads to a quadratic
dependence of on x/L, wherex is measured from the most [72— yé(s,a)]cm— (5c/8)exp( — 1/S|)[Crms 1+ C_1]=0,

unstable position and represents this equilibrium variation, (27)

then neglectingly, for simplicity, we can write Eq(19) in

the form where a= a(x/L,)— a(m/(ngsL,). The validity of rela-
72— y%—(X/L)Z—Z)\ cosk=0, 22) tion (27) depends only on lovg; unlike the ballooning rep-

resentation, this implies that no constraints are placed on the
where  we have  defined y2=—(s%2—3sa?/4 parametet, /A =nsqL, /r.
+(19/128p%), L ?=d?y?/dx* and A=(5a/8)exp The brief discussion above was in terms of the coupling
(—1/s]). If we expand cok~1-k%2 for smallk and intro-  between Fourier harmonics on adjacent surfaces. Strictly we
duce this into the WKB conditiort8), we obtain an eigen- have seen that the modelgts?) contain sidebands of order

value condition a, but these are still localized at the common surface. So the
N ) 112 p recurrence relation represents the coupling of these modelets,
=yg+2N—(2¢+1)(2N\)Y9(ng’L 23 . . o
Y=o ( )M (ng'L) @3 rather than simple Fourier modes. The contribution of the
and mode width sidebands is reflected in tf@(«?) andO(a*) terms iny3.
AxIr=[(2¢+1)(20)Y2L/(ng')]Y2 Morg generally the modelets might contain stronger har-
monic content but because of the low shear they would re-
~exp(—1/4s|)(L/rsnq)*2 (24)  main localized and the recurrence relation would continue to

involve coupling of the appropriate modelets on adjacent ra-

tional surfaces, i.e., remain a three-term recurrence relation.
To discuss the nature of the solutions of the recurrence

relation it is convenient to expang about its maximum in

S (or m). Schematically one can then rewrite relati@7) as

Clearly this becomes very narrow as>0 so that the valid-
ity condition for the ballooning representatipnamely that
Ax, the width of the mode envelopA(x), satisfiesAx
>Ans=r/(sng), the separation of mode rational surfages
is then in question for physically reasonable, finite values o
n. In the case of the more extended modes that exist for a
linear profile ofyg, i.e., away from the maximum irjrg, the
mode width is given by the range afneeded for cok to
range between-1. One deduces

[¥2— y§— km?]cm— N[ Cmi1+Cm-1]=0, (28)

where k= (1/nq’)2d?y3/dx?=(r/snql)?. Clearly the solu-
tions depend only on a single parameter\/«. The solu-
Ax=4NL;~exp —1/s|)L4, (25  tion of such a recurrence relation can be expressed in terms
of Mathieu function$? as discussed in Ref. 8. However it is
clear that forv—0, it consists of a set of independery;,

each having an eigenvalue appropriatextem/(nqs). For

Y= y§+(x0/L1), (26) small but finitev, simple perturbation theory shows that

whereL; '=dyj/dx. As shown in Appendix C, Eg(C5),
the eigenvalue takes the form

wherex, is the arbitrary center of the mode. It is interesting
that this “extended” modg25) can become narrower than
the “localized” mode(24) ass— 0. Similarly we expect that
the radial mode structure will be strongly affected by the
presence of a stationary point g{r) [i.e., atx=0, whens
=(rq"/g)x=ux/r].

WhenAx~A s 0ne can consider a complementary ap-
proach based on a recurrence relation between the amp
tudes of modelets on each rational surface, i.e.cthen Eq.
(4).21° This relation could be determined by substituting the o2 )
form (17) in Eq. (4) and integrating ovex and 6. In general _C+(r_ m
this will couple the different,, due to toroidal effects, the dm? v
strength of the coupling also involving overlap integrals be-
tween the corresponding, (x). As we have seen in E§L7)  Where the eigenvalud'= (3~ y§)/\—2. It follows that
and Fig. 2, at lows the uy(x) are localized neax ~ Am~vY>1 and the lowest eigenvalue is given Hy

¥2=y5—N?(2k). (29)

On the other hand, wher»1, thec,,, become slowly varying

in m and manym are coupled, producing an extended

ballooning-like structure. To estimate the widdm in m,

one can consider the discretg, to be continuous functions

of m, c(m). Equation(28) then becomes a second order
ifferential equation foc(m):

c=0, (30

=m/(nq9 so that only adjacent values af will couple. ~ =v~ " corresponding to
Furthermore, any dependenceoan be replaced by one on o o
the corresponding value of/(nqs). Y =7t2N—(Ak) (31
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FIG. 4. Finiten corrections to infinitex stability, using the recursion FIG. 5. Comparison of thes—a stability boundary atn=15, q=5/3,
method =15, q=5/3, L, /r=0.2, andAg=0). Solid curve from exact L, /r=0.2, andAq=0, from solution of the full recursion equatiofsolid
solution of Eq. (27); dashed curve is the analytic resui29) for line) and WKB ballooning formalisngsolid point3. The WKB approxima-
ngexp(—1/2s|)<1; chain curve is the analytic approximati¢@l) for tion fails for low s where the solid points terminate. The infinitddoundary
ngexp(—1/2s|)>1; dotted curve is the infinite-boundary. is shown as a dashed curve.

V. STABILITY AT LOW SHEAR
which is equivalent to the resul23). Equationg23) or (31)
reveal a stabilizing shift of the first stability boundary, with
magnitude

In the previous section we have discussed the impact of
low shear on the validity of the ballooning representation
used to calculate the—« stability diagram. Its validity de-

Say~(A k)2~ (1ing9)exg — 1/2s|). (32)  Ppends on the parameter-1, i.e., s>{2 In[_r/(g,nql_)]}*l or,

alternatively, n>(r/sqL)exp(1/2s|). In principal one can
These are the familiar a/ stabilizing corrections to the always choose sufficiently largeto satisfy this, but for re-
infinite-n ballooning theory. There is no similar prediction alistic values, sayn~50, this requiress>0.1. Even if we
for the second stability boundary. An equilibrium in which assume sufficiently large, the application of the simple
amas> o Will, of necessity, containy values which will cor-  WKB condition (8) has limited validity. Thus if we estimate
respond to the maximum possible growth rate, and a fimite- K~1/(ng’Ax) with Ax from Eq. (24), then ass—0, k is no
ballooning mode will appear at the corresponding part of thdonger small; indeed onde~1 one must retain the full cds
pressure profile. Thus no “second stable” equilibria can ex-Sfunction to solve fok(x). Then ak— m and cok——1 one
ist. loses the WKB potential well and one can only consider the

For arbitrary v one can write}?= y§+ kao(v), where extended modes satisfying E@3). This is found to occur
a, is the lowest eigenvalue of the Mathieu equation, showrwhens= 142 In[(2¥% =?)r/(snqL)]}; such a boundary has
in Fig. 20.1 of Ref. 23; in fact resu{B1) remains reasonably been confirmed by a full numerical solution of Eq), as
accurate down to~5. The marginally stable—« curve for ~ shown in Fig. 5. However, as Eq25 demonstrates, the
n=15 predicted by the recurrence relation approach is p|otWidthS of the extended modes in this case are Comparable
ted in Fig. 4 and compared with the strongly coupled resulwvith A s and the ballooning representation is again inappro-
(31) and the weakly coupled resul29). Then— resultis ~ Priate.
shown for comparisofdotted curvg indicating the stabiliz- It is therefore necessary to use the recurrence relation
ing effects of finiten. We note that at finiter one must approach to determine stability and mode structures atslow
specify the position of the nearest mode rational surfacer realisticn values. It is clear from Eqg¢23) and(31) and
mo=nq(x) relative to amay. This is characterized byq Ref. 23 that for the case of a “quadratic potentiatx?, the
=my—ngq; Fig. 4 assumedq=0. stability boundary given by the WKB approach remains valid

One can also consider the case whgfés a linear func-
tion of x, which led to the “extended” ballooning modes.

Equation(28) is replaced by 0.5s
(¥~ %6~ KiM)Cn=A(Cmy 1+ Cm-1) =0, (33 04 |

where x;,=(1/nq’)dy2/dx=(r/snqly). As shown in Ap- 0.3 e =

pendix C, one can obtain an analytic solution §6rand the 02| f S

Cm for arbitrary vy =X/ .%* We find c=J - n(274), cor-

responding taA m~ v, , where the integep labels the eigen- 0.1

value: a
R 1 2 3 4 5 6
Y= v+ pry. (39

FIG. 6. Second stable bands at finiten=15, q=5/3, L, /r=0.2, and

. . . . . Aq=0. Solid points are by solution of the recursion equations; continuous
Thusp SngIerS where, i.,em=p, along the linear profile  ¢,nes are by analytic construction using the infimitstability boundaries
the mode is centered. The res(@4) corresponds to Eq26). and the discreteness of the mode rational surfaces.
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s suppose the surfacm=0 to be atap,,y, then them==*1
0.5 surfaces haver= ay,,sech(r/ngL,s). These rational sur-
04 faces can be considered to be “beads” lying on a constant

slice through thes—a diagram, as shown in Fig. 7. Thus we
have a stable band if apapca and  ay
0.2 > amaxSech(r/ngl, s). Similarly, if all three surfacesq(m
=0,=1), lie in the regiona> a, while a(m= *2) satisfy
a<aq, afurther band exists, and so on. The left-hand tips of
a the higher bands rapidly migrate rightwards to very lange
and need not be considered for reasonable values.gf.
FIG. 7. Location of the discrete mode rational surfacgs, in s—a space  These stable bands are shown in Fig. 6 and reflect the struc-
for s=0.2, xp given by a= amasechxm/L,), with amy=1.1, L, /v ture of the recurrence relation solutions. Of courseqgg,
=0.2,n=12, andg=23/2. The infiniten stability boundaries are also shown. continues to increase one must consider higher and higher
bands with values o lying in the tail of the pressure profile
down to »=N/«~5-7, at which point the corrections to the (1) so that adjacent harmonics will have almost the same
two-scale growth ratey, are negligible. We return to the it then becomes impossible to bridge the unstable zone. But
more complete forn{1) for a(x) with x=m/(nqs) and in- because of the rightward migration of the bands this only
sert it in the recurrence relatig27). Figure 5 also shows a occurs for extremely larger,,.. These finitea results are
comparison of the solution with the WKB approximation. reminiscent of the stability of low “infernal” modes that
[Clearly, for sufficiently small values of the argument of occur at low shear
a(x/L,) the result reduces to the quadratic form in E28) This argument supposed that thg,,, corresponded ex-
and the analytic solution of Sec. V. actly to a rational surface; ih—ng=Aq#0 the situation is
Figure 6 shows the resulting impact of finiteen the  more complex. Because of the symmetrya«gfx) one need
s—a stability diagram at lows. As discussed in Secs. lll and only considerAq>0 and sinceAq—Aq+1 merely corre-
IV, both the destabiIiZing effects of ba”ooning, i.e., Coupling Sponds to a re'abe"ing Gﬁo, it is sufficient to consider 0
between adjacent rational surfaces, and the stabilizing effects Ag<1. Figures &) and 8b) show representative ex-
of finite-n bgcome e.x_ponentially weak atllow values of amples: namely fongq=1/4 and 1/2. The bands are dis-
Thus the “first” stability boundary,a,(s), is close to the 506 and change in width: farq=1/4 they are narrower
original s—a curve. As noted earlier, the stabilizing effects and lower, broadening and lifting fdrq=1/2. Thus as\q is

;are the ltﬁual blbst??wzmg corrections to tdhe mf'mtdﬂ.btf"‘l' ¢ varied, the bands ad—« stability in the second stable zone
ooning theary, but there IS No corresponding Prediction 1olyiq; it 5 migrate in a complex manner. However it is clear
the second stability boundary. An equilibrium profile with

i . . : that if all values ofAq in [0,1] are admissible, then no sec-
tma> 2(S) Will necessarily contai values in the unstable onds—a stable region survives. One can see this as follows
range,a,>a> a4, thus a finiten ballooning mode will ap- @ 9 ' :

pear at that part of the profile corresponding to the maximumSuppose the stable_ban_d arises because th_e first mode rafio-
possible growth rate nal surface ata,,, lies in the second stability regiony,
However, because we are using the recurrence approaﬁa’ and the next one is below the first stability boundary,
which is valid at arbitrarily small shear, we find a different @< 1. Then asAq increases from 0 to 1 at constasithe
finite-n effect and this does predict that a second stabilityPOSition of the first mode rational surface migrates to lower
boundary survives at low, as shown in Fig. 6. This can be values in« until it reaches the position of the next mode
understood as follows. At finite values ofthe different ra- ~ rational surface, i.e.a<e;. Thus it must have passed
tional surfaces correspond to discrete differences.ifhen  through the unstable band; <a<a,, on the way. Since, in
one can have a situation in whiaf,,,>a, while adjacent general, a tokamak can adopt any valueAaf during the
rational surfaces correspond o< «;, so that one can ex- evolution of itsq profile, particularly at highen values, this
pect the whole profile to be stable. If, for definiteness, wecannot be regarded as a controllable parameter and these

0.3

0.1

025 05 075 1 125 15

s s
05 05
04 | 0.4
0.3} | 0.3 Tos .
02} | S e % 0.2 b
0.1 b& 0.1

(R

@) T2 3 4 5 6% T2 3 4 5 67

FIG. 8. Second stable bandsrat 15,q=5/3,L, /r=0.2 for (a) Aq=1/4; (b) Aq=1/2.
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FIG. 9. The amplitudesh(m), of three typical spectra of poloidal harmonics at marginal stability, showing a progressive narrowing as the shear is reduced.
(@ s=1; (b) s=0.5; and(c) s=0.2 (n=50,9=2, u=1,L, /r=0.2, andAq=0).

bands have little practical significance. However these inmonic content of each modelet also involves coupling to
sights on stability may be of value in interpreting the outputnonresonant modes, but ones located at the same mode ra-
of MHD stability codes. We will return to this topic when we tional surface.

discuss ITBs at a minimum ig, where these finitereffects We introduce expressiond), (12), and (35) into the

from Agq=mgy—nqyi, may play an important role. recurrence relatiori27). The dependence of on m intro-

Itis also interesting to examine the variation of the specduces a strongn-dependence into the coupling term. For
trum inm of the eigenmodes asdecreases. As shown in Fig. simplicity, we neglect the slight asymmetry in the coupling
9, this spectrum narrows asdecreases. Indeed, in the limit of modelets centred at, to those ak,,.; due to the radial
s—0 only isolated modelets remain. variation of the shear betweeq,., ; andx,,_;; for smaller

m, where it becomes more significant, the coupling is weak
anyway. We can identify three parametes;,y, 12/ (,uLi),
VI. STABILITY OF AN ITB AT A MINIMUM IN THE andu/(nq). The second parameter originates from the radial
SAFETY FACTOR variation ofa at fixednq and, likewise, the third results from
that ofs. While the last of these parameters clearly measures
the effect of finiten, the first two define a trajectory in the

Eqg.(12), a situation relevant to ITBs. Since we are interested® ¢ stability diagram corresponding to the radial profiles of
' s and « through the ITB. As we move from,,,, wheres

in regions ofx corresponding to lows, we shall adopt the 0 and a— he directi £ thi : .

recurrence relation approach alone as we have seen above) 2"d @= ¥max eméreCtlgn of this trajectory Is con-

that it remains valid for allin. Since the rational surfaces trolled by .th.e parametar-(uLy ). Consequently, in the a‘?_‘

correspond tan=nq(x), whenAgq=my—nNgy,=0 we can sence of finiten effects, one moves from the second stability
1 min

The form (1) can also be used to examine the role of a
radial profile in« in the presence di, whens is given by

replacex in Egs. (1) and(12) in terms ofm using regiqn, throu.g.h an gnstable band @before emerging into
1 the first stability region.
Xm=*(2m/nq") (35 As in the case of constas it is possible to find stable

so the rational surfaces appear in pairs for gimer0, one  bands foray,,,>ax(s) at finiten, due to the discrete spacing
on each side of},,. The s—a model predicts stability for of mode rational surfaces. This is displayed in Fig. 10 where
$<0, so we need only consider surfaces with0. Because the trajectory ofa given by Eq.(1) when amay coincides

of the localization of the modelets, coupling to those withwith gp,, is shown in thes—a stability diagram. The dis-
x<0 through nonresonant poloidal harmorfs,e., those crete mode rational surfaces in this figure correspond to the
with m<ngq,, so that they have no mode rational surface inchoicen=12, q,,,=3/2. However, as pointed out in Sec. V,
the plasma, is extremely weak. It should be noted the haralthough a particular mode number, corresponds to one
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FIG. 10. Thes—e stability diagram from the recurrence relation and the FIG. 12. Trajectories and locations of mode rational surfédets in s—a
equilibrium trajectory and location of the mode rational surfaces-ta space for two marginally stable profileg;,,,=2.13,L, /r=0.2 anda
space near a minimum ig (n=12, q=3/2, u=1, L, /r=0.2, apa=1, =0.46,L, /r=10 (=12, q=3/2, u=1, Aq=0). The stability boundary
Ag=0). modified by favorable average curvatudg, , is shown fore=0.1.

particular value ofAq=my—nNnqy,, other choices of (and  wardsm=0. While the latter can have an effect, it can never
mo) produce many different values dfq in the range 0 win because of the exponentially weak coupling neg, .
<Aq<1. If Aq s varied continuously from zero to unity the However, since the spectrum peaks whefds a maximum,
mode rational surface af,,,, moves continuously along the its shape is largely dominated by theprofile and the asym-
trajectory ins—a space, and must inevitably pass throughmetry is relatively weak.

the unstable banfla;,a5]. This suggests that in endeavor-

ing to interpret data from real discharges, we should regar¢y;; EFFECT OF FAVORABLE AVERAGE CURVATURE

all values ofAq as available. In this case, finding a globally

stable equilibrium with an ITB afj,;, becomes impossible. We have seen that for sufficiently largethe s—a equi-
However, it is worth remarking that when the minimum librium is inevitably unstable for ITB profiles at some radial
value ofq coincides with a low-order rational, the possible Point. However, the picture is changed by the inclusion in the
values of Aq are greatly restricted. In the extreme caseModel of stabilizing favorable curvature wheg,,>1, i.e.,
where g, is an integer, only one value afq (i.e., Aq the Mercier termdy, in Eq. (21) that is formally small in
=0) is possible. In this case the discreteness of the modie inverse aspect ratie, This is because this term has the
rational surfaces at finita-may play an important role in effect of preventing the unstable region reaching all the way
permitting higher values ofy. to s=a=0, allowing a globally stable route from

The corresponding spectra in of the eigenmodes, see @=amax, S=0 to highers and lower a. Since Eg.(20)

Fig. 11 for an example, are offset from=0, i.e.,q,, and  Showsdyxe, in what follows we use the parametealone

are somewhat asymmetric, in contrast to the results in Fig. g0 label the effects offy, . This is strictly true for largey: the

This asymmetry is because the coupling between adjanent effect of finite g can be recovered by the substitution

vanishes exponentially, i.e., as exf{(/|s|) on the smalls €~ E(l_qu')- Figure 3b) shows the effect of they term

side nean,,,;,. Larger values sz/(MLi), corresponding to N thes—« diagram for two values of. Figure 12 shows the

steeper pressure profiles in the ITB, push the peak of thgtability boundaries a¢=0.1, together with two examples of

spectrum nearem=0. Thus, the resulting spectrum is the margmgllly stable pressure profilea € a(X/;-*)), one with

outcome of a competition between the presenceygf, ' /(uLi)=25 and the other having?/(uL})=1/100. The

which excludes the mode from=0, and the steepness of locations of the discrete mode rational surfaces are shown as

the pressure profile at the ITB which drives the mode to-P0ints on the two curves, for the choine= 12. At highn the
mode rational surfaces become closely spaced, requiring that
the a= «(S) trajectories are tangential to the stability curve

A at marginal stability. At lower values af, a5 Mmay be in-
1 . creased, until one of the mode rational surfaces lies on the
marginals—a boundary. This discreteness of the mode ratio-
0.8 . nal surfaces suggests highey,,, values are possible. How-
. ever, as noted earlier, Xg=my—nq is regarded as continu-
0.6 ously varying, each mode rational surface may be moved
. continuously to the next location, ensuring that marginal sta-
0.4 bility is again determined by the tangent condition. Again we
0.2 . . note the importance af,,,, passing through integéor low-
. order rational values. This greatly restricts the possible val-
) ® o m ues of Ag and ensures that greater valuesagf,, are pos-
5 10 15 20 sible.
FIG. 11. The amplitudea(m) of the m-spectrum fom=100 (=3, u=1, We have mapped out the stable operating regime in
L, /r=0.3,Aq=0, apa=1). terms of the parametes,, aner/(,uLi). This is shown
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®Xmax in Fig. 14. Equation(36) indicates that the asymptote,,.,

14 =agy(*) scales ag'® while Eq.(37) shows how large val-

12 ues of a,, are possible for narrow ITBs, i.e., asL, /r

10 becomes small. This demonstrates that an ITB can sustain
high pressure gradients that are stable to ideal MHD balloon-
ing modes, provided the barrier is sufficiently steep. It is also
clear from Eqgs(36) and(37) that the increment i through
the ITB (Aa~amal, /1) has a minimum as a function of
r2/(uL2), but increases without limit ag'L, — .

L.Jr To summarize, there is stability & is sufficiently low

(max<agif()), for any value ofL, /r, but low values of

L, /r permit arbitrarily steep barriers, as indicate by Eg.

(37). Although we have derived the above results using the

lowest order ballooning theory, the very existence of a con-

sistent description of the radial mode structure at bde-

in Fig. 13 for fixed values of, g, and two representative pends on there being a solution of the recurrence relation.

values ofe. Figure 13 demonstrates that there is always sta-

bility if « is sufficiently low [ @ma<agi(?), the dashed VIIl. EEEECT OF THE BOOTSTRAP CURRENT

horizontal asymptotds no matter how large the value of

L, /r, even whem—c. One can obtain an analytic scaling The steep plasma gradients associated with an ITB drive

for agi() from the highn limit of the eigenvalue condition a large bootstrap currenitys,2’ which can modify the mag-

(19). agi(*) is given by the minimum ofr with respect to  netic shear. In a large aspect ratio tokampk, takes the

s on the marginal stability curvey=0. Since for smalk we form?®

N b O ®

FIG. 13. The infiniten operating diagram inv,,,,—L, /r space fore=0.05
(lower curve and 0.3(upper curveé (Ag=0, g=3/2, u=1). The limits(36)
and(37) are shown as dashed lines.

are considering lows, the toroidal coupling term propor- e 12 dn
tional to exp(1/|s|) can be ignored. One then finds b= — {2.44(T9+Ti)d—re
0
() =1.96¢', (36) it it
However there is also stability foraya,caci(®) if +0.69ned—re— O.42hed—rI , (39

rzl(MLi) is sufficiently large to ensure a trajectory that
skirts the nose of the marginal stability boundary. It is alsowheren, is the electron density anfi, ; are the electron and
possible to obtain an expression for this limiting value ofion temperatures. This can be expressed as

amax, as a function ot /r, in the limit of smallL /r, i.e., By

corresponding to a strong ITB. Substitutizg=sr/u, this jbsz—Rf(T, Ner Ti) (40)
limiting value, a, is determined by the intersection of the q

resulting «(s) given by Eq.(1) with the marginal stability where

curve includingL, /r. Assumingsr/L,>1 it is possible to 2,441+ 7)+0.69,7— 0.427,

solve forag(r/(ul,),e€) in this limit: )=
crit o * f(7,7¢,m1) 2L+t part 7) (41)
agi=0.37%;“exd 2s.r/(ulk,)], (37 )
with 7=T,/T; and »;=d(In T;)/d(In ng). As a result the mag-
wheres.>0 satisfies the transcendental equation netic shears, can be written as
0.2953%+1.25 exp— 1/s;) = . (38) s=s,— (el €Af (1,70, 7)), (42)

For small € s,=2.282° so that a.y> €3, while for s;  wheres. is the background shear in the absence of the ITB.

>0.1 it is remarkably well fitted byg.=0.23+ €, as shown Thus large values of can lead to negative values gfeven
if s,,>0. The effect ofj is largest for electron density bar-
riers: taking 7=1 for simplicity, f—0.07 if 7.=»>1,
whereasf —0.61 for 7, ;=0.

One could deduce the trajectory &+« corresponding
to a genera$..(x) anda(x) and determine the conditions for
stability to highn modes. However, sincg, can lead tos
<0, even for constard,,, we consider just this case to illus-
trate its impact. Clearly Eq42) then follows a linear trajec-
tory whose gradient depends 667, 7., 7;) ande, provided
dy, >0, this can remain in a stable region®f« if s, is not
c too large, as shown in Fig. 15. Here the profile trajectory

0.1 0.2 0.3 0.4 starts froms,, and a., (the value ofa remote from the ITB

FIG. 14. The critical shears,, as a function ofe (solid curve, the atits Ieft-ha_md end, traversessema,) andama,at its right-
asymptotic limits,=2.2823 valid ase—0 (intermittent dashed lineand ~ Nand end, i.e., the center of the ITB, and then returns.to
the approximate resuls,=0.23+ ¢, accurate fore=0.1 (dashed ling andea., as it emerges from the ITB on the other side. Clearly
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FIG. 15. The effect of the bootstrap current on stability, showing the profile trajectory and imfisiigdility boundaries for different parametefa) e=0.1,
7e,i=20, leading tos...=0.46; (b) €=0.3, n,;=20, leading tos.,,=0.59; (c) €=0.1, 7,;=0, leading t0s.,..=1.50; (d) €=0.3, 7,;=0, leading tos...
=1.63 (@.=0.2, ¢na=1.0,0=2, 7=1 in all cases

this imposes no limit oy, increasinga ., merely takes ~ Where(l is the tqroidal angular velocity of the flow, normal-
the trajectory into the stable<O region. Again one can ized to the Alfven frequency, into the dispersion relation
calculate the limiting stable trajectory, namely when &g)  (19). This in turn modifies the coefficient af;, in the recur-
is tangential to thes—a stability boundarya(s). rence relation27). Because of the explicit in the replace-
Comparing Figs. 1), 15(b) with Figs. 15c), 15(d) we ment (42), this dependence will often dominate profile ef-
see that varying (at fixesq) has only a weak effect on the fects froma(x), e.g., if flows exceed diamagnetic levels.
critical value,s,., of s... For example, wheny,; =20, S... In the simple case of both constant magnetic shear and
varies from 0.46 to 0.59 asvaries from 0.1 to 0.3. This can flow shea’,>*® an analysis similar to that in Appendix C
be understood as follows: as discussed in Sec. VII, the stdeads to a set of modes with the structuf€s) [i.e., with
bility boundary migrates towards=a=0 as dixe¥3 ~ Fourier amplitudes Iy (M ko)=1m(N|kql), where kg

whereas the slope of the trajectory increases @&, so that = —idQ/dq~0(1) andl, is a modified Bessel functiéf,
the net effect is very weak, proportional &0 1%, However, each centered on a different mode resonant surfacemsay
there is a stronger effect i— 1, since this impliesl,—0 =P, and having a corresponding real frequen@y={,

without having an effect on the profile trajectof$2). The  +pdQ2/dq. Since these frequencies differ b®(1) the
value of s, has a much stronger dependence g, as Modes do not couple significantly, so that each corresponds
shown by comparing either of the pairs Figs(d5nd 15b)  to an eigenmode. The value pfcorresponding to the maxi-

or Figs. 15c) and 1%d). Taking the case=0.1 as an ex- mMum value ofy, will give the most unstable mode. Because
ample, s..;=0.46 for 7, ; =20, whereass...=1.50 for 7, Nxexp(—1/s|) the harmonic content of these “extended”

oC ™

=0. modes is in fact limited ton=p for finite (dQ2/dq).

Thus consideration of a self-consistent treatment of the  In the presence of an ITB the plasma flow is normally
bootstrap current together with favorable average curvaturdocalized near the barrier and a more realistic model for the
shows that there is no limit om,,,, provided the back- toroidal angular velocity of the flow is given by a similar
ground magnetic shear exceeds a critical value; this criticaform to Eq.(1) for a(x), namely:
value is larger for density barriers than thermal ones.

Q=0gsech(x/L). (44)
IX. FLOW SHEAR EFFECTS

Internal transport barriers are associated with a region o{_

. he flow shear can then have a similar effect to dharofile
strongly sheared toroidal plasma flow. Such flows tend tc?n destroying extended ballooning structures. For simplicit
stabilize ideal MHD ballooning modé23°Their main effect ying g ' plctty

. . o : : . we consider constant but low values $fretain terms qua-
in the stability analysis is to introduce a radially varying C T
. dratic inx from Eg. (44) and neglect the variation ia(x).
Doppler shift to the mode frequency: T : o
Replacingy” in the recurrence relation by the correct inertial
y—y+inQ(x), (43 form s but with the substitutioi43) we see that we replace
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Kk in Eq. (28) by ko= —i(Q¢/2)(r/ngsly)?. Therefore we the WKB wave-numbek(x,y) of the ballooning modes as a
expect to obtain a transition to a narrow spectrum of modefunction of the radial profiles of and «. [In the case of
when|vg|~1, wherevg=»\/kq, i.e., equilibria with aq,, surface, a minor modification of the
eikonal in the ballooning transformation is necessary, Eq.

1/2

r/(@sLa)~n(5a/4o) ™ expl —1/2s)). “9 (10), but this merely leads to an eigenvalue equation that
Solutions of the recurrence relation could be solved with theecognizes the dependence as.]
form (2) for g nearqy,,, but basically one would find a mode It transpires from a WKB analysis that stringent condi-
with a real frequency, whose growth rate is given bys  tions on the largeness afmust be impose(see Fig. 5if the
= 7(%- ballooning representation is to be valid for modes located at

low s. These values oh (ng>exp(1/s|)) can be well be-

X. DISCUSSION AND CONCLUSIONS yond those needed for the applicability of a simple MHD

N ) ) . plasma modelfor example, the condition that the wave-
We have explored the stability of configurations with length is greater than the ion Larmor radiys, i.e., n

low magnetic sheas, including those with a minimum in, <(alpq), could be typicallyn<1C?: diamagnetic effects
which are of interest to tokamak discharges with ITBs. Be-.,1d enter at even lower valdesFurthermore, as de-

fore discussing our results in detail we list the principle Out-rgages the ballooning representation predicts a transition
comes of this work. from modes localized near the maximum valuexdb a type

(1) At low s, a novel recurrence relation approach has bee@f mode located on a linear part of theprofile which, at

developed; this replaces and complements the ballooning~ 1, would be more extended. However, at snsaliese are
transformation, which fails in precisely this regime for in fact narrower modes than those located at the maximum

reasonable values of and therefore less important.

(2) This has been used to analyze the stability of she At lower values ofn the extended ballooning mode col-
equilibrium at lows: considerations of the global stabil- lapses onto isolated modelets at each rational surfféige
ity of an entirea prof”e |mp|y that the Concept of second 2) The effect of finiten and profile effects on these struc-
stability is of limited significance. tures can be analyzed using the three-term recurrence rela-

(3) However the recurrence approach incorporates effectdon, Eq.(27) satisfied by the amplitudes of these modelets.
from the discreteness of mode rational surfaces, entirelyfhe validity of this three-term recurrence relation depends
absent from the ballooning transformation, even atPrecisely on smalk, so this technique provides just the re-
high-n. quired complementary approach to the ballooning represen-

(4) This does allow the possibility of bands of stability in tation that itself fails in this very situatiofilndeed for more
the second stable region, but for constant shear these ag@mplex geometries the localized modelets may contain a
not of practical significance, other than interpreting re-rich harmonic content, but the recurrence relation will con-
sults from more sophisticated MHD codes. tinue to involve onlyc,, andcy.;-space couplings toy,.,

(5) However, analysis of the situation with a minimumgn ~ Will be ~exp(—p/|s)), hence exponentially smaller for small
demonstrates that low order rational valuesggf, are s.] This approach allows us to follow the transition from
particularly stable as a consequence of these discretene@$tended ballooning mode structures to a narrow spectrum of
effects. modelets as magnetic shear reduces and finiéfects in-

(6) Inclusion of the stabilizing effects of favorable averagecrease. For the simple cases of constand ana profile
curvature in the case (nfmin allows h|gh stable values of with a maximum and one that is linear, analytic solutions can
« when the ITB is sufficiently narrow. be obtained; in more general cases, such as the profiles as-

(7) Consideration of the bootstrap contribution to the mag-sociated with an ITB, numerical solutions are readily ob-
netic shear in the presence of favorable curvature show&ined. For the case of constaand ana profile given by
that stable ITB configurations with finite shear are pos-EQ. (1), Fig. 5 compares stability boundaries resulting from
sible; the required shear is lower for density barriers tharthe recurrence relation with those from the ballooning repre-

for thermal ones. sentation, while Fig. 9 shows how mode structures narrow as
(8) Plasma flow shear can readily break up ballooning modé decreases.
structures, particu|ar|y at low. It is worth emphasizing that when the Stabl'lty of a

whole profile is considered second stability can become

Now we discuss these points in more detail. The fact thatmeaningless at high: even if a4 lies in “second stability”
SxX nearqmin, wherex is the distance fromy,,i, as shown in [ @, ao(S)], unstable lower values o are inevitable
Eqg. (12), has necessitated exploration of the validity of thesomewhere in the profile. However consideration of moder-
ballooning representation at losv At small s the stability of  ate n effects, sayn~ 15, shows that stable bands can exist
ballooning modes can be studied using a two-scale analys&sven fora> a,(s) as shown in Fig. 6. Figure 8 shows the
of the lowest order ballooning equation. A straightforwardeffect on the bands of different values®fj= my—ng. Both
application of this approach fails to provide an equation forthese figures show how the predictions from the recurrence
the radial envelope of a ballooning mode. One can recoverelation for the stable bands can be well represented by ana-
the exponentially small terms that determine this by invokinglytic results obtained from the positions in thke « stability
a variational approach with the two-scale solution as a triatliagram of the mode rational surfaces nggy,. Thus, if for
function; this provides an analytic expression, EtP), for  example, the mode rational surface nearest g, lies be-
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yond a5, yet the adjacent ones lie below, then the con- cisely complements the failing ballooning theory at lew
figuration should be stable as no harmonic lies in the unAlthough stability boundaries remain approximately the
stable zone. However, it is unlikely that one can confxgl  same, the modes only couple a small number of rational
during the evolution off and a5 in @ tokamak, particularly — surfaces.

for highern, so these bands will have little practical signifi- The self-consistent treatment of the effect of the boot-
cance. Nevertheless, these results may be of value for intestrap current on the required magnetic shear near an ITB
preting the output of MHD stability codes used to analyzeshows that, in the presence of favorable curvature, one can
ITBs. have stable profiles at finite background shear. There is then

Turning to the situation of interest, profiles correspond-no limit on the maximum pressure gradient in the ITB, pro-
ing to an ITB at a discharge with a minimum dpthe recur-  vided that the background sheat,, is less than a critical
rence relation has been solved using representatiseds  value,s.... The values ofs,,. typically lie above 0.5, with
profiles given by Eqs(1l) and(12), respectively. At constant thermal barriers requiring lower values than density barriers,
n andgq, this situation is parameterized by two key quantities:as shown in Fig. 15.
amaxandrzl(,uLi). These govern the trajectory of the equi- Finally, we have briefly investigated the impact of a
librium profiles in thes—« stability diagram. For large,.x ~ Sheared plasma rotatiod), with the profile given in Eqg.
andr?/(uL2) the trajectory crosses the unstable region af44), on the mode frequency and growth, estimating when
highers values: the location being dominated by thero-  this disrupts extended ballooning modes in ).
file. For such a situation an unstable mode is found, located In summary, we have explored the stability of ideal
away fromg,, and more extended im; nevertheless the MHD ballooning modes at moderate to higtior a situation
exponentially weak toroidal coupling at lowresults in a  corresponding to an internal transport barrier near a mini-
somewhat asymmetrim-spectrum. For lower?/(uL2) the ~ mum ing. This configuration has been modelled by thex
trajectory crosses the unstable region at losand the pres- equilibrium, self-consistently taking account of the low shear
ence ofq,;, dominates the behavior: the spectrum is locatecheargn,i,, Eq. (12), and the steep pressure gradients in the
nears=0 and is somewhat narrower and asymmetric, adarrier in the radial profiles ak(x), Eq.(1). The stability of
shown in Fig. 11(Of course, moving inwards into regions of such profiles depends on following their trajectory in the
negatives, one only encounters stable regions in fiee  S—a stability diagram, suitably modified for finite{profile
model) In all cases the extremely weak coupling at lsw effects. The effects of including the stabilizing finiteand
prevents ballooning mode structures penetratingqgi@,.  favorable average curvature at I@have been shown to be
Again it is possible to locate bands of stability due to mod-important for the overall stability of an ITB configuration.
eraten when a4 lies beyonda,. Unlike the case of con- Low order rational values of,;, have been shown to have
stant shear, the existence of this effect indicates that digparticularly favorable stability properties. Furthermore, the
charges with low order rational values gf,, will have  combination of favorable average curvature and the boot-
particularly favorable stability properties. It is interesting strap current is shown to allow unlimited valuesaf,y for
that, experimentally, ITB formation appears to be facilitatedfinite values of magnetic shear. The effects of plasma flow
in these circumstances. shear have also been briefly addressed.

The simples—« model clearly does not allow globally
stable ITB equilibrium profiles at high. However inclusion
of the formally small, in inverse aspect raipterms associ-
ated with favorable average curvature, E2l), has a dra- This work was funded jointly by the United Kingdom
matic effect on the lows part of the stability boundary, as Engineering and Physical Sciences Research Council and by
shown in Fig. 8b). In fact it allows a stable route from high EURATOM.
amax @nd lows, characteristic of the ITB pedestal profile, to
low « and moderates as appropriate to magnetic surfaces
away from the ITB itself. The solution of the recurrence
relation then allows us to construct an operating diagram The eigenvaluey? introduced in Eq.(3) is a fictitious
(Fig. 13, parametrized in terms Qf yay, € andr?/(ul?) growth rate, it really only measures instability. A correct
(for given n and q), for ITB discharges that are globally form of the inertia operator that includes contributions from
stable to higha ideal MHD modes. This diagram shows that toroidal and poloidal displacements is
ITBs with high a,,, can be stable ifZ/(,uLi) is sufficiently
high, i.e., the barrier is narrow. Equatio(&6) and(37) pro- e
vide analytic scalings for the limiting values af;,,, with ¢,
namely €2 for small ¢, in the two limits of small and large If this is followed through to the variational expression in
Ly /r. ballooning space, Eq18), we modify the inertial term:

One can, of course, reach similar conclusions based on .,
the lowest ordes—a stability diagram. However a key point r—=7rG (A2)
is that at lows no consistent higher order theory exists within However with the trial function/ from Eq.(16) the integral
the ballooning representation: one is certainly not describing@ver » no longer converges for the inertial term. With this
radially extended ballooning modes at I@wThe recurrence correct inertia the trial function should reflect the appropriate
relation technique provides a sound approach, which preasymptotic behavior at large:
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(A1)

ir o )
1+(——+aSIn6
ng dx

Downloaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



1534 Phys. Plasmas, Vol. 11, No. 4, April 2004 J. W. Connor and R. J. Hastie

Veexp(— | 7). (A3) - F

. ar\?
H(ask)=| dn [1+(t—asmn)2](5])

We therefore replace the trial functidfy(u) =1, by the ana-

Iytic form — a¢?[cosy+sinp(t— a sin 17)]], (B2)
Vo(u) =secliysu). (A4) with t=s(#7—Kk), and we employ the trial function
Provided ys<1, the integrals over the other terms in Eq.  {={ot {1+ {2+ s, (B3)

(18) are essentially unchanged. Thus the harmonic terms Cahere

still be evaluated by contour integration, but the new poles

arising from the form(A4) occur atu=(2n+21)mi/(ys). {o=1N1+t?,
These are more remote than those retained=at-i when

ys<1, which is assumed since we are interested in near (1= ago

[cosn+tsiny],

marginal stability. The other, nonharmonic, terms merely ac- (1+1t2)
quire corrections 0O(ys). The inertial term now converges ) 5 (B4)
to give a contributionys in Eq. (19), where y now does _3 a%do [0S 20+t sin 2 ]_E a?¢, cos2
represent the linear growth rate. 52_4 (1+12)2 g nT2 (1+1t?) 7
a® [ 7 .
(3= 3| 75LC0s 3+ tsin37]
APPENDIX B: A MORE EXACT VARIATIONAL s-« (1+1t%) 12
DISPERSION RELATION 3
The dispersion relation of Sec. Il was derived using the ~ plcosnttsiny]
ballooning transformation and a variational expression of the
3
form, +a—£0 Ecos +Etsin —1—10053;7
(1+12)2 8 KA 724
4
H(esK)= 2 a®Hy(s) Lo ]+ 2aslo | o vsing)
= ——tsin ———{cos siny}.
4 7T g 7

8
— > 1(e,s)exp(—nl|s|)cognk), (B1)  This choice of trial function makes use of the systematic
n=1 expansion of thes—a« equation for low magnetic shear, with
) ) ~ a?/s=0(1). Inserting this expression fdtinto Eq.(B2) and
wh?re the integrals n Eq18) were evaluated by expanding eyaluating all the integral§”..d» analytically, generates a
G “(a,s) up to O(a”) in order to generate an expression finjte series of terms i containing harmonic terms pro-
which predicts first and second stability boundaries at |0Wportional to cosgk) for n=0, up ton=8, so that it is clear
shear. Because marginal stability at low shear requires thgat the form(B1) must result. Then=0 terms, i.e., those
orderinga*/s~0(1) the termsH,, Hy, andH, are all re-  jndependent ok, are conveniently gathered using an order-
quired in Eq.(B1). For s<1, the dominant appearance of ing in which «%s=0(1). This yields the result,
cospkK) in H(s,a,k) is clearly determined by,(«,s), and

so we retained only these termid{, H,, H,, andl,) in the ~_ 1 2 3, 18 , 6
o . - . H=_-s"——as+ —-a"+0(a°)
variational treatment, and for use in deriving the recursion 2 4 128
equation. In particular the neglect of all higher order cou- w
pling terms (,,, for n=2) generates a tridiagonal matrix in _ 2 | e "Isl cosnk (B5)
the recursion problem, permitting analytic solution in some a1 "

cases(Sec. IV) and rapid numerical solution in general.
However, an exact evaluation of the coupling coefficient
I1 («,s) leads to a rather cumbersome expression so, follow
ing Pogutse and Yurchenkd,we approximated, by its
lowest power ina, and neglected contributions of order
s‘(£=1-3) relative to 1 within this term. Thus we obtained
l1(a,s)=5al4.

In this appendix we demonstrate that, at the values of
of interest, this is a satisfactory approximation fgr. In
order to avoid the need to sum the infinite serieg iarising
from the expansion o6~1, we revert to a different varia-
tional object, derived directly from the—a equation(7) 3 nt5 | ayn
without |r_1troducmg the transformation of Ref. 11 Il(a,s)=—a2 2 (_ s, (B6)
—VI\G; i.e., we use A=0 m=0 | §?

For comparison, using the choice of trial function from Ref.
11 in H yields an expression that, apart from the chgou-
pling terms, only differs in thex* contribution (having the
coefficient 19/128 However Eq(B5) predicts the low mag-
netic shear stability boundaries with slightly greater accu-
racy.

As noted above, an exact evaluation of all terms in Eq.
(B2) contributing tol ; («,s) is lengthy and leads to a some-
what unwieldy expression. However, its exact form has been
calculated and takes the form:
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FIG. 16. Comparison of stability boundaries usim'g:lzl(a,s,k=0) with
the exactl,(«,s) (dashed curyeand (ii) H(a,s,k=0) with 1,=1.25«

(solid curve, with (iii) the numerical solution of the—a equation(7)
(dots.

where thec,,, are rational numbers with
Com={—4:5;10;5;0;0+4,

Cim=1{104;—1334;— 4618;— 6408;— 3945;+ 2040;

— 420+ 1536,
(B7)
Com={— 12077134 197,756 981;1 429 740;

4 958175;10891 665;6 965 550;280 350
+4 423680,

C3m={—1134;-103 946;- 833 126~ 3 054 465;
—5401935:-4 701 810:-10599 930;
—28206 045;-3 241 35(0+53 084 160,
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FIG. 17. Comparison of the approximatidn=1.25 with the exact
I(a,s), Eq. (B6), evaluated along the first stability boundasy= a4(s),
showing reasonable agreement over the range of relevaatues.

sion calculations, is fairly accurate throughout the rangse of
where harmonic coupling is significant. At very small
wherel ;# 1.25«, this coupling is negligible.

APPENDIX C: RECURRENCE RELATION SOLUTION
WITH A LINEAR PROFILE

In this appendix we derive the solution of the recurrence
relation with a linear profile of the growth raty%, namely
Eq. (33) reproduced below

(%= %6~ K1M)Cn=N(Cm11+ Crn-1) =0. (CD
This can be recognized as the recursion relation that follows
from the Fourier series solution to the differential equation

du

; 222 _
where we explicitly exhibit the rationality. IKldT L= 75) = 2\ cosr]u=0. (€2
An extremely accurate dispersion relation, predicting-l-hiS has the solution
stability boundaries which agree closely with those obtained
by numerical solution of the ful—« equation, is obtained i e
by using this evaluation df;(«,s) together with all terms in u(T)zeXF<K_f d%?— y3—2\ cosr] (C3
1

the k-independent part oH, up to and including 04®)

[within ans~0(«?) ordering scheniei.e., which must be periodic on72, providing the eigenvalue con-

dition
A B 1 ) 3 18 )
H(a,S,k)—ES 1—Za+ 128 3§ G5 2= 2mprs o
+s%a?| — E+ 2—50— Eoz for any integerp, i.e
4" 64" 64 1€
+ 2s3 — 63360+ 91278, — 446222 2= 2+ piy (C5)

+91133]/73728- 1 ,(,s)exp( — 1/|s|) cosk, corresponding to Eq(34). The lowest order §=0) eigen-
B8) function follows from the Bessel function expansionf Eq.
C3):
with o= a?/s. The marginal stability boundary predicted by €3
Eq. (B8) is shown in Fig. 16(dashed curve along with
exact results from solution of the—« equation(7) (dots
and the approximation fad, Eq. (19), used in the textsolid
curve. *
The result of evaluatingl; («,s)/1.25« along the stabil- = E
ity boundary in Fig. 16 is shown in Fig. 17. This demon- me
strates that the approximation=1.25x, used in the recur-

pioe-ifz s
u(r)=expipr—i|2—|sint

K1

(C6)

K1

2\
exp— imr)Jm_p< )

so that
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