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The linear stability of a class of force-free equilibria in cylindrical geometry is investigated. The
class consists of cylindrically symmetric force-free equilibria for which the ratio � between the
parallel current density and the magnetic field is a step function of the radius. It is suggested that
plasmas in reversed field pinches could be roughly represented by such equilibria as a consequence
of a small departure from an initial force-free state with constant �, the latter being reached after a
relaxation process according to the classical theory proposed by Taylor �Phys. Rev. Lett. 33, 1139
�1974��. A fully analytical derivation of the tearing stability parameter �� for such class of equilibria
is given. It is then shown with one explicit example how the presence of a downward step of
relatively small height can destabilize the innermost resonant mode, which would otherwise be
stable if � were constant. A possible implication of this mechanism for the formation of cyclic
quasisingle helicity states observed in reversed field pinches is proposed. Considerations on the
ideal stability of the class of equilibria under investigation are also given. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2769324�

I. INTRODUCTION

Plasmas confined in reverse field pinch �RFP� experi-
ments have been studied now for nearly five decades.1 Ear-
liest observations2 recorded a transition from a highly turbu-
lent state to a less turbulent one, originally described as the
quiescent state, accompanied by a spontaneous and surpris-
ing reversal of the toroidal magnetic field at the plasma edge.
A theoretical interpretation for this phenomenon of sponta-
neous field reversal was provided by Taylor in a series of
papers3 describing the process in terms of a relaxation phe-
nomenon under certain global constraints, namely, conserva-
tion of toroidal flux � and of helicity K=�A ·Bd3x, where
B=��A is the magnetic field and A is the vector potential.
According to this theory, the mean plasma current density in
the relaxed state is parallel to the mean magnetic field, J
=�B, with �=constant. The evolution towards a relaxed
state is thought to be caused by the nonlinear evolution of
reconnecting magnetohydrodynamic �MHD� modes, involv-
ing several poloidal, m, and toroidal, n, mode numbers.
Therefore, according to Taylor’s theory, the relaxed state
might be viewed as the superposition of a mean, force-free
field, where J is parallel to B, superimposed on a broad
spectrum of low amplitude magnetic turbulence. In particular

if the value of the global helicity K̂ �see below in Sec. II� is

less than a critical value, then the mean field is cylindrically
symmetric, otherwise helically symmetric states are the pre-
ferred states for they possess lower magnetic energy. This
situation is often proposed as the natural description of stan-
dard RFP operation. The plasma state in this standard condi-
tion is usually termed multiple-helicity, or MH-state, where
“multiple helicity” refers to the presence of MHD fluctua-
tions involving several helicities, i.e., several values of m /n.

Taylor’s relaxed state should not be considered as a
steady state equilibrium in a strict sense, but as a quasiequi-
librium on time scales that are short on the resistive evolu-
tion time. Indeed, as a consequence of plasma heating and
resistive diffusion, the mean current density tends to evolve
away from the relaxed state. This resistive evolution may
still maintain the mean J nearly parallel to the mean B, at
least initially, but with a nonconstant �-profile, e.g., �
=��r�. We also point out that the relaxed state with J�B
=0 and �=constant is necessarily an idealized state, as it
presumes force balance with a flat pressure profile and does
not take into account realistic boundary conditions at the
conducting plasma wall, where the current density should
vanish.

Recognizing that resistive evolution indeed tends to pro-
duce nonconstant � profiles, as well as nonconstant pressure
profiles, one may notice that these profiles could become
unstable1 to tearing modes4 that are resonant on magnetic
surfaces where the magnetic winding index q�r�=m /n. Fur-a�Electronic mail: emanuele.tassi@polito.it
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thermore, in RFP devices the average field-line curvature is
unfavorable, so that pressure driven g-modes of tearing par-
ity are easily excited5 and will generate small magnetic is-
lands, even in the presence of large negative values of the
tearing stability index,6 ��. If these unstable modes involved
several values of m /n, they could represent the very cause of
plasma relaxation to Taylor’s state. The ideal and resistive
stability of force-free equilibria with a nonconstant �-profile
was also considered in Refs. 7–9.

However, an apparent departure from Taylor’s theory re-
lates to recent experimental observations of plasma states
with a near-helical symmetry, i.e., states where the Fourier
decomposition of the magnetic field is dominated by compo-
nents with a well defined value of m /n, in addition to the
dominant m=0, n=0 component of MH-states. These so-
called quasisingle helicity �QSH� states have been discov-
ered on various RFP experiments.10–15 The QSH states are
very interesting, in that it has been conjectured14 that they
could lead to improved confinement conditions as compared
with the MH-states. Indeed, an improvement in particle con-
finement has been reported in Ref. 16.

Typically, the value m /n of the dominant helicity ob-
served experimentally corresponds to m=1 and n such that
the corresponding perturbation is resonant closest to the
magnetic axis, i.e., n=integer�1+q0

−1�. We shall refer to this
as the central resonance. The QSH states at first sight appear
to be inconsistent with Taylor’s theory. We point out that
Taylor’s theory predicts the existence of relaxed states with
helical symmetry. These states require a value of �̂=�a,
where a is the cylinder radius, corresponding to the critical
value, �̂crit=3.11 �for simplicity hats are dropped in the re-
mainder of the paper and so � indicates a dimensionless
quantity�. However, Taylor’s helical states possess a chirality
�i.e., a sign of m /n� that is opposite to the one observed
experimentally, as they are associated with a mode that is
resonant near the plasma edge, where q is negative.

An important research line14,17–19 assumes that the QSH
states are equilibria in a strict sense, i.e., are solutions of the
equilibrium helical Grad-Shafranov equation subject to the
Ohmic constraint. This explanation of the QSH states would
lead to a new picture of RFPs, far from Taylor’s original
idea. While numerical investigations seem to support this
new picture, a fully satisfactory analytic understanding of the
QSH states as force free helical equilibria consistent with
Ohm’s law is still elusive. We point out that in experiments
the observed helical structures are intermittent in time and
limited to relatively small volumes.20 The picture emerging
from recent RFX �Reversed Field eXperiment� experiments
�see, e.g., Fig. 11 in Ref. 20� is that the plasma settles in
QSH states for relatively short periods of time, as compared
with the resistive evolution time scale. During one such pe-
riod, a dominant m=1 tearing mode, with an n-value corre-
sponding to the central resonance �e.g., n=7 in Ref. 20�,
grows steadily to relatively large amplitude, at which point a
rapid relaxation event appears to terminate this phase, before
the cycle repeats. The dominant tearing mode appears, there-
fore, to play a similar role to that of the m /n=1/1 precursor
oscillation in the tokamak sawtooth phenomenon.21 How-
ever, unlike sawtooth relaxation events in tokamaks, the

single helicity �1,7� precursor is accompanied throughout by
a lower level of many other m=1 modes. Those with n
=8,9 ,10. . . correspond to tearing modes with resonant sur-
face locations between that of the n=7 and the reversal ra-
dius where Bz=0. One possible explanation of the difference
between tokamak and RFP behavior lies in the differing role
of pressure driven modes in the two devices. As we pointed
out earlier in this discussion, the average magnetic curvature
in a RFP is unfavorable, while in a tokamak it is such as to
inhibit pressure driven modes in the plasma region where q
is above unity. The recent observation of cyclic QSH behav-
ior in RFX has been facilitated by the inclusion of feedback
coils, which have been very successful in prolonging the
discharge duration to over six wall times by essentially
eliminating the damaging plasma-wall interactions generated
by resistive wall modes.20

In this paper, we seek to explain the QSH state as a
small, cyclic departure from a Taylor state, rather than as a
radically different equilibrium scenario. The reference Taylor
state we consider is characterized by a value of �=�T

=constant in the range 2.4��T��crit. Here, �T�2.4 is re-
quired in order for the reference state to exhibit reversal,
while �crit=3.11 is Taylor’s critical value for the onset of
minimum energy helical states. We postulate two small de-
partures from this reference state. The first concerns the pres-
ence of a feeble pressure gradient, resulting from central
joule heating of the discharge. This, in principle, accounts for
the presence of a wide spectrum of g-modes, saturated at
small amplitude, and dominated by the modes with m=1,
since these harmonics will tend to have the least stabilizing
values of the tearing index ��. For the second departure from
a Taylor state we model peaking of the plasma current in the
core with a step in the value of �, so that

��r� = �0, 0 � r � rstep,

= �1, rstep � r � a , �1�

with a the plasma minor radius, ��= ��0−�1��0, �1��T

��0 and rstep chosen to be in the plasma core. We assume
the presence of a perfectly conducting wall at r=a, i.e., no
vacuum is included between r=a and the wall. We param-
eterize this family of equilibria in terms of the quantity ��,
which measures the degree of current peaking, and specify
the pair ��0 ,�1� in terms of the initial value in the Taylor
state, �T, by constraining the equilibria to have evolved from
the reference Taylor state while conserving toroidal flux and
the total plasma current, Ip. We then calculate the stability
indices, i.e., values of ��, for all the relevant tearing modes,
as a function of the inhomogeneity parameter ��. Qualita-
tively speaking, increasing values of �� should correspond
to increasing time, so that the resulting figures can be loosely
interpreted in terms of time evolution.

What emerges is a simple picture in which one tearing
mode �in fact, the one whose mode rational surface is located
at smaller radius than the step in �� is driven unstable as the
magnitude of the step increases, while the stability indices of
all other tearing modes become progressively more negative
�stabilizing�. If we assume an expression for mode saturation
of the form
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rs�� = �W −
	

W
, �2�

where W=w /rs with w the island width, rs is the resonance
radius of the mode under consideration, � is a numerical
constant, and 	 is a small, numerical coefficient, proportional
to the local pressure gradient, then the amplitudes of all the
weak, pressure driven, g-modes should decrease as the inho-
mogeneity, ��, increases, while one �core resonant� mode is
driven to large amplitude as its stability index, ��, first be-
comes positive and then large. We speculate that, as a critical
�� is reached, the plasma relaxes back to a Taylor-type equi-
librium with constant � and a cyclic behavior is established.

It is not immediately clear that Eq. �2� can be justified
for a RFP in which dynamo action is present, but this form
does arise naturally22 in tokamaks where the term propor-
tional to 	 has the opposite sign, if the bootstrap current is
neglected, and has the same sign as above for the neoclassi-
cal tearing modes �NTMs�.23,24

This paper is organized as follows: In Sec. II we describe
these equilibria in more detail and explore some natural con-
straints on �� arising from a monotonicity condition for
q�r�. In Sec. III we describe the linear stability calculations
and present the results. A summary and conclusions are pre-
sented in Sec. IV. Appendices A and B are devoted to details
of the �� calculation and to ideal MHD stability consider-
ations, respectively.

II. FORCE-FREE EQUILIBRIA WITH STEPPED-�
PROFILE

In his classical paper3 Taylor conjectured that the relax-
ation process occurring in toroidal pinches with perfectly
conducting boundaries leads to a force-free state in which the
magnetic field B satisfies the condition

� � B = �B , �3�

where � is a constant. Such result derives from assuming
that the relaxation process tends to bring the system into a
state of minimum magnetic energy under the constraints of
the conservation of global helicity and toroidal magnetic
flux. Let us consider the cylindrical approximation of a torus
and consequently the relaxation process occurring in a
plasma contained in a cylindrical domain of radius a and
length 2
R, equipped with a system of coordinates �r ,� ,z�,
where r, �, and z indicate the distance from the axis of the
cylinder, the poloidal angle and the distance parallel to the
cylindrical axis, respectively. We also consider distances nor-
malized with respect to a, i.e., r̂=r /a, �̂=� /a �hats will be
dropped for simplicity�. In the axisymmetric case, Eq. �3�
admits the well-known Bessel function model �BFM�
solutions

Br = 0, B� = B0J1��r�, Bz = B0J0��r� , �4�

where B0 is a constant denoting the amplitude of the field. If
��2.404, Bz becomes negative inside the chamber account-
ing for the experimentally observed reversal of the toroidal
field. On the other hand, according to Taylor’s theory, the
value of � for minimum energy states cannot be greater than
3.11. In particular, if one defines a normalized global helicity

K̂= �K /�2��a /R�, where K is the dimensional global helicity
and � is the toroidal flux, then it can be shown that for 2.4

� K̂�8.21 the minimum energy states are reversed, cylindri-

cally symmetric states with 2.4���3.11, whereas if K̂
�8.21 the minimum energy states are a linear combination
of a cylindrically symmetric part and a helically symmetric
part, with the value of � fixed at 3.11. The value �=3.11
corresponds also to the threshold at which the BFM �4� be-
comes tearing unstable.4 The magnetic surfaces where the
tearing instability can develop are those identified by the
resonance condition q�r�= �rBz /RB��=m /n, where m and n
are integers corresponding to the poloidal and toroidal mode
numbers, respectively. For the BFM equilibrium the reso-
nance condition reads

J0��r�
J1��r�

r = −
m

k
, �5�

where k=−n /R is the toroidal wave number of the perturba-
tion. The analysis of Gibson and Whiteman4 shows that,
when increasing the value of � up to 3.11, the first helical
mode to become unstable resonates in the reversal region,
near the edge of the plasma �r�0.974�. This corresponds to
a �m=1, k=1.25� mode. The linear stability properties of a
force-free equilibrium will, however, be different if the pro-
file of the function � is modified. Indeed, experiments do
reveal that the � profile in RFPs is not exactly flat. We will
show that, if we choose � as a decreasing function of r, e.g.,
a downward step-function, the stability properties of the re-
sulting force-free equilibrium will be such that the most un-
stable mode can have mode numbers corresponding to those
that dominate the magnetic spectrum during QSH states. In
other words, the introduction of a jump in the profile of �
will make it possible to destabilize the mode of interest while
keeping all the other modes stable. Although the choice of a
step-function for � corresponds to a highly idealized case, it
possesses the advantage that a fully analytical treatment of
the problem is possible and lays the basis for later investiga-
tions of more refined and realistic models that will require,
however, a numerical approach. Let us consider, then, a cy-
lindrically symmetric equilibrium field B satisfying Eq. �3�
with �=��r� defined in the following way:

��r� = ��0 if 0 � r � rstep,

�1 if rstep � r � 1,
� �6�

where �0, �1, and rstep are constant and �0��1 in order to
have a decreasing � profile, as suggested by experiments.
Criteria to constrain the values of �0, �1, and rstep will be
given below.

Solving Eq. �3� separately in the two regions 0�r
�rstep and rstep�r�1 yields

Br = 0,

B� =�āJ1��0r� + b̄Y1��0r� if 0 � r � rstep,

c̄J1��1r� + d̄Y1��1r� if rstep � r � 1,
� �7�
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Bz =�āJ0��0r� + b̄Y0��0r� if 0 � r � rstep,

c̄J0��1r� + d̄Y0��1r� if rstep � r � 1,
�

where ā, b̄, c̄, and d̄ are arbitrary constants to be determined.

The requirement of boundedness of B at r=0 implies b̄=0.
The constant ā can be set equal to some chosen value B0

corresponding to the amplitude of the field in the region to

the left of the step. The constants c̄ and d̄ are determined by
imposing the continuity of the equilibrium field at rstep. This

means that c̄ and d̄ must be such that

B0J1��0rstep� = c̄J1��1rstep� + d̄Y1��1rstep� ,

B0J0��0rstep� = c̄J0��1rstep� + d̄Y0��1rstep� . �8�

Using the Wronskian relation

Y0�x�J1�x� − Y1�x�J0�x� =
2


x
, �9�

one can express the solutions of Eq. �8� in the following
way:

c̄ =



2
B0�1rstep�J1��0rstep�Y0��1rstep�

− Y1��1rstep�J0��0rstep�� , �10�

d̄ =



2
B0�1rstep�J1��1rstep�J0��0rstep�

− J1��0rstep�J0��1rstep�� . �11�

We can now construct equilibria depending only on the pa-
rameters B0, �0, �1, and rstep, subject to the following con-
straints. First of all, we consider a reference Taylor state,
corresponding to the BFM solution with �=�T=constant
and 2.4��T�3.11. This Taylor state will have prescribed
values of helicity, toroidal flux, �, and consequently of total
current along the z-direction, Iz. We will constrain the values
of B0, �0, �1 so that the resulting stepped-� equilibria will
have the same values of � and Iz of the reference Taylor
state. More exactly the following relations will have to be
satisfied:

� = 2

BT

�T
J1��T�

= 2
	− B0rstepJ1��0rstep�
��

��0 − ����0

+
1

�0 − ��
�c̄J1��0 − ��� + d̄Y1��0 − ����
 , �12�

Iz = 2
BTJ1��T� = 2
�c̄J1��0 − ��� + d̄Y1��0 − ���� .

�13�

Equations �12� and �13� express the conservation of toroidal
flux and total current, respectively. This will leave us with a
family of solutions parametrized by rstep and ��= ��0−�1�
�0, with �1��T��0. Finally, we impose that, for each

equilibrium belonging to such a family the corresponding
winding number q�r�, be a monotonically decreasing func-
tion. This will prevent the appearance of double resonances.
It can be seen that a good indication of the monotonicity of
q�r� is the local condition

�dq

dr
�

r=rstep
+

� 0, �14�

which for the considered equilibria reads

�1 � 2
J0��0rstep�J1��0rstep�

rstep�J0
2��0rstep� + J1

2��0rstep��
. �15�

This sets therefore a lower bound for �1, for given �0 and
rstep. As mentioned in Sec. I, the departure from a Taylor
cylindrical state consists of an evolution through a sequence
of stepped-� equilibria of the form described above. We as-
sume, for the sake of simplicity, that rstep does not vary dur-
ing this evolution. Starting from a reversed tearing stable
Taylor state, corresponding to ��=0 and �T�3.11, the sys-
tem tends to depart from it on resistive time scales due to
plasma heating and resistive diffusion. We model this
through the formation of a step in � with positive ��. Ini-
tially, for very small values of ��, the system is still stable,
but as �� increases with time, the instability threshold for
tearing modes is crossed and a magnetic island forms in the
plasma core, between rstep and the magnetic axis, as will be
shown in the next section. From a linear stability point of
view, the system proceeds toward states with a steeper and
steeper step, corresponding to a larger and larger growth rate
�larger values of ��� for the tearing mode with dominant
helicity.

In Fig. 1, one can see three different q�r� profiles corre-
sponding to three different equilibria reached during one
evolution from an initial Taylor state.

FIG. 1. Safety profile for three stepped-� equilibria corresponding to ��
=0 �dashed line�, ��=0.1 �solid line�, and ��=0.3 �thick solid line�. The
three profiles belong to the same family of equilibria originated by an initial
Taylor state characterized by BT /B0=0.93 and �T=2.93.
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Figure 2 shows the comparison between the current den-
sity profiles of a stepped-� equilibrium reached during the
evolution and the profiles for the corresponding initial Taylor
state. It is also interesting to consider in particular the evo-
lution of the values of q at the center and at the edge of the
cylinder as �� increases. In particular, expanding q about
r=0 yields that in the vicinity of r=0 q is equal to 2/R�0 to
leading order.

Therefore, the value of q near the center decreases as ��
increases, as shown in Fig. 3. The behavior of q at the edge
is shown in Fig. 3�b�. The plot shows that as the state evolves
through the series of stepped-� equilibria the toroidal field
gets less and less reversed. This behavior naturally agrees
with the idea that the system tends to depart from the re-
versed Taylor state, which is incompatible with Ohm’s
law.14,18,25 The tendency toward a less reversed state might

reflect the attempt of the system to access a stationary non-
reversed state, which would resolve the incompatibility with
Ohm’s law on resistive time scales. Moreover, it is important
to point out that the behaviors of q near the center and near
the edge during the departure phase qualitatively correspond
to the tendencies of the values q�0� and q�a� observed ex-
perimentally during the ramp phase of a QSH.20

Among the equilibria thus generated, we can find one
which is linearly unstable with respect to perturbations with
a given helicity, but stable with respect to all the other
modes. This equilibrium can be reached as �� increases in
time, triggering the formation of a QSH state. Given the
above conditions, the construction of a specific example of
such an equilibrium proceeds in the following way. First one
chooses the value of the effective aspect ratio of interest,
R /a. Then one chooses the value of �0. This choice is also

FIG. 2. Comparison between current density profiles of a stepped-� equi-
librium �solid line� with ��=0.3 and of the corresponding initial Taylor
state �dashed line� characterized by �T=2.93 and BT /B0=0.93. �a� refers to
the poloidal component of j, whereas �b� refers to the toroidal component.

FIG. 3. �a�, �b� Values of q�0� and q�1�, respectively, as functions of ��
during an evolution from an initial Taylor state with BT /B0=0.93 and �T

=2.93.
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subject to restrictions. In fact, if we aim at destabilizing a
particular mode, that we can denote as �m=1, n̄� �consider-
ations on m�1 modes, which typically possess a lower
growth rate, will be made in the next section�, such mode
must of course resonate inside the plasma. Moreover, as we
already pointed out, the dominant mode in QSH states reso-
nate in the nonreversed region. Finally, it is also desirable to
prevent the modes with n� n̄ from resonating inside the
plasma, since such modes are not relevant during QSH
states. Therefore, the parameter �0 must be chosen in such a
way that the resonance equation for the mode �m=1, n̄�,

RJ1��0r� − n̄rJ0��0r� = 0 �16�

has one solution for 0�r�1 and that the equation

RJ1��0r� − �n̄ − 1�rJ0��0r� = 0 �17�

has no solution for 0�r�1. The latter condition is of course
sufficient to make sure that all the modes with n� n̄ do not
resonate inside the plasma. Notice also that, given that the
value of q near the center decreases as �� increases, as
shown in Fig. 3, it is excluded that the modes with m=1 and
n� n̄ could become resonant at later stages of the departure
phase. In Eqs. �16� and �17� we used the expression for the
magnetic equilibrium valid for 0�r�rstep. This is because,
as it will be shown, the desired effect on the stability prop-
erties of the equilibrium occurs if the step is located to the
right of the resonant radius of the mode �1, n̄� and to the left
of the resonance of the mode �1, n̄+1�.

An example of how the minimum and maximum values
for �0 are determined is shown in Fig. 4.

Once �0 is fixed, one can then choose a value for rstep

such that

rsn̄ � rstep � rs�n̄+1�, �18�

where rsn̄ and rs�n̄+1� indicate the resonance radii of the
modes �1, n̄� and �1, n̄+1�, respectively.

We are also reminded that �1, �0, and rstep have to sat-
isfy the restrictions above, i.e.,

2
J0��0rstep�J1��0rstep�

rstep�J0
2��0rstep� + J1

2��0rstep��
� �1 � �0. �19�

On the other hand, the value of B0 is determined from
the flux conservation condition �12�.

Once �0, �1, rstep, and B0 are fixed, the construction of
the equilibrium is completed. One only has to check that the
z component of the equilibrium field so obtained reverses
near the edge.

An example of the q�r� profile for a stepped-� force-free
field is shown in Fig. 5. This example refers in particular to
the values R=4.34 and n̄=7, which are characteristic of QSH
states in the RFX experiment.26

III. LINEAR STABILITY

In this section, we are going to show that the stepped-�
equilibria defined in Sec. II can be linearly unstable to a
single �m=1,n� mode, with n corresponding to central reso-
nance. Thus, it would be natural to interpret the saturated
magnetic island arising from this mode as corresponding to
the dominant magnetic helical structure observed in QSH
experiments. The core of the analysis consists of deriving
and studying the expression for the tearing stability param-
eter, ��, whose sign determines the stability of the equilib-
rium with respect to a given perturbation.6 For a given reso-
nant radius rs, where q�rs�=m /n, �� is defined as

FIG. 4. The figure shows the relations, as given by the formula �16�, be-
tween the resonance radii rs and the values of �0 for the modes �1,6�, �1,7�,
and �1,8�, assuming n̄=7. The aspect ratio is equal to 4.34. The intersections
of the curves for n=6 and n=7 with rs=0 determine the minimum and
maximum admissible values of �0, respectively, in order to have a reso-
nance with the mode �1,7� and to exclude the resonance with modes with
m=1 and n�7.

FIG. 5. The plot shows an example of safety profile q for a stepped-�
equilibrium, near marginal stability, with �0=3, �1=2.9, rstep=0.296, and
R=4.34. This equilibrium resonates to the right of the step with the mode
�1,8�, inside the step with the mode �1,7� and does not resonate with the
mode �1,6�.
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�� =
1


̃0
	�d
̃

dr
�

rs
+

− �d
̃

dr
�

rs
−

 �20�

where 
̃�r� represents the amplitude of the linear

perturbation 
̃�r�=mB̃z�r�−krB̃��r�, of the helical flux func-
tion in the outer region and 
̃0 is the value of 
̃ at rs

�throughout the paper we make use of the symbol � to de-
note a perturbation�.

Our starting point for determining the function 
̃ is the
set of magnetohydrodynamics equations,

�	 �v

�t
+ v · �v
 = j � B − �p , �21�

E + v � B = �j , �22�

supplemented by the incompressibility condition, � ·v=0. In
the equation of motion �21�, � represents the mass density, v
is the plasma velocity, and p is the plasma pressure. In
Ohm’s law �22�, we indicate with E, the electric field, and
with � the resistivity, which is taken to be constant. We
assume that, at equilibrium, the magnetic field is a cylindri-
cally symmetric force-free field of the form �7�, while the
plasma pressure and velocity are zero. This actually corre-
sponds to a quasiequilibrium, in the sense that the resulting
equilibrium electric field, which obeys Ohm’s law, is not
curl-free, but it evolves on the slow, resistive diffusion time
scale.

We consider a helical perturbation of such equilibrium.
Following the standard linear theory of tearing modes,6 we
separate the domain into two regions. We consider an inner
region, centered around a surface that is resonant with per-
turbations of a given helicity, and an outer region, comple-
mentary to the inner region, where the effects of resistivity
are negligible and an ideal Ohm’s law is appropriate. The
determination of the parameter �� is based solely on the
knowledge of the solutions for 
̃ in the outer region. It is
convenient to introduce the following representation for the
magnetic and velocity fields. Let us consider two integers m
and n and define the helical coordinate u=m�+kz, where m
and k=−n /R represent poloidal and toroidal wave numbers,
respectively. A divergence-free field B spatially depending
only on r and u �i.e., helically symmetric�, can be expressed
as

B�r,u� = �
�r,u� � h + g�r,u�h , �23�

where 
 is the helical flux and g is called the helical field.18

The vector h is defined as h= f�r��r��u, where f�r�
=r / �m2+k2r2� is a metric term. Similarly, for an incompress-
ible velocity field, we can write

v�r,u� = ���r,u� � h + vh�r,u�h . �24�

As anticipated above, we look for helically symmetric
solutions for the magnetic field and for the velocity field
given by the superposition of a cylindrically symmetric equi-
librium and of a helical, time-dependent perturbation. Thus,
the magnetic field can be expressed as in Eq. �23�, with


�r,u,t� = 
eq�r� + 
̃�r�e�t+iu,

�25�
g�r,u,t� = geq�r� + g̃�r�e�t+iu.

The subscript eq refers to equilibrium quantities, whereas �
is the growth rate of the perturbations 
̃ and g̃. It is easy to
show that, in terms of the flux function, the resonant surfaces
are those satisfying the condition d
eq/dr=0. Similarly, we
assume

��r,u� = �̃�r�e�t+iu, vh�r,u� = vh̃�r�e�t+iu. �26�

We expect that a nonzero equilibrium flow will introduce
only a negligible correction to the calculation of the tearing
stability index, providing that the equilibrium flow velocity
is smaller than the Alfvèn velocity. On the other hand, an
equilibrium flow may modify the perturbed equations within
the resonant layer, hence affecting the stability of tearing
modes. However, only relatively large sheared flows would
produce an important effect. Likewise, compressibility ef-
fects are expected to be negligible for the linear stability
calculations, although they may play a role for the determi-
nation of the nonlinear saturation level.27

Let us consider first the equation of motion �21�. We
assume that pressure perturbations are negligibly small.
Then, for small perturbations, we can insert the ansatz �25�
and �26� into the linearized equation of motion. On the time
scale of the linear growth of the instability, the contributions
to the linearized equation coming from the velocity field are
negligible as compared to the terms coming from the Lorentz
force. The projections of the linearized equation of motion
along h and along �r �or equivalently along �u� then yield

g̃ =
geq�


eq�

̃ �27�

and

d2
̃

dr2 +
1

f

df

dr

d
̃

dr
+ �	 geq�


eq�

2

−
1

rf
+

geq


eq�
	 geq�


eq�

�

− 	
geq�


eq�


̃ = 0,

�28�

respectively. In Eqs. �27� and �28�, the symbol � indicates
derivative with respect to r, whereas 	�r�=−2mk / �m2

+k2r2�. After 
̃ is obtained as the solution of Eq. �28�, g̃
follows straightforwardly from Eq. �27�. The fields �̃ and ṽh

are enslaved variables and can be recovered from the linear-
ized Ohm’s law, Eq. �22�, where �=0 is set to zero.

For our equilibrium field the relation �=geq� /
eq� holds
and Eq. �28� can be written as


̃� +
f�

f

̃� + 	�2 −

1

rf
+

geq


eq�
�� − 	�

̃ = 0. �29�
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The choice of � as a step function implies that the term
�geq/
eq� ��� vanishes everywhere except at r=rstep, where it
becomes singular. However, this singularity is an artifact of
the stepped-� equilibrium and it does not significantly affect
the linear stability results, as long as rs is sufficiently far
from rstep. Notice that if �0=�1 the equation reduces to the
one derived in Ref. 28 for a Taylor equilibrium. The require-
ment of boundedness at r=0 and the assumption of perfectly
conducting wall, in the absence of a vacuum region, imply
that 
̃ must satisfy the boundary conditions


̃�0� = 
̄ , �30�

with 
̄ equal to a �arbitrary� constant value, and


̃�1� = 0. �31�

The presence of a resonant radius rs between r=0 and r=1
implies that the equation must be solved separately in the
two regions, 0�r�rs and rs�r�1. Let us consider the case
in which rs lies between 0 and rstep �the case rstep�rs�1 can
be treated in an analogous way�. Furthermore, let us focus
first on the case m=1, which is the most directly relevant for
QSH states �further details on the derivation of �� for m
�1 can be found in Appendix A�. The solution of Eq. �29�
then reads


̃ = �kz0��1J0�z0� − �1Y0�z0�� + ��0 − k���1J1�z0� − �1Y1�z0�� if 0 � z0 � zs,

kz0��2J0�z0� − �2Y0�z0�� + ��0 − k���2J1�z0� − �2Y1�z0�� if zs � z0 � zstep−,

kz1��3J0�z1� − �3Y0�z1�� + ��1 − k���3J1�z1� − �3Y1�z1�� if zstep+ � z1 � za,
� �32�

where we introduced the variables z0=��0
2−k2r, z1

=��1
2−k2r, zs=��0

2−k2rs, za=��1
2−k2, zstep− =��0

2−k2rstep,

zstep+ =��1
2−k2rstep and where �i, �i, with i=1,2 ,3, represent

arbitrary constants. The condition �30� implies �1=0 and 
̄
=0, whereas from Eq. �31� one obtains

�3 = �3
kzaJ0�za� + ��1 − k�J1�za�
kzaY0�za� + ��1 − k�Y1�za�

. �33�

The constants �2 and �3 can in principle be fixed by requiring
the continuity of 
̃ at rs and at rstep. However, the quantity ��
turns out to not depend on the value of these two constants.
Therefore, for the sake of simplicity, we can set them equal
to unity. The quantity �� is also insensitive to the value of �1

and therefore we can set �1=1. The constant �2, on the other
hand, has to be determined, and this can be done using the
constraint

rstep	 1


̃
� d
̃

dz1
�

z1=zstep+

−
1


̃
� d
̃

dz0
�

z0=zstep−

 = G��0,�1,rstep,k� .

�34�

The condition �34� expresses the jump in the logarithmic
derivative of 
̃ across rstep. The function G, which is a known
quantity, can be derived from Eq. �29�. The derivation can be

found in Appendix A, as well as the expression for �2 result-
ing from Eq. �34�. We find

G��0,�1,rstep,k� = ��1 − �0�rstep
J0��0rstep� − krstepJ1��0rstep�
J1��0rstep� + krstepJ0��0rstep�

.

�35�

After all the arbitrary constants are fixed, the required solu-
tion for 
̃ is determined and one can make use of the defini-
tion �20� to obtain the expression for ��. This turns out to be

rs�� =
zs


̃�zs�
	� d
̃

dz0
�

z0=zs+

−
1


̃
� d
̃

dz0
�

z0=zs−



= −
2



�2

��0
2 − k2��1 + k2rs

2�
G0J�G0J − �2G0Y�

, �36�

where

G0J�z0� = kz0J0�z0� + ��0 − k�J1�z0� ,

�37�
G0Y�z0� = kz0Y0�z0� + ��0 − k�Y1�z0� .

Notice that in the case �0=�1, the marginal stability condi-
tion ��=0 reduces to the condition kzaJ0�za�+ ��0−k�J1�za�
=0 derived in Ref. 4. The derivation of the expression for ��
in the case rstep�rs�1 proceeds in a similar way, as shown
in Appendix A. The final result is

rs���rs;�0,�1,rstep� = �−
2



�2

��0
2 − k2�rs���1 + k2�rs�rs

2�
G0J�G0J − �2G0Y�

if 0 � rs � rstep,

−
2



��3 − �2�

��1
2 − k2�rs���1 + k2�rs�rs

2�
G1J − �3G1Y�G1J − �2G1Y�

if rstep � rs � 1,� �38�
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where

G1J�z1� = kz1J0�z1� + ��1 − k�J1�z1� ,

�39�
G1Y�z1� = kz1Y0�z1� + ��1 − k�Y1�z1� .

Note that k is a function of rs through the resonance
condition q�rs�=−1/kR.

A graph of the function rs���rs� is shown in Fig. 6. It can
be noticed that rs���rs� becomes singular at rs=rstep. A sec-
ond singularity occurs when rs coincides with the reversal
radius of the equilibrium field. Indeed, the resonance condi-
tion k=−�m /rs��B�eq/Bzeq� implies that k must become infi-
nite at the reversal radius. The comparison with the graph of
�� for the case �0=�1 shows that indeed the presence of a
step, although relatively small ���0−�1� /�0=0.033 in this
example�, considerably alters the stability properties of the
equilibrium. As anticipated above, the step has a destabiliz-
ing effect on the modes resonating to the left of rstep, whereas
modes with rstep�rs�1 are stabilized.

This example indicates that the stepped-� profile has
stability properties relevant to the appearance of QSH states.
For instance, for the parameters of the RFX experiment,26

QSH states are often dominated by the �m=1, n̄=7�
helicity.14 When considering the aspect ratio of RFX, corre-
sponding to R /a=4.34, the number of resonant radii is dis-
cretized, given that k can take only the values −n /R with
fixed R and integer n. The plot in Fig. 6 shows that by prop-
erly choosing the values of �0, �1, and rstep, it is possible to
place the mode �1,7� above marginal stability, while keeping
all the other resonant modes stable. The tearing instability of
this equilibrium would then lead to the growth of a pertur-
bation with helicity corresponding to the dominant mode ap-

pearing during QSH in RFX. Finally, notice that since a rela-
tively small jump in � was sufficient to guide the system
toward a direction favorable to the formation of QSH states
with the observed helicity, it is suggested that QSH states
could emerge as a result of small deviations from Taylor
states and not be unrelated to these.

As suggested in Sec. II, we may represent the departure
from an initial Taylor state, due to plasma heating and resis-
tive diffusion, as an evolution through a series of stepped-�
equilibria with increasing values of ��. Then, it is interest-
ing to study the variation of �� for the �m=1, n= n̄� mode, as
�� increases. We find that ��, which is negative for ��=0,
changes sign at a first critical value in ��. Interestingly, a
second critical value of �� is found, at which �� goes to
infinity.

This behavior is depicted in Fig. 7. This singularity in-
dicates the appearance of an ideal instability. Notice also that
shifting rstep away from rsn̄ implies that higher values of ��
are required in order to make the mode �m=1, n= n̄� tearing
unstable. This reflects the fact that the destabilizing effect
due to the presence of the step becomes weaker when the
distance between rstep and rsn̄ is increased.

Figure 8 shows the plots of �� as a function of rs for
modes with higher poloidal mode numbers, m=2,3 ,4. It can
be seen that modes with higher m are more stable with in-
creasing m. Nevertheless there is a very small region near
rstep where, even for m�1 modes, the presence of the step
makes �� positive and actually infinite at r=rstep. However,
for our choice of the aspect ratio, there are no modes with
m=2,3 ,4 resonating inside this small region of instability. It
could be argued that, in general, for a given aspect ratio it is
in principle always possible to find a pair �m ,n� such that the
corresponding mode resonates arbitrarily close to rstep and
therefore in the small region with positive �� so that such

FIG. 6. Plot comparing the stability parameter rs�� as a function of rs for a
Taylor �dashed line� and stepped-� �solid line� equilibrium for modes with
m=1. The presence of the step destabilizes the modes resonating to the left
of the step while keeping the other modes stable. In particular, for the aspect
ratio under consideration, i.e., R=4.34, the mode �1,7� resonates at r=rs7

=0.246 and the corresponding value of rs�� is equal to 0.12, i.e., just above
the marginal stability condition. The values of the parameters are those of
Fig. 5.

FIG. 7. The plot shows the dependence of the stability parameter �� on ��
for rstep=0.296 �solid line� and rstep=0.31 �dashed line�. The mode �m=1,
n̄=7� in both cases resonates at r=0.246. Increasing the distance of the step
from rsn̄ results in a higher value of �� required in order to make the mode
�m=1, n= n̄� unstable. In both cases the value of �� goes to infinity for some
critical value of ��.
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mode would indeed be unstable. However, in general this
would happen for unrealistically high values of m and n.
Moreover, one should bear in mind that the abrupt growth of
�� in the vicinity of rstep for high m-modes is a consequence
of the artifact of considering a discontinuous equilibrium �
profile. If the step were replaced by a very steep but
smoother profile, the field line bending effect for high m
modes would overcome the effect due to the presence of a
strong gradient in the current density and this would stabilize
modes resonating close to the region of rapid variation of the
equilibrium current. Furthermore, finite Larmor radius ef-
fects are expected to stabilize modes with large values of m.

Finally, it is natural to ask what are the implications of
the presence of a step in the � profile with regard to ideal
instabilities. Indeed, we have checked that the equilibrium
considered in the above example is stable with respect to
m=1 ideal modes. The details of this analysis are shown in
Appendix B.

IV. CONCLUSIONS

In this paper, we have presented the linear stability
analysis of a force-free equilibrium close to a Taylor-relaxed
state against tearing modes. The departure from a reference
Taylor-relaxed state, with �=�T=constant, has been intro-
duced through a step in the � profile, where �=J ·B /B2, cf.
Eq. �1�. In our intentions, this stepped-� profile should rep-
resent very schematically the peaking of the current density,
starting from a Taylor-relaxed state, due to plasma heating
and resistive diffusion. Thus, the amplitude of this departure,
as quantified by ��=�0−�1�0 �cf. Eq. �1�� should increase
in time, until a threshold value of �� is reached, ��=��1,
corresponding to the instability of a tearing mode, i.e.,
�����1�=0. The linear stability analysis also reveals the ex-

istence of a second threshold value, ��=��2, at which ��
goes to infinity, signifying ideal instability �cf. Fig. 7�.
Clearly, for the Taylor relaxed state with ��=0 and �=�T,
the tearing stability parameter �� is negative throughout the
plasma column for relevant values of �T�3.11. The step is
localized at a radius, rstep, which is held fixed in our analysis.
The choice of such a representation of the � profile is moti-
vated by reasons of simplicity, as this choice allows one to
carry out a fully analytic investigation of the linear tearing
mode. Preliminary numerical investigations29 where the step
in � is smoothed out using a hyperbolic tangent profile of
width �, indicate that the analytic results for �� are essen-
tially confirmed as long as �� �rstep−rs�.

Concentrating on modes with poloidal mode number m
=1, we have shown that the first tearing mode to become
linearly unstable is the one whose resonant surface, r=rs,
where q�rs�=1/n, lies just to the left of rstep �i.e., rs�rstep�,
while modes that are resonant to the right of rstep are made
more stable, in the sense that �� becomes more negative.
Thus, if rstep is chosen so that there is only one resonant
surface with m=1 to the left of it �the one we called the
central resonance�, then only the single m=1 mode resonat-
ing there is unstable for finite values of ��.

A justification for placing the step just to the right of the
central resonance is as follows. We may expect that transport
in RFP plasmas is determined by electromagnetic fluctua-
tions, with low mode numbers �especially m=1� play an im-
portant role. Resonant surfaces corresponding to low mode
numbers only sparsely populate the central plasma region,
and in particular no resonant surface with m=1 exists to the
left of the central resonance �by definition�. Thus, it is rea-
sonable to expect that the effective thermal and resistive dif-
fusion coefficients become relatively small for r�rs, giving
rise to a transition region, similar to a transport barrier of the
type sometimes observed in tokamak discharges,30 which do
appear fairly close to �but not necessarily at� magnetic sur-
faces with integer q values, most commonly q=2 or q=3. At
the position of the transport barrier, strong gradients for the
plasma temperature and current density profiles may form.
Hence, our stepped-� profile may be considered as a rough
representation of a transport barrier localized somewhat to
the right of rs. Clearly, this is conjectural to a large extent, as
conclusive evidence on the possibility of the formation of an
internal transport barrier in the proximity of a magnetic is-
land is not available at present. Force-free equilibria with
stepwise pressure and �-profiles were also considered in
Hole et al.31 More recently stepped pressure profile equilib-
ria in 3D configurations have been developed by Hudson et
al.32 whereas the ideal MHD of a two interface configuration
has been investigated by Hole et al.33

The nonlinear evolution of the single unstable tearing
mode we have found will be discussed in a future publica-
tion. However, following the analysis of Refs. 34–39, one
may anticipate that the tearing mode will produce a saturated
magnetic island of width w���, or alternatively w���, as
�� is approximately linear in �� for small ��, as shown in
Fig. 7.

FIG. 8. The plot shows the stability parameter rs�� as a function of rs for
modes with m=2 �solid�, m=3 �dashed�, and m=4 �thick�. In all cases �� is
negative over almost the entire domain, thus implying stability. The only
region of potential instability is located just to the left of the step. For the
given aspect ratio, however, none of the modes under consideration reso-
nates in that region. Parameters are as in Fig. 5.
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It is tempting to conclude that this saturated island state
corresponds to the QSH state observed in RFP experiments.
However, it must be stressed that this helical state is not in
equilibrium in a strict sense, but only on time scales that are
short as compared to the local resistive evolution time. In-
deed, the whole analysis presented in this paper is based on
the assumption that two well separated time scales can be
identified: A fast time scale, corresponding to the time scale
for the Taylor-relaxation process, as well as the time scale for
the growth and saturation of the tearing mode, and a slow
time scale, scaling with the local �i.e., based on rstep� resistive
evolution of the plasma. Thus, the saturated magnetic island
will continue to evolve on the slow time scale, likewise ��
will continue to increase in time. This process should con-
tinue until a critical island size, or a critical value of ��
between ��1 and ��2 is reached. The critical island size �or
critical ��� may correspond to the distance between rstep and
rs. For island width exceeding rstep−rs, the step in the �
profile may be removed by magnetic reconnection, thus re-
turning the system to a Taylor-type relaxed state. Subsequent
evolution will recreate a step in the � profile, so that a cyclic
process can be established. The determination of the critical
��, as well as the relaxation of the q profile as a conse-
quence of magnetic reconnection, require nonlinear consid-
erations and will be the focus of a future publication.

What emerges is a simple picture, in which the QSH
state is viewed as a relatively small, cyclic departure from a
Taylor-relaxed state, with the period of this cycle determined
by a fraction of the local resistive evolution time, based on
rstep, more precisely, the time for �� to evolve from zero to
the critical value. This picture is proposed as a possible in-
terpretation of the experimental results presented in Fig. 11
of Ref. 20. Clearly, more work needs to be done in order to
confirm this picture. In particular, realistic temperature and
current density profiles produced by a transport code with
relevant diffusion coefficients must be considered, and the
complete nonlinear evolution of the resulting modes, includ-
ing the modes with m�1, must be investigated with the help
of a fully 3D nonlinear resistive MHD code.
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APPENDIX A: DERIVATION OF THE EXPRESSION
FOR ��

The eigenfunction 
̃ is constrained by the boundary con-
ditions �30�, �31�, and �34�, where in the latter the jump G of
the logarithmic derivative of 
̃ across the step has to be
determined. Such quantity can be derived in the following
way. In Eq. �29�, the singular term �� becomes the dominant
one around rstep, and so locally that equation can be approxi-
mated by


̃� � −
geq


eq�
��
̃ . �A1�

Integrating Eq. �A1� between rstep
− and rstep

+ , considering that
in this infinitesimally small interval the continuous functions

̃, geq and 
eq� are approximately constant when compared to
��, leads to

�d
̃

dr
�

r=rstep
+

− �d
̃

dr
�

r=rstep
−

� −
geq�rstep�

eq� �rstep�


̃�rstep���1 − �0� .

�A2�

From Eqs. �23� and �7� one obtains


eq� �rstep� = − B0�mJ1��0rstep� + krstepJ0��0rstep�� ,

�A3�
geq�rstep� = B0�mJ0��0rstep� − krstepJ1��0rstep�� .

Then, we can write

G = rstep	 1


̃
�d
̃

dr
�

r=rstep+

−
1


̃
�d
̃

dr
�

r=rstep−

 = 	 z1


̃
� d
̃

dz1
�

z1=zstep+

−
z0


̃
� d
̃

dz0
�

z0=zstep−



� rstep��1 − �0�
mJ0��0rstep� − krstepJ1��0rstep�
mJ1��0rstep� + krstepJ1��0rstep�

. �A4�

This provides the expression for G.
In order to calculate the expression �20� for the stability parameter, it is convenient to treat separately the case 0�rs

�rstep and the case rstep�rs�1. Let us consider the case 0�rs�rstep first.
The expression for the eigenfunction 
̃ for arbitrary m reads


̃ = �kz0�Jm−1�z0� − �1Ym−1�z0�� + m��0 − k��Jm�z0� − �1Ym�z0�� if 0 � z0 � zs,

kz0�Jm−1�z0� − �2Ym−1�z0�� + m��0 − k��Jm�z0� − �2Ym�z0�� if zs � z0 � zstep−,

kz1�Jm−1�z1� − �3Ym−1�z1�� + m��1 − k��Jm�z1� − �3Ym�z1�� if zstep+ � z1 � za,
� �A5�
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where zs=��0
2−k2rs. The constraints �30� and �31� imply

�1=0 and �3= �kzaJm−1�za�+m��1−k�Jm�za�� / �kzaYm−1�za�
+m��1−k�Ym�za��, respectively. Having determined the ex-
pression for �3 implies that now ��1/ 
̃��d
̃ /dz1��z1=zstep+ has

no arbitrary constants. Given that G is also a known quantity,
one can obtain �2 from the boundary condition �34�. This
yields

�2 =

C − E	 1


̃
� d
̃

dz1
�

z1=zstep+

− G

D − F	 1


̃
� d
̃

dz1
�

z1=zstep+

− G
 , �A6�

where

C = kzstep−Jm−1�zstep−� +
k

2
zstep−

2 �Jm−2�zstep−� − Jm�zstep−��

+ m
zstep−

2
��0 − k��Jm−1�zstep−� − Jm+1�zstep−�� ,

D = kzstep−Ym−1�zstep−� +
k

2
zstep−

2 �Ym−2�zstep−� − Ym�zstep−��

+ m
zstep−

2
��0 − k��Ym−1�zstep−� − Ym+1�zstep−�� ,

E = kzstep−Jm−1�zstep−� + m��0 − k�Jm�zstep−� ,

F = kzstep−Ym−1�zstep−� + m��0 − k�Ym�zstep−� .

The final expression for rs�� can then be written as

rs�� = zs
k�Jm−1�zs� − �2Ym−1�zs�� + �k/2�zs�Jm−2�zs� − Jm�zs� − �2�Ym−2�zs� − Ym�zs���

kzs�Jm−1�zs� − �2Ym−1�zs�� + m��0 − k��Jm�zs� − �2Ym�zs��

+ zs
�m/2���0 − k��Jm−1�zs� − Jm+1�zs� − �2�Ym−1�zs� − Ym+1�zs���
kzs�Jm−1�zs� − �2Ym−1�zs�� + m��0 − k��Jm�zs� − �2Ym�zs��

− zs
kJm−1�zs� + �k/2�zs�Jm−2�zs� − Jm�zs�� + �m/2���0 − k��Jm−1�zs� − Jm+1�zs��

kzsJm−1�zs� + m��0 − k�Jm�zs�
, �A7�

with �2 given by Eq. �A6�.
For m=1, using the recurrence relations for Bessel functions and the identity �9�, Eq. �A7� can be simplified to give

rs�� = −
2



�2

��0
2 − k2��1 + k2rs

2�
G0J�G0J − �2G0Y�

, �A8�

which coincides with the expression �36�. If one considers the case rstep�rs�1, the derivation proceeds in the same way, but
now the solution for 
̃ reads


̃ = �kz0�Jm−1�z0� − �1Ym−1�z0�� + m��0 − k��Jm�z0� − �1Ym�z0�� if 0 � z0 � zstep−,

kz0�Jm−1�z0� − �2Ym−1�z0�� + m��0 − k��Jm�z0� − �2Ym�z0�� if zstep+ � z1 � zs,

kz1�Jm−1�z1� − �3Ym−1�z1�� + m��1 − k��Jm�z1� − �3Ym�z1�� if zs � z1 � za.
� �A9�

The parameters �1 and �3 take the same values as in the previous case, but now in the expression for �� the quantity
��1/ 
̃��d
̃ /dz1��z1=zs

− depends on the constant �2. The latter is given by

�2 =

G − I	 1


̃
� d
̃

dz0
�

z0=zstep−

+ G

H − J	 1


̃
� d
̃

dz0
�

z0=zstep−

+ G
 , �A10�

where

G = kzstep+Jm−1�zstep+� +
k

2
zstep+

2 �Jm−2�zstep+� − Jm�zstep+�� + m
zstep+

2
��1 − k��Jm−1�zstep+� − Jm+1�zstep+�� ,

D = kzstep+Ym−1�zstep+� +
k

2
zstep+

2 �Ym−2�zstep+� − Ym�zstep+�� + m
zstep+

2
��1 − k��Ym−1�zstep+� − Ym+1�zstep+�� ,

E = kzstep+Jm−1�zstep+� + m��1 − k�Jm�zstep+� ,
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F = kzstep+Ym−1�zstep+� + m��1 − k�Ym�zstep+� .

The expression for rs�� for rstep�rs�1 then reads

rs�� = zs
k�Jm−1�zs� − �3Ym−1�zs�� + �k/2�zs�Jm−2�zs� − Jm�zs� − �3�Ym−2�zs� − Ym�zs���

kzs�Jm−1�zs� − �3Ym−1�zs�� + m��1 − k��Jm�zs� − �3Ym�zs��

+ zs
�m/2���1 − k��Jm−1�zs� − Jm+1�zs� − �3�Ym−1�zs� − Ym+1�zs���
kzs�Jm−1�zs� − �3Ym−1�zs�� + m��1 − k��Jm�zs� − �3Ym�zs��

− zs
k�Jm−1�zs� − �2Ym−1�zs�� + �k/2�zs�Jm−2�zs� − Jm�zs� − �2�Ym−2�zs� − Ym�zs���

kzs�Jm−1�zs� − �2Ym−1�zs�� + m��1 − k��Jm�zs� − �2Ym�zs��

+
�m/2���1 − k��Jm−1�zs� − Jm+1�zs� − �2�Ym−1�zs� − Ym+1�zs���
kzs�Jm−1�zs� − �2Ym−1�zs�� + m��1 − k��Jm�zs� − �2Ym�zs��

. �A11�

For modes m=1, this expression can be rewritten in the form
given in Eq. �38�.

APPENDIX B: IDEAL m=1 STABILITY

According to Newcomb’s analysis,40 if the eigenfunction

̃ corresponding to a nonresonant mode �m ,k� has a zero at a
radius between 0 and 1, then that mode is ideally unstable.
With regard to resonant modes, crossing the threshold of
ideal instability would reflect in the presence of vertical as-
ymptotes in the graph of �� as a function of rs, correspond-
ing to the vanishing of the eigenfunction at a resonant radius.
Figure 6 shows the presence of two vertical asymptotes in
the case of the �-stepped equilibrium. Such asymptotes,

however, as already pointed out in Sec. III, are not due to the
vanishing of 
̃ and therefore do not represent a signature of
ideal instability. However Fig. 7 indicates that an ideal insta-
bility could occur for a larger value of �� at a later stage of
the evolution through the sequence of stepped-� equilibria.

With regard to nonresonant modes, Newcomb’s criterion
can be cast into a form that turns out to be particularly con-
venient in our case. An indication of the presence of a zero of

̃ between 0 and 1 can be obtained with the following rea-
soning. If the mode were ideally marginally stable, then a
smooth eigenfunction 
̃ would satisfy both the boundary
conditions �30� and �31� and thus would vanish at r=0 and at
r=1. If we chose an arbitrary radius r̄ such that 0� r̄�1,
then the value of the quantity �1/ 
̃�r̄���
̃��r̄+�− 
̃��r̄−�� would
of course be zero due to the differentiability of 
̃ at r̄.

Let us consider now two eigenfunctions. One, denoted

FIG. 9. The plot refers to an example of ideally unstable equilibrium. The
eigenfunction 
̃1 has a zero between 0 and 1 and the eigenfunction 
̃2

satisfies the boundary condition at r=1. 
̃1 and 
̃2 have been plotted with a
solid line for 0�r� r̄ and for r̄�r�1, respectively, and with a dashed line
elsewhere. One can then see from the slopes of the solid lines at r= r̄
=0.25 �value of r̄ chosen for this example� that the difference in the loga-
rithmic derivative � is positive, which indicates instability. The plot refers to
�m=1, k=0.863� perturbations of a Taylor equilibrium with �T=3.5.

FIG. 10. Plot showing the quantity �̄�−G for the stepped-� equilibrium
characterized by the values of the parameters given in Fig. 5. The quantity

�̄�−G is negative over the entire range of values of nonresonant wave
numbers k, thus indicating ideal stability of the equilibrium.
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by 
̃1, satisfying the regularity condition at r=0 and with a
zero between 0 and 1 �to be definite let us consider the case
in which this function takes a negative value at r=1�; the
other, denoted by 
̃2, satisfying the conditions 
̃2�1�=0 and

̃2�r̄�= 
̃1�r̄�, but not necessarily the condition at r=0 �see
Fig. 9�. Let us assume also that 
̃1��0� and 
̃2��1� have oppo-

site sign. The quantity ��¯ = �1/ 
̃2�r̄��
̃2��r̄
+�− �1/ 
̃1�r̄��
̃1��r̄

−�
would then be positive. On the other hand, if 
̃1 has no

zeroes between 0 and 1, ��¯ would be negative. This implies

that the sign of the quantity ��¯ determines whether an eigen-
function has a zero or not and consequently it allows to reach
a conclusion on the ideal stability of the equilibrium with
respect to that perturbation. In our case, the eigenfunctions
have a discontinuous derivative at rstep and the condition for
determining the presence of a zero in 
̃1 can be conveniently
found choosing r̄=rstep. The criterion then reduces to check-

ing whether the quantity �̄� is greater or less than the jump
in the logarithmic derivative G. In the first case, the equilib-

rium is unstable, whereas �̄��G means stability.

The plot in Fig. 10 shows the difference �̄�−G for val-
ues of the parameters corresponding to the example consid-
ered in Sec. III. It is clear from the plot that in the considered

range of k, which corresponds to nonresonant surfaces, �̄�
−G is always negative, thus implying ideal stability of the
equilibrium.
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