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A simple formula for predicting the width of a saturated island, formed as a consequence of tearing
perturbation of linear force-free fields in cylindrical geometry, is derived. The formula makes it
possible to calculate the saturated island width in terms of the values of parameters characterizing
the initial force-free equilibrium and can be applied to equilibria of interest for reversed field
pinches. In particular it is applied, in this paper, to force-free equilibria with piecewise constant
radial profile of the pinch parameter, which have been recently suggested to be relevant for the
formation of quasi-single-helicity states. The main result is that the island width becomes larger as
a parameter, that quantifies the departure from a relaxed Taylor state, increases. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2913263�

I. INTRODUCTION

Reversed field pinches �RFPs� are toroidal devices for
magnetic plasma confinement in which the intensities of the
poloidal and toroidal components of the magnetic field are of
the same order. In addition to the importance due to the role
that such devices play in the fusion context, where they pro-
vide an example of a confinement scheme alternative to to-
kamak, RFPs attract interest also because they represent a
paradigm for self-organization in laboratory plasmas.1 In-
deed, typical RFP discharges are characterized by an initial,
strongly turbulent phase followed by the reaching of a more
quiescent state, which is largely independent of the details of
the initial configuration. A classical theory that is able to
properly describe a number of qualitative, and in some cases
quantitative, aspects of this self-organization process is the
magnetic relaxation theory proposed by Taylor.2,3 According
to Taylor’s theory, plasma in a RFP is a turbulent medium
which, after the initial violently unstable phase, tends, due to
dissipative processes, to relax to a state of minimum mag-
netic energy under the constraints of conservation of the total
magnetic toroidal flux and of the total magnetic helicity.
Mathematically, the equation derived from this constrained
minimization process is given by

� � B = �B , �1�

where B is the magnetic field and � is a constant.4 Therefore,
according to Taylor, plasmas in RFPs tend to reach a state of
vanishing Lorentz force, i.e., a so-called force-free state. The
hypothesis that only the total helicity is preserved during the
relaxation process �whereas the helicities of the volumes as-
sociated with the internal magnetic surfaces can be altered by
dissipative processes� implies that the resulting configuration
is a linear force-free field, i.e., the function � is constant.

Moreover, in the cylindrically symmetric version of this
model, only two quantities in the initial configuration,
namely the toroidal flux and the global helicity, determine
the values of the parameters of the final state, i.e., the values
of � and of the amplitude of the magnetic field. Note that, if
the conservation of the helicities of the internal magnetic
surfaces had been imposed, then the resulting � would have
become, in general, a flux function.

In the cylindrical approximation of a toroidal domain,
Eq. �1� admits the following cylindrically symmetric solu-
tions:

Br = 0, B� = B0J1��r�, Bz = B0J0��r� , �2�

expressed in terms of Bessel functions and where B0 is an
arbitrary constant. The above solutions represent the so-
called Bessel function model �BFM�. In spite of its simplic-
ity, which makes it also amenable to analytical treatments,
the BFM is able to explain some important features observed
in RFPs. In particular the BFM accounts for the reversal of
the toroidal field near the plasma edge and describes to a
good extent current density profiles in the plasma core re-
gion. Corrections to the BFM yielding current density pro-
files closer to the experimental situation have been consid-
ered, for instance, in Ref. 5. However, in spite of the success
of Taylor’s theory, it is however important to mention that in
recent years a considerable effort has been devoted in trying
to explain RFP dynamics from a perspective which is differ-
ent from the one adopted by Taylor. In particular, on the
basis of numerical, analytical, and experimental results6–9 it
has been argued that RFP plasmas need not be intrinsically
turbulent but could reach a helically symmetric, laminar
equilibrium state10,11 characterized also by better confine-
ment properties.

Ideal stability of the cylindrical BFM has been studied
by Voslamber and Callebaut,12 whereas the linear stabilitya�Electronic mail: emanuele.tassi@polito.it.
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analysis with respect to tearing modes has been carried out
by Gibson and Whiteman13 �ideal and resistive instabilities
in the presence of pressure gradients, on the other hand, have
been investigated in Refs. 14 and 15�. In particular, the
analysis by Gibson and Whiteman shows that if �, normal-
ized with respect to the cylinder radius exceeds 3.11, then the
BFM equilibrium is linearly unstable with respect to tearing
modes with poloidal wave number m=1. Thus, for suffi-
ciently large values of �, linear theory predicts that tearing
perturbations of the BFM equilibria can lead to magnetic
reconnection processes at the resonant surfaces and to the
formation and growth of magnetic islands. Numerical simu-
lations showing this process have been described in Ref. 16.
On the other hand, it has been recently shown17,18 that even a
small departure from a � profile, constant over the whole
domain, can significantly modify the stability properties of
the force-free equilibrium. In particular, in these works, it
was proposed that RFP plasmas, after reaching a force-free
state with constant �=�T�3.11 according to Taylor’s
theory, could tend to drift away from it, because of central
Ohmic heating, which causes the current density profile to
peak in the center and thus to induce radial gradients in �.
The model for such force-free, nonconstant � equilibria,
adopted in these works, is the stepped-� equilibrium, in
which � is defined by

��r� = ��0 if 0 � r � rstep,

�1 if rstep � r � 1,
� �3�

where rstep is the radius where the step is located and �0 and
�1 are two constants with �0��1 for the sake of compat-
ibility with the experimental results which show a profile of
��r� decreasing with r. Although very simple, this model
shows that the presence of a variation in the � profile can
significantly alter the linear stability properties of the equi-
librium, compared to the constant-� case. In particular it
showed that, whereas for a constant-� case the mode that
becomes unstable at the critical value �=3.11 resonates in
the region of reversed Bz, i.e., near the edge, the presence of
a step in � could first destabilize the innermost resonant
mode. Moreover, for a � profile such as Eq. �3�, the thresh-
old value of � at the resonant surface, at which the instability
appears, is lower than the value of 3.11 corresponding to the
BFM. This result suggested that the presence of gradients in
� might be related to the destabilization of the dominant
mode characterizing the so-called QSH states observed in a
number of RFP experiments �see, e.g., Refs. 9 and 19–24,
and references therein�. Indeed, QSH states are regimes of
reduced turbulence characterized by a magnetic spectrum
dominated by the innermost resonant mode. Such regimes
attracted particular interest not only because they provide an
example of magnetic self-organization but also because
they correspond to a condition of improved particle
confinement.25

The main purpose of the present work is to complement
the linear stability analysis presented in Ref. 18 by consider-
ing what happens in the nonlinear stage, after the growth of
the magnetic island has reached a saturation phase. More
precisely we aim at providing a relation that allows predic-

tion of the magnitude of the island of the helically symmetric
saturated state in terms of the equilibrium parameters. In
particular, in connection to the above mentioned mechanism
proposed for the formation of QSH states from stepped-�
equilibria, we aim at deriving a relation that allows, for given
�T, rstep and toroidal magnetic flux, to see how the saturated
island width in the QSH state varies with the “departure”
�measured by ��=�0−�1� from an initial Taylor state.
Technically this is made possible after realizing that a per-
turbative technique, which has been widely applied to a
number of cases in the tokamak context,26–31 can be trans-
ferred, with appropriate modifications, to the RFP case,
where the assumption of strong toroidal field is no longer
valid. Besides the stepped-� case, this technique, and conse-
quently also the main result of this paper, can also be applied
to more general force-free equilibria, provided that � is
constant over a sufficiently large region comprising the reso-
nant surface. On the other hand, the saturation relation that
we intend to derive, can of course also be applied to the
classical BFM.

We also note that the analysis related to the stepped-�
equilibria can also be potentially of interest for tokamaks,
given that, in a series of recent works,32–34 such equilibria
were considered in relation to the issue of internal transport
barriers.

Finally we note that, in a recent paper,35 Arcis et al.
independently derived a relation which, in a certain limit, is
similar to Eq. �59� presented in this article. However, we
would like to mention that two different problems have been
addressed in these two works. Whereas Arcis et al. consider
the tearing perturbation of a nonreversed Ohmic equilibrium
with a laminar equilibrium velocity field and spatially vary-
ing �, we consider as an initial state a reversed quasiequilib-
rium corresponding, at least locally, to a Taylor state, in the
sense that we require � be constant around the resonant sur-
face. We assume that this initial magnetic configuration is
sustained by a turbulent velocity field which keeps the equi-
librium quasistationary.

The paper is organized as follows: In Sec. II the geom-
etry of the problem and the basic model equations are intro-
duced. Section III is devoted to the description of the class of
force-free equilibria considered in our analysis. In Sec. IV
we describe the derivation of the saturation relation, whereas
in Sec. V we apply the result to the stepped-� equilibria and
to the BFM. Section VI is devoted to the conclusions, while
the Appendix details concerning the matching procedure are
provided.

II. MODEL EQUATIONS

We approximate the toroidal chamber of a RFP with a
cylinder described by cylindrical coordinates �r ,� ,z�, where
r is the distance from the cylinder axis, � is the azimuthal
angle, and z is the distance along the cylinder axis. Hence-
forth, we consider lengths as normalized with respect to the
radius of the cylinder. For our purposes, the RFP plasma
dynamics can be adequately described by means of the resis-
tive magnetohydrodynamics �MHD� equations consisting of
the equation of motion,
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�� �v

�t
+ �v · ��v� = j � B − �p , �4�

and of Ohm’s law

E + v � B = 	j . �5�

In the above equations, � indicates the mass density, that we
assume to be constant, v is the plasma velocity, B is the
magnetic field, p is the plasma pressure, j=��B is the cur-
rent density, E is the electric field, and 	 indicates the
plasma resistivity.

The subsequent analysis will concern a magnetic field
that in the saturated state is helically symmetric. More pre-
cisely, such field will be function only of r and of the helical
coordinate u=m�+kz, with m poloidal wave number and k
=−n /R, where n is the toroidal wave number and R is the
RFP major radius. It is then convenient to introduce the fol-
lowing representation valid for helically symmetric
divergence-free vector fields:

B�r,u� = �
�r,u� � h + g�r,u�h , �6�

where 
 is the helical magnetic flux function. In Eq. �6� h
= �r / �m2+k2r2���r��u so that g denotes the amplitude of
the field along the helical direction h.

III. EQUILIBRIA

According to the classical theory developed by Taylor,2

the mean magnetic field B in RFPs tends to reach a force-
free equilibrium state �1�, with constant �, as a consequence
of a turbulent relaxation that leaves the initial values of total
toroidal magnetic flux and of total helicity unchanged. Our
analysis refers to the cylindrically symmetric version of this
important class of equilibria. In addition, the assumptions we
require allow us to extend the results to a wider class of
force-free equilibria such as, for instance, the stepped-�
equilibria, which could be relevant for the formation of
quasi-single-helicity states. In particular, we require � to be
constant not necessarily over the whole cylindrical domain
as for Taylor equilibria, but only on an annulus ��r ,�� :r1

�r�r2 ,0���2��. In particular, the resonant surface rs,
around which we intend to expand the outer solution, has to
lie between r1 and r2. Considering Taylor equilibria as a
paradigmatic case, it is worth recalling that cylindrically
symmetric solutions of Eq. �1�, already anticipated in Sec. I,
read

Br = 0, B� = B0J1��r�, Bz = B0J0��r� . �7�

In terms of the representation introduced in Eq. �6�, these
solutions read


�r� =
B0

�
�mJ0��r� − krJ1��r��, g�r� = �
�r� . �8�

The cases of interest for RFPs in particular are those with
��2.404, for which the toroidal field Bz reverses within the
chamber.

The force-free condition implies that at equilibrium, in
the force balance equation �4�, the contributions from the
inertial term and from the pressure gradient are negligible

compared to the electromagnetic term. On the other hand, it
is known that reversed, strictly cylindrically symmetric,
steady force-free states cannot satisfy a classical Ohm’s law8

such as Eq. �5�. Nevertheless, small amplitude perturbations
that break cylindrical symmetry could develop into a turbu-
lent scenario that restores a relaxed force-free state. In this
sense, a sort of quasisteady Ohmic equilibrium could be es-
tablished on a sufficiently long time scale.1 We express the
presence of these turbulent fluctuations by means of an ef-
fective electric field Eeff=E0+Eturb, which would be able to
sustain the equilibrium reversed current density parallel to
the mean cylindrically symmetric equilibrium magnetic field
so that Eeff=	jeq at the �quasi� equilibrium. The effective
electric field is given by the sum of the field E0, due to the
externally applied voltage, and of the “turbulent” electric
field Eturb generated by the turbulent fluctuations.

The description of the equilibria that we consider in our
analysis can be formalized with the help of the representation
�6�. Let us consider first generic helically symmetric mag-
netic fields and later focus on the cylindrically symmetric
equilibria of interest. In the helically symmetric case, the
projection along h of ��B=�B, with �=��r ,u� and B
=B�r ,u�, in terms of the fields 
 and g, yields

�g,
� = 0. �9�

In Eq. �9�, �g ,
� is equal to �rg�u
−�ug�r
. Equation �9�
thus implies g=g�
�, i.e., g is a flux function. Making use of
this property, the projection of ��B=�B along �r �or
equivalently along �u� yields

Lh
 − 	� −
dg

d


g = 0, �10�

where Lh is an operator defined as

Lh =
�2

�r2 +
1

f

df

dr

�

�r
+

1

rf

�2

�u2 �11�

with f�r�=r / �m2+k2r2�. The factor � is defined by

� = −
2mk

m2 + k2r2 . �12�

It is important to point out that for helically symmetric force-
free states also �=��
� turns out to be a flux function and is
connected to g by the relation ��
�=dg /d
. Using Ampere’s
law and the force-free condition �10�, one also finds that the
current density is related to g and 
 by the relation

j = �g � h +
1

2

dg2

d

h . �13�

Notice that the force-free equation �10� alone is not sufficient
to determine both 
 and g but it can be solved with respect to

 once the functional dependence of g on 
 is prescribed.
Now we consider the equilibrium state, where we assume
that the mean magnetic field is cylindrically symmetric, i.e.,
a solution of Eq. �10� depending only on r. This can be
represented by two functions 
eq�r� and geq�
eq�r��, with the
former solution of Eq. �10� and the latter a prescribed func-
tion of 
eq�r�. In particular, as anticipated above, for our
class of equilibria the choice of geq is constrained by impos-
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ing �=dgeq /d
eq constant over a region enclosing the reso-
nant surface. We are reminded that, with regard to the equi-
librium flow, we assume the existence of turbulent
fluctuations that sustain the equilibrium current density. The
presence of such turbulent flow is represented in the effective
electric field so that at equilibrium Ohm’s law reads

Eeff = 	jeq. �14�

The current density jeq is derived from 
eq and geq with the
help of Eq. �13�, whereas the resistivity is assumed to be
locally constant.

IV. MATCHING PROCEDURE

We consider the evolution, governed by the resistive
MHD equations �4� and �5�, of a helically symmetric pertur-
bation of the equilibrium states described above. If the equi-
librium is unstable, a magnetic island will form at the reso-
nant surface. Assuming that the nonlinear time evolution of
the system terminates with the reaching of a steady state,
such a new equilibrium will be characterized by the presence
of a magnetic island of width w, which is defined by w2

=16
̃�rs� /
eq� �rs�, where 
̃�rs� indicates the amplitude of the
perturbation at the resonant surface. We can then obtain in-
formation on the size of the saturated island by making use
of the technique adopted in Ref. 31 for the “small island
case.” This technique allows one to obtain a relation between
w and parameters characterizing the initial equilibrium state.

The adopted technique is based on a matching procedure
according to which the cylindrical domain is separated in
two regions: a narrow annular inner region, of thickness 

�w, centered around the resonant surface, and an outer re-
gion complementary to the inner region. In the two regions,
different approximations are made in order to obtain pertur-
bative solutions in the small parameter w. Asymptotic expan-
sions of such solutions are then matched in an overlap do-
main yielding the relation between w and the equilibrium
parameters.

A. Outer region

In order to describe the nonlinear evolution of a mag-
netic island, nonlinear terms are essential only in a narrow
layer of width 
�w, centered around the resonant surface,
that we define to be the inner region. In the outer region the
linear approximation is adequate. Moreover, given that the
Lundquist number for the plasmas of interest is very large,
far from the resonant surface the resistive term in Ohm’s law
�5� is negligible. Therefore, in the outer region we assume
the ideal MHD approximation be valid. In this region we
consider a magnetic field, given by the sum of the equilib-
rium part and of a helically symmetric perturbation. Such a
field can then be written in terms of


�r,u,t� = 
eq�r� + �
N=−�

+�


̃N�r�e�t+iNu,

�15�

g�r,u,t� = geq�r� + �
N=−�

+�

g̃N�r�e�t+iNu.

As stated above we assume negligible equilibrium flow and
pressure gradient in the momentum equation. Moreover,
given that RFP plasmas are low-� plasmas �with � indicating
here the ratio between plasma and magnetic pressure�, we
assume that perturbations in the pressure gradients can be
neglected.

On the basis of the linear stability results of Refs. 13 and
18, the most unstable perturbations, for the equilibria of in-
terest in this analysis, are those with m=N=1 and it will be
these that we will consider in the analysis of the outer region.
For a given magnetic equilibrium state linearization of Eq.
�10� implies that a generic eigenfunction 
̃�r� must satisfy

d2
̃

dr2 +
1

f

df

dr

d
̃

dr
+ 
�2 −

1

rf
+

geq

d
eq

dr

d�

dr
− ���
̃ = 0, �16�

and that g̃�r� follows from

g̃ = ��r�
̃ . �17�

Perturbations for the electric and velocity field are assumed
to be of the same form of those given in Eq. �15�.

With regard to the choice of the equilibrium magnetic
field, we will be restricted to the case of equilibria in which
� is constant on a sufficiently large region centered around
the resonant radius so that it would be legitimate to perform
expansions of the outer solution about the resonant surface
considering � as a constant. Such class of equilibria includes
of course Taylor’s equilibria �7� for which � is constant over
the whole domain. Notice that the term proportional to
d� /dr in Eq. �16� vanishes wherever � is constant. In par-
ticular, for the class of equilibria under consideration, this
term gets suppressed at the resonant surfaces, rs, for which
d
eq /dr�rs�=0 so that in this case the equation reduces to the
one derived in Ref. 12. Note that if � had not been constant
at the resonant surface, then Eq. �16� would have had a sin-
gular term.

We consider then the expansion of Eq. �16� about rs �for
�=const�,

d2
̃

dx2 + �1

f

df

dx
�0� +

d

dx
	1

f

df

dx

�0�x�d
̃

dx

+ ��2 −
1

rsf�0�
− ��0�� −

d

dx
� 1

�x + rs�f
+ ����0�x�
̃

= 0, �18�

where the variable x=r−rs has been used. In the vicinity of
x=0 the outer solution for 
̃ could be expanded as
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̃out
� �x� = 
̃0 + 
̃0

A � ��

2
x + a2

x2

2
+ ¯ , �19�

where the sign � and � refer to the solution for x�0 and
x�0, respectively, and


̃0 = lim
x→0


̃out, �20�

A =
1


̃0
	 lim

x→0+

d
̃out

dx
+ lim

x→0−

d
̃out

dx 
 , �21�

�� =
1


̃0
	 lim

x→0+

d
̃out

dx
− lim

x→0−

d
̃out

dx 
 . �22�

The form �19� adopted to write the expansion of the outer
solution makes explicit the dependence of such solution on
the parameter ��, which determines the stability of the
equilibrium.36 It will be shown that the matching procedure
will require �� to be O�w�. The expression for the constant
coefficient a2 in Eq. �19� can be obtained by inserting the
expansion �19� into Eq. �18�.

It is convenient to introduce at this point the matching
function31

M�x� =
1


̃0
�d
̃

dx
�x� −

d
̃

dx
�− x�� . �23�

The relation between w and �� is derived by matching the
asymptotic expansion of M�x� in the outer and inner region.
By making use of the outer solution �19�, we can write the
expression for the matching function in the outer region.
Since the matching is performed between inner and outer
expansions, both written in terms of the inner variable, X
=x /w, it is convenient to write the outer matching function in
terms of this rescaled variable. The result is

Mout�X� = �� − 2wX��2 −
1

rsf�0�
− ��0�� + A

1

f

df

dx
�0��

+ O�w2� . �24�

B. Inner region

In the inner region, we rescale dependent and indepen-
dent variables in the following way:

X =
x

w
, ��X,u� =


eq�0� − 
�X,u�
w2 , G��� =

g���
w

. �25�

In this region, which encloses the resonant surface where the
reconnection process takes place, nonlinear and resistive
terms cannot be neglected. However, thanks to the assump-
tion of having a narrow inner region, local Taylor expansion
about the resonant surface is legitimate. In particular, in the
inner region, we can expand the coefficients of the momen-
tum equation about x=0. This reads

−
�2�

�X2 − w� 1

f�0�
df

dx
�0� + w

d

dx
� 1

f�x�
df

dx
��0�X� ��

�X

− w2 1

rsf�0�
�2�

�u2

= w���0� + w
d�

dx
�0�X + w2 d2�

dx2 �0�
X2

2
�G +

1

2

dG2

d�
.

�26�

This equation is obtained by assuming that at the lowest
order the saturated state is a force-free state, then expanding
Eq. �10� and rescaling the variables.

Next, we consider the projection along B of Ohm’s
law �5�,

E · B = 	j · B . �27�

Along the B direction, the electric field E=Eeff−�� in the
saturated state is assumed to be given by the superposition of
the equilibrium effective electric field Eeff=	jeq with a per-
turbative part −�� where � is the corresponding electro-
static potential. The validity of this assumption is based on
the conjecture that, along the field lines of B, the turbulent
dynamo term Eturb is not affected by the presence of the
saturated magnetic island. This conjecture could be taken as
reasonable considering that our treatment refers only to small
islands, whose presence should not drastically alter the prop-
erties of the random fluctuations that sustain the reversed
equilibrium current on the time scale of interest. At this point
we would also like to mention a possible alternative to this
assumption. Indeed one could argue that the turbulent
mechanism required to sustain a reversed current might op-
erate mainly at the plasma edge, namely, where reversal oc-
curs. The reversal region is indeed densely populated with
resonant surfaces and the turbulence could be locally gener-
ated, for instance by g-modes driven by small pressure gra-
dients in the presence of unfavorable field curvature, such as
that of RFPs. On the other hand, around the resonant surface
of the dominant mode of a QSH state, which is located in the
plasma core, one could imagine that the contribution of the
term Eturb be modest and that locally a mostly laminar equi-
librium flow exist. In this case the treatment of the inner
region would follow the one carried out by Arcis et al.35 and
would lead to the presence of an additional term in the final
saturation relation. However, as will be shown in Sec. V, for
typical values of interest for QSH states, such an additional
term would represent a small correction. In the following,
therefore, we follow the conjecture of having a turbulent
dynamo term in the inner region and comments on the dif-
ferent results obtained by following the two approaches will
be given in Sec. V.

Making use of the representation of j and B in terms of
the fields � and G, one can rewrite Eq. �27� as

	jeq · B − B · �� = − w	
dG

d�
�����2 + G2�h2. �28�

The term B ·�� in Eq. �28� can be annihilated under the
action of the flux surface average operator. The flux surface
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average of a generic function F�r ,u� with respect to a flux
surface � is defined as

�F�� = 	� � ��

�X
�−1

Fdu
�	� � ��

�X
�−1

du
 , �29�

where the integration is taken over �0,2�� for open flux
surfaces and between values of u, where �� /�X vanishes for
closed magnetic surfaces enclosed within the island. Apply-
ing this operator to Eq. �28� and making use of the represen-
tation jeq=���
eq�h+geqh� one obtains

�

G
�
eq�

��

�X
h2�

�

− ��geqh
2��

=
1

G

dG

d�
�	 ��

�X

2

h2�
�

+
w2

G

dG

d�
�	 ��

�u

2	 m2

w2X2 + rs
2 + k2
h2�

�

+
1

2

dG2

d�
�h2��, �30�

where we also made use of the fact that flux functions such
as G=G��� are invariant under the action of the flux surface
average. Given that we are considering the inner region, we
can perform a Taylor expansion of 
eq� , geq, h2, and
m2 / �w2X2+rs

2�+k2, which are given functions of X, about the
resonant radius, similar to what was done for the momentum
equation �26�. We obtain

w
�

G
�
eq� �0�X

��

�X
h0�

�

− ��	geq�0� + w2geq� �0�
X2

2

�h0 + wh1X + w2h2X2��

�

=
1

G

dG

d�
�	 ��

�X

2

h0�
�

+
w2

G

dG

d�
�	 ��

�u

2	m2

rs
2 + k2
h0�

�

+
1

2

dG2

d�
��h0 + wh1X + w2h2X2���, �31�

where h0, h1, and h2 are coefficients in the expansion of h2.
Then, Eqs. �26� and �31� form a two-equation system to be
solved in the inner region with respect to the unknown vari-
ables � and G. We recall that the solutions must also satisfy
the condition �9� which, in terms of the inner variables, reads

�G,�� = 0. �32�

We proceed by solving the system of equations perturba-
tively. Motivated by the form of the expansion of the outer
solutions in terms of the inner variables, we choose the fol-
lowing expansions for � and G in the inner region, adopting
w as an expansion parameter,

��X,u� = �0 + w�1 + w2�2 + O�w3� ,

�33�

G�X,u� =
G−1

w
+ G0 + wG1 + w2G2 + O�w3� .

From Eq. �32� at the lowest order, we obtain

1

w
�G−1,�0� = 0, �34�

which implies G−1=G−1��0�. We can make use of this result
and consider Eq. �31� at its lowest order. This yields

1

w2G−1��0�
dG−1��0�

d�0
h0 = 0, �35�

which implies

G−1 = c−1 �36�

with constant c−1. The arbitrariness in this constant can be
removed by matching the lowest order term, i.e., the term of
order 1 /w, of the expansion of the inner solution for G as
X→�, with the corresponding term of the outer solution as
X→0. The expansions about X=0 of the outer solutions for

 and g, written in terms of the inner variables, are

�out = − 
eq� �0�
X2

2
−


eq� �0�
16

cos u

− w�
eq� �0�
X3

6
+ 
eq� �0�

A � ��

2

X

16
cos u� + O�w2� ,

�37�

Gout =
geq�0�

w
+ w�geq� �0�

X2

2
+ �
̃0 cos u� + O�w2�

= �

eq�0�

w
+ w��
eq� �0�

X2

2
+ �


eq� �0�
16

cos u� + O�w2� .

By considering the term of order 1 /w in Gout one then ob-
tains

G−1 = geq�0� = �
eq�0� . �38�

Notice that, in order to derive Eq. �37�, we used the relation

̃0=w2
eq� �0� /16, which comes from conservation of
magnetic flux on an island separatrix, and considered only
the fundamental harmonic in the perturbation
�N=−�

+� 
̃N�r�exp�iNu�.
From considering Eq. �32� at the next order, and taking

into account that G−1 is a constant, one obtains

�G0,�0� = 0, �39�

therefore G0=G0��0�. From Eq. �31� at order 1 /w one ob-
tains

G−1
dG0

d�0
= 0, �40�

so that G0 is a constant c0. The matching with Gout tells us
that, in particular,
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G0 = 0. �41�

Iterating the procedure at the next order we see that Eq. �32�,
combined with the results obtained at lower orders, gives

�G1,�0� = 0, �42�

therefore G1=G1��0�. Evaluating Eq. �31� at O�1� gives

G−1
dG1

d�0
= − �geq�0� . �43�

This relation, together with Eq. �38�, yields

G1 = − ��0 + c1, �44�

with c1 as an arbitrary constant. The matching with the outer
solution requires c1=0 so that

G1 = − ��0. �45�

The knowledge of G1, G0, and G1 can now be used to evalu-
ate Eq. �26� at O�1�. This gives

−
�2�0

�X2 = ����0� − geq�0�� . �46�

Upon integrating Eq. �46� and making use of the local equi-
librium relation 
eq�0��=����0�−geq�0��, one obtains

�0 = − 
eq� �0�
X2

2
+ A�u�X + B�u� �47�

with A�u� and B�u� as arbitrary functions. The matching with
the corresponding term in �out yields

�0 = − 
eq� �0�
X2

2
−


eq� �0�cos u

16
. �48�

The next iteration, starting again from Eq. �32�, yields

− ���0,�1� + �G2,�0� = 0, �49�

from which one obtains that G2=H��0�−��1, with H��0�
some function of �0. Ohm’s law �31� at order w then gives

G−1
dG2

d�
= 0. �50�

Using this result we can consider Eq. �26� at order w, which
reads

�2�1

�X2 = −
1

f�0�
df

dx
�0�

��0

�X
−

d�

dx
�0�G−1X

= � 1

f�0�
df

dx
�0�
eq� �0� −

d�

dx
�0�geq�0��X . �51�

This equation can be easily integrated to give

�1 = � 1

f�0�
df

dx
�0�
eq� �0� −

d�

dx
�0�geq�0��X3

6

+ C�u�X + D�u� �52�

with C�u� and D�u� as arbitrary functions. Upon matching
Eq. �52� with the corresponding terms, i.e., those of order
O�w�, in the expanded outer solution �37� one obtains imme-
diately D�u�=0. Differentiating the left-hand side of Eq. �10�

and expanding its coefficients about the resonant surface, one
obtains a relation showing that the coefficients of X3 in Eqs.
�52� and �37� also get automatically matched. On the other
hand, determining C�u�, requires anticipating the result that
�� is O�w�. This yields C�u�= �A /16�
eq� �0�cos u. Similarly
to the previously investigated tokamak case31 such depen-
dence can be obtained with the help of the matching func-
tion, as it will be shown in Sec. IV C and in the Appendix.

To summarize, the solutions we found for � and G at the
different orders, are given by

�0 = − 
eq� �0�
X2

2
−


eq� �0�cos u

16
,

�1 = � 1

f�0�
df

dx
�0�
eq� �0� −

d�

dx
�0�geq�0��X3

6

+
A

16

eq� �0�X cos u , �53�

G−1 = �
eq�0�, G0 = 0, G1 = �
eq� �0�
X2

2
+ �


eq� �0�cos u

16
.

Finally we provide the expression for the quantity
G�dG /d�� at order w2, which is needed for constructing the
matching function in the inner region at the required order.
The condition �G�dG /d�� ,��=0, combined with the lower
order results, tells us that G−1�dG3 /d�� must be a function
of �0. Ohm’s law �31� at order w2 then gives

G−1
dG3

d�
+ G1

dG1

d�
= −

�

2
geq� �0��X2��0

, �54�

which provides the required quantity.

C. Saturation relation

The form of the matching function in the outer region
has been given in Eq. �24�. In the inner region it is conve-
nient to express it in the following integral form:

Min�x� =
1

�
̃0
�

−x

x

dx��
−�

�

du
�2


�x�2 cos u . �55�

Notice that if one considers 
�x ,u�=
eq�x�
+�N=−�

+� 
̃N exp�iNu�, then Min�x� indeed corresponds to Eq.
�23�. Expressing Eq. �55� in terms of the inner variables and
making use of the inner equation �26� we can write

Min�X� = −
16

w�
eq� �0��−X

X

dX��
−�

�

du�− w
1

f�0�
df

dx
�0�

��

�X�

− w2 d

dx
	1

f

df

dx

�0�X�

��

�X�
− w2 1

rsf�0�
�2�

�u2 − w��0�G

− w
d�

dx
�0�X�G − w2 d2�

dx2 �0�
X�2

2
G −

1

2

dG2

d�
� . �56�

One can then insert into Eq. �56�, the perturbative solutions
for � and G given in Eq. �53�. The terms multiplying the
same powers of w can then be collected and matched onto
the corresponding terms of the asymptotic expansion of the
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outer matching function �24�. Whereas the contributions to
Min�X� to order O�w−1� and O�1� vanish identically, the con-
tribution of order O�w� �see Appendix for details� reads

M1in�X� = 2wX���0�� +
1

rsf�0�
− �2

+
16

�
eq� �0�
1

f

df

dx
�0��

−�

�

duC�u�cos u�
+ w

�2

�
�

−X

X

dX��
−�

�

du�cos u��0
cos u . �57�

The matching with Mout then yields

�� = w
�2

�
�

−X

X

dX��
−�

�

du�cos u��0
cos u . �58�

The evaluation of the integral in Eq. �58� requires the calcu-
lation of the flux surface average referred to �0. Details re-
lated to this calculation are given in Ref. 31. The final result
reads

w =
��

0.41�2 . �59�

The quantity �� turns out then to be of the order w. Equation
�59� expresses the sought relation providing the dependence
of the width of the saturated island w on the stability param-
eter ��, which refers to the initial equilibrium. A formally
similar relation was found for the tokamak case in Ref. 26.
The relation is remarkably simple and shows that the satu-
rated island size of a perturbed cylindrically symmetric lo-
cally Taylor state, to the lowest order, depends on the initial
equilibrium only through the values of �� and of the pinch
parameter �. We recall in particular that, due to the vanish-
ing of the helical component of the equilibrium current den-
sity at the resonant radius, the island width does not depend
on the global asymmetry parameter A.

The relation derived in Ref. 35 by Arcis et al. differs
from Eq. �59� due to the presence of terms proportional to a
gradient of ��r� at the resonant surface and also due to an
additional term, proportional to the global asymmetry param-
eter A, which originates from a different choice of the equi-
librium configuration. Indeed, as anticipated in Sec. IV B,
Arcis et al. in their work, consider a laminar equilibrium
velocity field, in the presence of a nonreversed magnetic
field, whereas we start from a reversed quasiequilibrium con-
figuration and assume that a background effective electric
field exists, in order to sustain the reversed configuration. It
is also worth to notice that the saturation relation �59� is the
same one that one would obtain with our choice of the equi-
librium state but imposing incompressibility of the flow. As
pointed out by Arcis et al. the incompressibility condition is
incompatible with the existence of an Ohmic force-free equi-
librium with a helical symmetry8 therefore in principle im-
posing the velocity field to be divergence-free is not correct
in this context. However it turns out that, with our choice for
the equilibrium, the modifications due to compressibility
would appear only at orders higher than the ones we consid-
ered.

In the next section we will discuss the application of the
formula �59� to the stepped-� equilibria and also consider
one example of application to the BFM with ��3.11.

V. APPLICATIONS OF THE SATURATION RELATION

As anticipated above, the formula �59� can, in principle,
be applied to cylindrically symmetric force-free equilibria
provided that � is constant around the resonant surface.
Equilibria satisfying this condition include, for instance,
those in which � is a step function of the radius. As men-
tioned in Sec. I such equilibria might be relevant, for in-
stance, for explaining the formation of cyclic QSH states
observed in RFPs.37 Indeed, equilibria of such type can be
linearly tearing unstable with respect to the dominant mode
observed during QSH states while being stable with respect
to the other modes. For the stepped-� equilibria under con-
sideration, �=��r� is defined by

� = ��0 if 0 � r � rstep,

�1 if rstep � r � 1,
� �60�

with �0, �1 constants and rstep, such that 0�rstep�1, indi-
cating the radius where the step is located. Force-free equa-
tions are solved separately for 0�r�rstep and rstep�r�1
and the resulting fields are matched by imposing continuity
at rstep. Provided that the distance �rstep−rs� is sufficiently
large so that we can consider Eq. �16� with constant �, our
local analysis for the island width still holds and the relation
�59� remains valid. A remarkable property of such force-free
states is that for them it is possible to obtain an analytical
expression for the parameter ��. In the case where 0�rs

�rstep �which is the most relevant one for dominant modes in
QSH states� this expression reads

rs���rs;�0,�1,rstep� = −
2

�
�2

��0
2 − k2�rs���1 + k2�rs�rs

2�
G0J�G0J − �2G0Y�

, �61�

where

G0J = k��0
2 − k2rsJ0���0

2 − k2rs� + ��0 − k�J1���0
2 − k2rs� ,

G0Y = k��0
2 − k2rsY0���0

2 − k2rs� + ��0 − k�Y1���0
2 − k2rs� ,

and �2 is a constant which is fixed by a boundary condition
at rstep. The expression �61� is derived in Ref. 18 and allows
us to calculate the value of �� as a function of the parameters
m, �0, �1, rs, rstep. Combining this formula with Eq. �59�,
one can obtain a fully analytical expression for the island
width, w, of the form

w�m,�0,�1,rstep,rs� =
���m,�1,�0,rstep,rs�

0.41�0
2 . �62�

The relation �62� thus makes it possible to obtain the size of
the saturated island directly in terms of the parameters char-
acterizing the equilibrium state.

As mentioned in Ref. 18 and anticipated in Sec. I, the
formation of such stepped-� equilibria in RFPs might model
small departures from an initial Taylor state characterized by
�=�T. Such a departure is imagined as a time evolution
through a sequence of stepped-� equilibria characterized by
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increasing values of ��=�0−�1, under the constraints of
toroidal magnetic flux conservation, toroidal current conser-
vation and assuming rstep as fixed. In this context the param-
eter �� can then be loosely interpreted as a timelike vari-
able. If one considers a starting Taylor equilibrium with �T

�3.11, which corresponds to a condition of stability to m
=1 tearing modes,13 the evolution through a sequence of
stepped-� equilibria with increasing �� obeys the following
pattern:17 the system departs from the initial Taylor state with
��=0 and, as long as �� is below a critical value ��crit, the
equilibrium remains stable. However, the value of �� in-
creases as the value of �� gets larger, though. When the
height of the step exceeds the threshold value ��crit �which
corresponds to ��=0� the equilibrium becomes unstable to
one tearing mode with m=1 at the innermost resonant sur-
face. As ��−��crit becomes larger and larger the value of
�� for this mode increases, first approximately linearly, and
subsequently in a much more rapid way until a threshold for
ideal instability, which corresponds to infinite ��, is possibly
encountered. Such dependence of �� on the parameter �� of
course reflects also in the evolution of the island width
through the sequence of equilibria.

In order to consider a concrete case, the example shown
in Fig. 1 refers in particular to the formation of QSH states in
the RFX device9 where �m=1,n=7� is the dominant mode
and the aspect ratio is given by R=4.34. Figure 1 shows the
values of the island width for equilibria with different values
of the parameter ��−��crit. It can be seen that the island
width in the saturated state grows almost linearly for small
values of ��−��crit but then tends to explode as the step
gets larger. In order to show that the dependence of w on the

height of the step can become nonlinear the plot is shown for
a rather wide range of values for ��−��crit. However, it is
necessary to remark that the relation �62� is valid on a region
where � is constant. This means that the prediction given by
Eq. �62� fails when the half island width exceeds the distance
�rstep−rs�.

As anticipated in Sec. IV B, if one had chosen a laminar
velocity field at equilibrium, then, following Arcis et al., an
additional term, proportional to the global asymmetry param-
eter A, defined in Eq. �21�, would have appeared in the satu-
ration relation. The latter would have then read

w�m,�0,�1,rstep,rs� =
���m,�1,�0,rstep,rs�

0.41��0
2 + �0�nrs/mR��A/2��

. �63�

However, for the sake of applying this relation to QSH
states, we observe that, if we refer, as typical values, to the
parameters of Fig. 1 and consider a step ��=0.1 �corre-
sponding to ��=0.12 and A=2.34�, then the relation �63�
would predict an island width which would be only 15% less
than that predicted by Eq. �62�. Therefore, we believe that,
with regard to the application of this theory to QSH states,
the presence of an equilibrium flow would lead to a small
correction to the result we derive assuming the existence of a
turbulent dynamo term.

The formula �62� can of course also cover the case of
BFM equilibria when �0=�1=�, in which case the expres-
sion for �� reduces to the one obtained by Gibson and
Whiteman.13 As an example, let us consider a RFP with as-
pect ratio R=3.87 in a BFM state characterized by �
=3.114. For such a state the mode �m=1,n=−5� is tearing
unstable and resonates at rs=0.969. The corresponding value
of �� is equal to 0.104. The formula �62� predicts then that
the saturated island will have a width equal to w=0.026.

VI. CONCLUSIONS

In this paper the nonlinear saturation of a tearing mode
perturbing force-free equilibria relevant for RFPs has been
investigated. The analysis applies to equilibria for which the
parameter � is constant over a sufficiently large region in-
cluding the resonant radius. The problem of nonlinear satu-
ration of tearing modes is tackled by making use of a pertur-
bative technique previously adopted for the tokamak case. In
fact, interestingly, it was possible to show that such tech-
nique can be applied also without the requirement of a strong
guide field, provided that pressure gradients are negligible.
The saturation relation obtained by means of this technique
consists of a simple relation according to which the saturated
island width is proportional to the instability parameter ��
and inversely proportional to the square of the value of � at
the resonant surface. In the context of a recent scenario pro-
posed for explaining the occurrence of cyclic QSH, the satu-
ration relation was applied to stepped-� equilibria. In this
case the island width has been shown to grow approximately
linearly for small values of the step height ��−��crit. As the
value of ��−��crit increases the response of the island
width to the increase in the step height becomes nonlinear
showing a tendency toward an explosive growth for a finite
value of ��−��crit. In practice, however, the theory holds

FIG. 1. Plot showing the width w of the saturated island, generated by an
�m=1,n=7� tearing mode, for different values of the parameter ��
−��crit. Each value of ��−��crit refers to a member of a family of force-
free equilibria with a stepped-� profile, characterized by a step placed at
rstep=0.296 in a RFP with aspect ratio R=4.34. Such family originates by an
initial Taylor equilibrium with �T=2.93.
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only as long as the island separatrix does not reach rstep. The
interaction of the island with the region of strong current
density variation might be possibly related to the mechanism
that causes the abrupt decay of the dominant mode during
cyclic QSH states. Modelling this phase of the island dynam-
ics will be subject of future investigations. Finally, the de-
rived saturation relation is applied with one example to the
BFM in the case of a realistic aspect ratio.
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APPENDIX: INNER MATCHING FUNCTION

The purpose of this appendix is to provide details about
the derivation of the expression of Min�X� up to terms of the
order O�w2�.

The integral form for Min�X�, as given by Eq. �56�, reads

Min�X� = −
16

w�
eq� �0��−X

X

dX��
−�

�

du�− w
1

f�0�
df

dx
�0�

��

�X�

− w2 d

dx
	1

f

df

dx

�0�X�

��

�X�
− w2 1

rsf�0�
�2�

�u2 − w��0�G

− w
d�

dx
�0�X�G − w2 d2�

dx2 �0�
X�2

2
G −

1

2

dG2

d�
� . �A1�

After inserting the expressions for the inner solutions for �
and G given in Eq. �53�, one obtains that the lowest order
contribution is of order O�w−1� and reads

M−1in�X� = −
16

�w
eq� �0��−X

X

dX��
−�

�

du

��− ��0�G−1 −
1

2

dG−1G1

d�
�cos u

= −
16

�w
eq� �0��−X

X

dX��
−�

�

du

��− ��0��
eq� �0� + �geq�0��cos u = 0. �A2�

At the next order one has

M0in�X� = −
16

�
eq� �0��−X

X

dX��
−�

�

du

��−
d�

dx
�0�X�G−1 −

1

f

df

dx
�0�

��0

�X�
�cos u

= −
16

�
eq� �0��−X

X

dX��
−�

�

du

��−
d�

dx
�0�X�G−1 −

1

f

df

dx
�0�

��0

�X�
�cos u

= −
16

�
eq� �0��−X

X

dX��
−�

�

du

��−
d�

dx
�0�geq�0�X� +

1

f

df

dx
�0�
eq� �0�X��cos u = 0.

�A3�

The lowest order finite contribution to Min�X� comes then
from terms of order O�w� which yield

M1in�X� = −
16w

�
eq� �0��−X

X

dX��
−�

�

du�−
1

2

d2�

dx2 �0�X�2G−1 − ��0�G1 + �
geq� �0�

2
�X�2��0

−
d

dX�
	1

f

df

dx

�0�X�

��0

�X�
−

1

f

df

dx
�0�

��1

�X�

−
1

rs + f�0�
�2�0

�u2 �cos u

= 2wX���0�� +
1

rsf�0�� −
8w�2

�
�

−X

X

dX��
−�

�

du�−
2


eq� �0�
�0 −

cos u

8 �
�0

cos u

+
16

�
eq� �0�
1

f

df

dx
�0�2wX�

−�

�

duC�u�cos u

= 2wX���0�� +
1

rsf�0�
− �2 +

16

�
eq� �0�
1

f

df

dx
�0��

−�

�

duC�u�cos u� + w
�2

�
�

−X

X

dX��
−�

�

du�cos u��0
cos u , �A4�

and this corresponds to the expression given in Eq. �57�.
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