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Equations describing the nonrelativistic motion of a charged particle in an arbitrary noninertial
reference frame are derived from the relativistically invariant form of the particle action. It is shown
that the equations of motion can be written in the same form in inertial and noninertial frames, with
the effective electric and magnetic fields in the latter modified by inertial effects associated with
centrifugal and Coriolis accelerations. These modifications depend on the particle charge-to-mass
ratio, and also the vorticity, specific kinetic energy, and compressibility of the frame flow. The
Newton–Lorentz, Vlasov, and Fokker–Planck equations in such a frame are derived. Reduced
models such as gyrokinetic, drift-kinetic, and fluid equations are then derivable from these equations
in the appropriate limits, using standard averaging procedures. The results are applied to tokamak
plasmas rotating about the machine symmetry axis with a nonrelativistic but otherwise arbitrary
toroidal flow velocity. Astrophysical applications of the analysis are also possible since the power
of the action principle is such that it can be used to describe relativistic flows in curved spacetime.
�doi:10.1063/1.3238485�

I. INTRODUCTION

Historically, the equations of plasma physics have gen-
erally been studied using inertial reference frames, not least
because Maxwell’s equations have their simplest form in
such frames. However, tokamak plasmas often rotate at ve-
locities comparable to or exceeding the thermal velocity of at
least one of the plasma ion species,1 while much higher ro-
tation rates are encountered in some astrophysical plasmas,
such as pulsar magnetospheres.2 It is likely that the observed
behavior of such systems can be better understood in some
respects by considering the equations determining their evo-
lution in suitable noninertial frames. In this paper a first-
principles approach is used to formulate the Newton–
Lorentz, Vlasov, Fokker–Planck, and plasma fluid equations
in an arbitrary accelerating frame, with particular emphasis
on the case of a rotating frame.

In the tokamak context work by Brizard3 on the exten-
sion of gyrokinetic theory to rotating frames was recently
applied by Peeters and co-workers4–6 to the study of turbu-
lent particle, heat, and momentum transport. In this paper we
propose an alternative to the approach used by Brizard by
taking into account the exact form in the rotating frame of
the Newton–Lorentz equations and the associated Vlasov
and Fokker–Planck equations. Through the use of a relativ-
istically invariant action principle, the exact equations are
simpler to manipulate than the gyroaveraged equations. Once
the exact equations in the noninertial frame are established, it
is relatively straightforward to construct the appropriate drift
orbit theory. One can then use the Whitham “averaged La-
grangian” technique,7,8 and methods developed by Bernstein
and Catto9 or equivalently, the phase-space Lagrangian
method employed by Brizard3 to obtain nonlinear gyroki-
netic equations.

The paper is organized as follows. In Sec. II we discuss
an elementary kinematic approach to the description of
charged particle motion in a uniformly rotating frame with
constant angular velocity. In this simple case the Newton–

Lorentz equations can be written in exactly the same form as
in the laboratory �inertial� frame by introducing equivalent
electric and magnetic fields. In Sec. III nonrelativistic
charged particle motion in an arbitrary accelerating frame is
considered, using Hamilton’s principle and a relativistically
invariant form of the single-particle Lagrangian. We show
that by introducing equivalent scalar and vector potentials
the Newton–Lorentz equations in the accelerating and iner-
tial frames can be made formally identical. The Lagrangian,
Hamiltonian, and canonical momenta of the particles are dis-
cussed and conservation laws explained. In Sec. IV we use
the Hamiltonian in the accelerating frame to obtain the Vla-
sov equation for the particle distribution function in that
frame. The corresponding drift orbit equations are derived by
using a standard averaged Lagrangian argument, applied to
equivalent fields rather than inertial frame fields. The corre-
sponding gyrokinetic and moment �fluid� equations are ob-
tained in the dissipationless limit. In Sec. V we consider
applications of the analysis to the Joint European Torus
�JET�,1 a conventional aspect ratio tokamak with relatively
moderate rotation, and the mega-ampere spherical tokamak
�MAST�,10 a tight aspect ratio device in which the effects of
rotation on the equivalent fields are somewhat greater than
they are in JET. We also discuss how the frame flow can be
related to the electrostatic potential in the laboratory frame
when the flow is due to rotation of the bulk ion species. In
Sec. VI we compare and contrast our results with previous
work in this area. In Sec. VII we present a summary of our
results and conclusions.

II. CHARGED PARTICLE MOTION IN UNIFORMLY
ROTATING FRAMES

We study in the first instance a uniformly rotating refer-
ence frame with a fixed rotation axis and constant angular
velocity �=�ez, where ez is the unit vector in the
z-direction. The laboratory frame Klab is taken to be an iner-
tial frame of reference with a fixed origin and the rotating
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frame is denoted by Krot. We consider the nonrelativistic
limit and thus assume that all relevant lengths in the problem
are much smaller than c /� �the light cylinder radius�. If the
two frames coincide at t=0, a point P at r= �x ,y ,z� in Klab

has rotating frame coordinates R= �X ,Y ,Z� at time t, which
satisfy the equations

x = X cos �t − Y sin �t , �1�

y = X sin �t + Y cos �t , �2�

z = Z . �3�

It is well known �see, e.g., Ref. 11� that rates of change in
position in Krot and Klab are related by the expression

dr

dt
=

dR

dt
+ � � R , �4�

where the time derivatives are taken in each frame with the
corresponding basis vectors held constant. Denoting the
laboratory and rotating frame time derivatives by d /dt and
� /�t, respectively, we obtain from Eq. �4�

d2r

dt2 = � �

�t
+ ���� �R

�t
+ � � R�

=
�2R

�t2 + 2� � � �R

�t
� + � � �� � R�

=
�2R

�t2 + 2� � � �R

�t
� −

1

2
� ��2R2� , �5�

where R= �X2+Y2�1/2= �x2+y2�1/2. Hence, for a particle of
mass m Newton’s second law in the rotating frame takes the
form

m
�2R

�t2 + 2m� � � �R

�t
� −

m

2
� ��2R2� = F , �6�

where the force on the particle F is frame independent but its
components may depend on � if they are written in terms of
rotating frame coordinates. We note from Eq. �6� the well-
known result that two pseudoforces appear in the equations
of motion in the rotating frame: the Coriolis force, which is
velocity dependent but does no work, equal to 2m��R /�t�
��, and the centrifugal force, which can be written as the
gradient of a potential equal to m�2R2 /2.

In the nonrelativistic limit �i.e., neglecting terms of order
�2R2 /c2, where c is the speed of light� the electric and mag-
netic fields in the laboratory and rotating frames are related
by the expressions

Brot = Blab, �7�

Erot = Elab + �� � R� � Blab, �8�

and the Newton–Lorentz equations in these frames for par-
ticles of charge Ze �e being the proton charge� are

m
dv

dt
= Ze�Elab + v � Blab� , �9�

m
�V

�t
= Ze�Erot + V � Brot� + 2mV � � +

m

2
� ��2R2� ,

�10�

where V=�R /�t=v−��R, with v being the particle’s ve-
locity in the laboratory frame. Equation �10� can be written
in the form

m
�V

�t
= Ze�Erot +

m

Ze
� ��2R2

2
� + V � �B +

2m

Ze
��� .

�11�

If the fields are time independent in the rotating frame we
may write Erot=−��rot and define equivalent electric and
magnetic fields,

E� = − ���, �12�

B� = B +
2m

Ze
� , �13�

where the equivalent electric potential is defined by the
expression

�� = �rot −
m

2Ze
�2R2. �14�

The Newton–Lorentz equations in the rotating frame then
have the familiar form

m
�V

�t
= Ze�E� + V � B�� . �15�

It is apparent from Eq. �15� that in a uniformly rotating
frame with constant electric and magnetic fields, a charged
particle moves exactly as it would do in an inertial frame in
the presence of electric and magnetic fields E� and B� which
will, in general, differ in both magnitude and direction from
the fields Erot and Brot. In particular, the particle gyrates
about B� rather than Brot and, if the usual drift ordering ap-
plies, undergoes grad-B, curvature and E�B drifts that are
determined by E�, B� rather than Erot, Brot or Elab, Blab. Apart
from the assumptions of nonrelativistic motions and constant
uniform �, this result is completely general and hence valid
for arbitrary values of �, m, Ze, Elab, and Blab. Every gy-
roaveraged orbit or kinetic equation in the rotating frame
must be consistent with Eq. �15�.

The effective electrostatic potential �� is modified by a
centrifugal term, the associated force being directed radially
outward from the rotation axis. The centrifugal potential may
be written as

�cent = −
T

Ze

�2R2

Vth
2 	 −

T

Ze
M�

2 ,

where T	mVth
2 /2. If T is taken to be the temperature of a

species with mass m and charge Ze whose mean flow veloc-
ity coincides with that of the rotating frame, M� is then the
sonic Mach number of the flow. The centrifugal potential is
independent of the rotation direction and depends only upon
the Mach number and the temperature.
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As noted recently by McClements and McKay,12 the Co-
riolis force simply adds to the stationary magnetic field a
uniform component parallel to the rotation axis. This is an
immediate consequence of Larmor’s theorem, which states
that the behavior of a charged particle of charge-to-mass ra-
tio Ze /m in a uniform magnetic field B is indistinguishable
from its behavior in a frame rotating uniformly at a rate �
= �Ze /2m�B in the absence of a magnetic field.13 The
strength of the uniform field relative to the stationary field is
measured by a dimensionless rotation parameter ��

�

	2� /�c, where �c=ZeB /m is the cyclotron frequency of
the particle in the magnetic field Brot. The vertical magnetic
field due to the Coriolis force in the rotating frame is propor-
tional to � and hence, unlike the centrifugal force, depends
on the sign of the rotation.

Henceforth we shall �unless stated otherwise� work in
the rotating frame with �=�ez and write � /�t=d /dt.
Charged particles execute Larmor gyrations about B� with
effective gyro frequency

�c
� =

Ze

m
B� �16�

and effective Larmor radius

rL
� =

c�

�c
� . �17�

The effective magnetic field has magnitude

B� = B�1 + 2��
� b · eZ + ���

� �2�1/2, �18�

where b=B /B and c� is the particle’s gyration velocity
about B�=B�b�. Subject to the usual drift ordering require-
ments on the equivalent fields, adiabatic invariance applies to
collisionless orbits, the effective magnetic moment being
��=mc�

2 / �2B��	E�
� /B�. Moreover toroidal canonical mo-

mentum will be conserved if the equivalent fields are axi-
symmetric about the rotation axis, and there will be a con-
served energy integral of the particle motion if the equivalent
fields are time independent.

III. CHARGED PARTICLE MOTION IN GENERAL
NONINERTIAL FRAMES

In the limit in which the emission and absorption of
radiation can be neglected, the action for a particle of rest
mass m and charge Ze in an electromagnetic field can be
written in the generally covariant form13

S = − 

�in

�fin

�mv�v� + ZeA�v��d� . �19�

Here �in and �fin are the initial and final proper times, v�

=dx� /d� where x� is an arbitrary set of spacetime coordi-
nates, and A� is the covariant form of the electromagnetic
four-potential �we follow standard practice by using Roman
and Greek indices to label components of vectors or tensors
in, respectively, three-dimensional space and four-
dimensional spacetimes, with summation implied by the rep-
etition of either type of index�. In Minkowski spacetime the
proper time interval d� is related to the coordinate time in-

terval dt by the relation �d�=dt, �= �1−v2 /c2�−1/2 being the
usual Lorentz factor for a particle with three-velocity v
=dr /dt. In this spacetime the contravariant and covariant
forms of the particle four velocity are v�=��c ,v� and v�

=��c ,−v�, respectively, while A�= �� /c ,−A� where A is the
magnetic vector potential. Equation �19� may then be written
in the equivalent form

S = 

tin

tfin

Ldt , �20�

where tin and tfin are now the initial and final coordinate
times and

L = − mc2�1 − v2/c2�1/2 + Ze�v · A − �� �21�

is the Lagrangian. Invoking Hamilton’s principle of least ac-
tion, i.e., requiring that the trajectory of the particle between
tin and tfin is such that S has a stationary value, leads to the
well-known Euler–Lagrange equations

d

dt
� �L

�vi
� =

�L
�xi

, �22�

where xi denotes a general spatial coordinate of the particle
and vi=dxi /dt. The key point here is that Eq. �22� is com-
pletely general for a particle in Minkowski spacetime that is
not emitting or absorbing radiation, in that it yields the equa-
tions of motion in any frame, inertial, or otherwise.

In the following u f =v−V denotes a nonrelativistic flow
in Klab, varying in space and time; the magnetic vector and
electric potentials in this frame are denoted by Alab and �lab.
It follows that Elab=−�Alab /�t−��lab and Blab=��Alab.
The potentials in the laboratory frame are related to those in
the flow frame A f, � f by the expressions13

Alab = A f , �23�

�lab − Alab · u f = � f . �24�

Equation �24� is a consequence of the invariance of A ·v
−�, i.e.,

Alab · v − �lab = A f · V − � f , �25�

which arises, in the nonrelativistic limit, from the manifest
invariance of A�v�. Equations �23� and �24� are equivalent to
the well-known formulas for the transformation of electric
and magnetic fields in the nonrelativistic limit �cf. Eqs. �7�
and �8��,

B f = Blab, �26�

E f = Elab + u f � Blab. �27�

It is evident from Eq. �21� that �L is a Lorentz invariant, and
therefore, in the nonrelativistic limit that we are considering,
L is invariant under transformations between Klab and the
flow frame, K f.

The frame flow can be written as u f�x , t�, where x=xiei,
xi= �x1 ,x2 ,x3�= �x ,y ,z� being the Cartesian position vector in
Klab, and ei is the unit Cartesian basis vectors in that frame.
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We can then express the coordinates of any point in Klab in
terms of generalized coordinates in the flow frame, Xi

= �X1 ,X2 ,X3�= �X ,Y ,Z�,

xi = xi�X1,X2,X3,t� . �28�

Differentiating this equation with respect to time we obtain

dxi

dt
=

�xi

�t
+

�xi

�Xj

dXj

dt
. �29�

The corresponding vector equations are

v =
dxi

dt
ei = u f + V , �30�

where

u f =
�xi

�t
ei �31�

and

V = bi
dXi

dt
. �32�

In this last expression bi	�x /�Xi are the contravariant basis
vectors in K f; they are not necessarily mutually orthogonal.
Substituting Eqs. �30�–�32� in the nonrelativistic kinetic en-
ergy expression T=mv ·v /2 we obtain

T =
1

2
mbi · b j

dXi

dt

dXj

dt
+ mu f · bi

dXi

dt
+

1

2
mu f · u f . �33�

The first term on the right hand side of Eq. �33�, which we
denote by Tmech, is a homogeneous quadratic function of the
generalized velocities dXi /dt, but can also depend on the
generalized coordinates and time. The set of inner products
bi ·b j can be identified as the metric tensor gij; it is positive
definite and symmetric. We denote the second and third
terms in Eq. �33� by TCor and Tcent, respectively; TCor is linear
in the generalized covariant frame velocity components u f ·bi

and also in the generalized velocities dXi /dt, while Tcent de-
pends only on the generalized coordinates. If the frame flow
is a pure rotation TCor is associated with the Coriolis force
and Tcent is associated with the centrifugal force.

Using Tmech we can define generalized mechanical
momenta,

pi =
�Tmech

�Ẋi
= mgijẊ

j . �34�

We may then write

Tmech =
1

2m
gijpipj �35�

and

Ẋi =
�Tmech

�pi
=

1

m
gijpj =

pi

m
. �36�

In the above expressions gij =bi ·b j is the contravariant form
of the metric tensor, bi	�Xi being covariant basis vectors in
the flow frame. Taking the nonrelativistic limit and neglect-
ing the rest mass term mc2, we find that the frame-invariant

Lagrangian given by Eq. �21� can be expressed in the form

L = 1
2mv2 + ZeAlab · v − Ze�lab. �37�

We have already discussed the first term in this expression.
Setting v=u f +V and using the transformation laws given by
Eqs. �23� and �24�, we obtain

L = Tmech + TCor + Tcent + Ze�A f · V − � f�

= Tmech + ZeA�iẊ
i − Ze��, �38�

where

A�i = Afi +
m

Ze
ufi �39�

and

�� = � f −
m

2Ze
ufiuf

i . �40�

Substituting the second expression in Eq. �38� into the
Euler–Lagrange equations �Eq. �22�� we obtain

dpi

dt
= Ze�E�i + F�ijV

j� , �41�

where

E�i = −
�A�i

�t
−

���

�Xi �42�

and

F�ij =
�A�j

�Xi −
�A�i

�Xj . �43�

The independent components of the three-dimensional anti-
symmetric tensor F�ij can be identified with the three com-
ponents of an equivalent magnetic field, given by the curl of
the equivalent three-vector potential �Eq. �39��. Thus, we
have derived the exact nonrelativistic equation of motion in
general coordinates in the flow frame.

The use of tensor formalism to derive the equations of
motion, as indicated above, clarifies the nature of the trans-
formations relating the inertial and noninertial frames. A
somewhat more elementary �but less illuminating� approach
using vectors is also possible. Setting v=V+u f, A=Alab

=A f, and �=�lab=� f +A f ·u f in Eq. �37� we obtain

L =
1

2
mV2 + ZeV · �A f +

m

Ze
u f� − Ze�� f −

muf
2

2Ze
� . �44�

Dropping the suffix on A, we note that the canonical mo-
menta in the flow frame are given by

P =
�L
�V

= mV + Ze�A +
m

Ze
u f� . �45�

The Hamiltonian in the flow frame H	P ·V−L is then
given by
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H =
1

2m
�P − Ze�A +

m

Ze
u f��2

+ Ze�� f −
muf

2

2Ze
� . �46�

Writing the equivalent potentials given by Eqs. �39� and �40�
in the form

A� = A +
m

Ze
u f , �47�

�� = � f −
muf

2

2Ze
= �lab − A · u f −

muf
2

2Ze
, �48�

we note that the Lagrangian and Hamiltonian can be written
as

L = 1
2mV2 + ZeV · A� − Ze��, �49�

H =
1

2m
�P − ZeA��2 + Ze��. �50�

Finally, using the identity ��V ·A��= �V ·��A�+V� ��
�A��, it is easily shown that the Euler–Lagrange equations
corresponding to Eq. �49� have the vectorial form

m
dV

dt
= Ze�E� + V � B�� , �51�

where the equivalent fields are given by

E� = − ��� −
�A�

�t
= E f −

m

Ze

�u f

�t
+

m

2Ze
� uf

2, �52�

B� = � � A� = B f +
m

Ze
W f . �53�

Here, W f =��u f is the vorticity of the frame flow, and E f

and B f are the electric and magnetic fields in K f at the loca-
tion of the particle, respectively. It is straightforward to
verify that the two forms of the equations of motion given by
Eqs. �41� and �51� are exactly equivalent.

Setting u f =��R where �=��Z is a uniform and
constant angular velocity, and assuming time-independent
fields in the flow frame, we recover Eqs. �12�–�15� from the
expressions given above; in this case W f =2�. If � depends
on R and Z, which is normally the case in rotating tokamak
plasmas, W f has both radial and vertical components. Equa-
tion �37� indicates that the particle gyrates around B� rather
than Blab or B f and its drifts are determined by E�, B� rather
than Elab, Blab �or E f, B f�. This distinction between fields in
inertial and noninertial frames is exact and must be respected
in any correct formulation of the charged particle dynamics.
The effective fields depend on u f and m /Ze but not on the
particle’s velocity in either the laboratory frame or the flow
frame. Hence the motions of all particles with the same
charge-to-mass ratio will be determined by the same effec-
tive fields.

The physical meaning of these equations is clear. There
is, in general, a Coriolis-like inertial force that is velocity
dependent but does no work on the particle: It is orthogonal
to the velocity vector of the particle in the frame, and there-
fore combines naturally with the Lorentz force in the

Lorentz–Newton equations. In addition there is a centrifugal-
like inertial force that is independent of the particle velocity
but, unlike the Coriolis force, it depends on the gradient of
the specific kinetic energy of the frame flow. Hence it pro-
duces purely conservative accelerations along and perpen-
dicular to the equivalent magnetic field, and thus contributes
to the equivalent electrostatic potential, as described by Eqs.
�40� and �48�.

The relative size of the modification to the effective
magnetic field scales as Wf /�c. The effective electric field
depends on a centrifugal potential m / �2Ze�uf

2 and also con-
tains a term proportional to �u f /�t. Since the electric poten-
tial in a frame comoving with the plasma is typically of the
order of Te /e, where Te is electron temperature and −e is
electron charge, the ratio of the centrifugal potential to the
electric potential in the comoving frame is around
�m /mi�Mf

2 /Z, where Mf =uf /vi is the Mach number of the
bulk ion flow, with mi being the bulk ion mass and vi

= �2Te /mi�1/2 the bulk ion thermal speed.
In terms of cylindrical coordinates �R ,	 ,Z� in K f the

Lagrangian takes the form

L = 1
2m�Ṙ2 + R2	̇2 + Ż2� + Ze�ṘA�R + 	̇RA�	 + ŻA�Z�

− Ze��. �54�

The corresponding canonical momenta and Hamiltonian are,
respectively,

PR = mṘ + ZIeA�R,

P	 = mR2	̇ + ZeRA�	,

PZ = mŻ + ZeA�Z,

H =
1

2m
��PR − ZeA�R�2 + �P	 − ZeA�	�2 + �PZ − ZeA�Z�2�

+ Ze��.

If �� and A� are symmetric about the Z-axis, L and H are
independent of 	. Then, by Noether’s theorem, P	 is a con-
stant of the motion. If, moreover, �� and A� are time inde-
pendent, there is a conserved energy integral of the particle
motion in the flow frame �namely, H itself�. If u f is a purely
toroidal azimuthally symmetric flow, it is divergence-free
and only modifies the poloidal magnetic field. If the rotation
is in the cocurrent direction, it reduces the effective poloidal
field outboard of the magnetic axis and increases it on the
inboard side. As noted in Ref. 12, this effect has conse-
quences for the orbits and hence neoclassical transport of
massive impurity ions. If u f has a spatially varying poloidal
component, the effective toroidal magnetic field is also
modified.
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IV. KINETIC AND FLUID EQUATIONS
IN NONINERTIAL FRAMES

A number of important consequences follow from the
Lagrangian and Hamiltonian derived in Sec. III. In the ab-
sence of collisions the particle distribution function
f�qk , Pk , t� in the flow frame satisfies the single-particle Liou-
ville equation

� f

�t
+ �

k=1

3 � �H
�Pk

� f

�qk
−

�H
�qk

� f

�Pk
� = 0, �55�

where Pk are the canonical momenta associated with general
coordinates qk. Using the expression for H given by Eq. �34�
together with Hamilton’s equations, we find that Eq. �45�
reduces to the standard form of the Vlasov equation

� f

�t
+ V · �f +

Ze

m
�E� + V � B�� ·

� f

�V
= 0, �56�

where, as before, � is the gradient operator in K f. Equation
�46� provides an exact description of dissipationless plasma
behavior in the noninertial frame: If the appropriate order-
ings apply, one may use this equation or Eq. �45� as the basis
for obtaining reduced kinetic and fluid descriptions of the
plasma, respectively by averaging over particle orbits and by
calculating velocity-space moments. It is important to note
that these procedures should only be carried out once the
exact kinetic equation in the noninertial frame has been ob-
tained, rather than vice versa.

Drift orbit theory in the flow frame and the associated
gyrokinetic theory can be developed, subject to the usual
orderings, by computing a gyroaveraged Lagrangian from
the exact expression given by Eq. �44�, using an approach
developed by Whitham.7,8 This intuitively appealing tech-
nique was demonstrated by Whitham himself �in the context
of nonlinear dispersive wave theory� to be equivalent to
multi-time-scale asymptotic perturbation theory; it is there-
fore equivalent to the phase-space Lagrangian approach em-
ployed by Brizard.3 From the gyroaveraged Lagrangian one
may obtain a gyrokinetic Hamiltonian, with the adiabatically
invariant magnetic moment �� �defined in terms of gyromo-
tion around the effective magnetic field, B�� as one of the
canonical momenta. The collisionless gyrokinetic equation
follows from the corresponding Liouville equation.

Since Eq. �51� is in the same form as the Newton–
Lorentz equation in an inertial frame, we can write down the
corresponding guiding center equation, which is applicable if
the usual drift ordering holds with respect to the effective
fields,8

m
dVgc

�

dt
= ZeB�Vgc

� � b� + ZeE� − �� � B�, �57�

where Vgc is the particle guiding center velocity and b�

=B� /B�. Equation �57� has formal solution

Vgc
� = V�

�b� + vD, �58�

where V�
�=Vgc ·b� and

vD = �E�

B�

−
�� � B�

ZeB�

−
1

�c

dVgc
�

dt
� � b�. �59�

The collisionless drift-kinetic equation then takes the form14

�F

�t
+ �V�

�b� + vD� · �F + �Ze
���

�t
+ ��

�B�

�t

− ZeV�
�b� ·

�A�

�t
� �F

�E
= 0, �60�

where F is the guiding center distribution and

E = 1
2m�V�

��2 + Ze�� + ��B� �61�

is the particle energy in K f. The more exact gyrokinetic
equation �with or without collisions� in K f can be obtained
using methods developed by Bernstein and Catto,9 with the
sole modification that E�, B�, and �� must be used rather
than the Maxwell fields and potentials. In the notation used
by Bernstein and Catto, the nonlinear, electromagnetic, col-
lisional, gyrokinetic equation takes the form

�F

�t
+ 

ṙ��� · ��F + 

u̇���

�F

�u�
= 

C�� , �62�

where 

 . . . �� denotes a gyrokinetic average, r� and u� denote
guiding center position and parallel velocity, respectively,
and C is the Fokker–Planck collision term. The calculation
of 

C�� is identical in K f and Klab.

Collisions �and other dissipative effects, such as radia-
tion� can be readily incorporated into the Newton–Lorentz
equations in the noninertial frame by adding drag and Lange-
vin force terms.15 For the case of trace impurity ions collid-
ing with bulk ions the equations can be written in the form

m
dV

dt
= Ze�E� + V � B�� +

m

�
�ui − V� + f , �63�

where ui is the bulk ion fluid flow in K f, � is the momentum
relaxation time for the impurity species due to collisions with
bulk ions, and f is a random stochastic force. This equation
has recently been used in the laboratory frame to investigate
collisional trace impurity transport in MAST.12,16 Collisions
with other species �in particular electrons� can be easily in-
cluded in Eq. �63�.

One may also derive fluid equations in K f by taking
moments of the Vlasov or Fokker–Planck equations. In the
simplest approximation, with isotropic pressure and no dis-
sipation, the continuity, momentum, and energy equations
are

�nZ

�t
+ � · �nZvZ� = 0, �64�

mnZ� �vZ

�t
+ �vZ · ��vZ� = − �pI + ZenZ�E� + vZ � B�� ,

�65�
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3

2
nZ� �TZ

�t
+ �vZ · ��TZ� + nZTZ � · vZ, = 0, �66�

where nZ, vZ, TZ, and pZ=nZTZ are the number density, flow
velocity, temperature, and pressure of the species under con-
sideration in the noninertial frame, respectively. Under
steady-state conditions one may use the identity v ·�v= ��
�v��v+��v2� /2 to express these equations in the form

� · �nZvZ� = 0, �67�

�pZ +
1

2
mnZ � vZ

2 = ZenZ�− ��� + vZ � �B� +
m

Ze
W�� ,

�68�

3

2
nZ�vZ · ��TZ + nZTZ � · vZ = 0, �69�

where W=��vZ. The inertia terms in Eq. �68� can be com-
bined with the electromagnetic force terms to yield the
simple pressure balance relation

1

ZenZ
� pZ = − ��̂ + vZ � B̂ , �70�

where �̂=��+mvZ
2 / �2Ze� and B̂=B�+ �m /Ze�W.

One can extend the above analysis in a straightforward
manner to include dissipation and sources of particles, mo-
mentum, and energy. All of the plasma species can be treated
in the same way, although it should be noted that the effec-
tive fields depend on the charge-to-mass ratio of the species
in question. Thus, the standard equations of plasma physics,
both kinetic and fluid, can be transformed rather simply to
nonrelativistic but otherwise arbitrary comoving frames. The
Maxwell fields can be obtained in the laboratory frame since
the transformation of these fields to the comoving frame is
straightforward.

V. APPLICATIONS TO TOKAMAKS

The relevance of the above analysis for tokamak plasmas
can be assessed by making some simple estimates. In JET,
for example, typical values of the toroidal magnetic field,
plasma current, and bulk ion �deuterium� temperature are B
�3 T, Ip�3 MA, and Ti�10 keV, respectively, and the
toroidal rotation rate can be up to around 2�105 rads−1,
with rotation velocities of up to about 1000 km s−1.1 For
deuterons these figures indicate that the effective vertical
magnetic field associated with the Coriolis force 2m� / �Ze�
appearing in our analysis is less than about 8 mT; typical
values of the poloidal magnetic field in JET are almost two
orders of magnitude larger than this, and therefore any addi-
tional drift orbit effects arising from this Coriolis force are
likely to be negligible. On the other hand the sonic Mach
number of the bulk ion flow Mf can be of order unity, and
therefore in the comoving frame, the centrifugal potential
can be comparable in magnitude to the electric potential.
Thus, the effects of rotation in JET on charged particle orbits
with charge-to-mass ratios similar to that of deuterons must
arise mainly from the centrifugal force. However, the

planned installation of an ITER-like first wall will result in
future JET plasmas containing significant numbers of tung-
sten �W� ions, which have very high mass number �184� and
are generally only partially ionized at typical JET tempera-
tures and densities.12 In these circumstances the Coriolis cor-
rection to the vertical field may, depending on the precise
value of the W charge state, become comparable to exter-
nally applied vertical fields.

In MAST B�0.5 T, Ip�1 MA, Ti
1 keV, and �

4�105 rads s−1.10 At the highest rotation rates the relative
change in the effective poloidal field arising from the Cori-
olis force is rather higher than it is in JET and could be
significant even for deuterons. Since, unlike the centrifugal
force, the Coriolis force depends on the direction of rotation,
one would expect to observe significant differences between
the transport properties of MAST plasmas that are corotating
and counter-rotating with respect to the plasma current. In-
deed test-particle simulations of collisional W transport in
MAST-like plasmas indicate that the particle confinement
time in counter-rotating plasmas can exceed that in corotat-
ing plasmas by up to a factor of 10, depending on the W
charge state.12 Turbulent transport in rapidly rotating MAST
plasmas could be studied in the framework of either gyroki-
netic or two-fluid theory, using appropriately defined equiva-
lent fields in differentially rotating comoving frames.

With regard to this last point, it is important to note that
the electric potential in the laboratory frame �lab depends, in
general, on the flow itself. For the purpose of evaluating ��

it is useful to have simple relations between �lab and u f.
Such relations can be obtained analytically from the equilib-
rium fluid equations for a dissipationless axisymmetric
electron-ion plasma, neglecting momentum sources and as-
suming purely toroidal rotation.17 Two limiting cases can be
identified: rigid body rotation, such that � depends only on
poloidal flux �, and Keplerian rotation, in which the me-
chanical toroidal angular momentum per unit mass of the ion
fluid is a flux function. In the rigid body case �lab is related
to � by the expression18

e�lab = e�0��� +
Te

2�Te + Ti�
mi����2R2, �71�

where �0 is a flux function and mi is bulk ion mass. In the
Keplerian case one obtains an expression of the form17

e�lab = e�0��� −
Te

2�Te + Ti�
mi����2

R2 , �72�

where ����=R2�. Thus, in both cases �lab is not a pure flux
function. It is also possible to obtain relations between the
flow and the temperature profiles, and between the flow and
the plasma density. For both rigid body and Keplerian rota-
tion the plasma density is higher on the outboard side of a
flux surface than it is on the inboard side due to centrifugal
effects, although the dependence of the density on R differs
in the two rotation scenarios.17 Of course, the profiles of
these quantities in real tokamaks depend in part on angular
momentum sources and transport processes, but the idealized
limiting cases considered in Ref. 17 serve to illustrate the
processes whereby the potential can be determined self-
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consistently in terms of the flow and other plasma param-
eters. Having obtained �lab it is then straightforward to cal-
culate � f and proceed with the desired calculation �single-
particle orbit, kinetic or fluid� in the noninertial frame.

The frame flow u f may not be divergence-free. However,
in general, we may decompose it into an incompressible
component u f

� and an irrotational component �� f, where � f

is a scalar function, i.e.,

u f = u f
� + �� f , �73�

where

� · u f
� = 0, �74�

� � u f
� = W f , �75�

and

�2� f = � · u f . �76�

If the flow is steady the particle Lagrangian does not depend
on V ·�� f since this term can be written as a total time de-
rivative of � f and can thus be eliminated from the action. The
Lagrangian takes the form

L� =
1

2
mV2 + ZeV · �A +

m

Ze
u f

��
− Ze�� f −

m

2Ze
��uf

��2 + ��� f�2� −
m

Ze
� · �� fu f

��� .

�77�

The canonical momenta depend only upon the solenoidal
component u f

� and the effective vector potential A�=A
+ �m /Ze�u f

� is divergence-free if � f is time independent, in
which case

�� = � f −
m

2Ze
��uf

��2 + ��� f�2� −
m

Ze
� · �� fu f

�� . �78�

Thus the effective vector potential �and hence the effective
magnetic field� in the noninertial frame depend only on the
solenoidal �incompressible� part of the frame flow which de-
termines its vorticity, while the effective electric potential
depends on both the solenoidal and irrotational parts of the
flow. Hence a purely irrotational frame flow does not change
the effective magnetic field, whereas a purely solenoidal flow
modifies both the effective magnetic and effective electric
fields.

We note a possible general application of potential inter-
est in both tokamak and astrophysical applications. The fact
that u f�x , t� is nonrelativistic but otherwise arbitrary can be
exploited as follows: given Elab�x , t� and Blab�x , t� we could
define a velocity field u f by the three equations,

m� �u f

�t
+ u f · �u f� = Ze�Elab + u f � Blab� . �79�

The quantity u f represents the fluid velocity of a species
which is cold and dissipationless, and whose motion is gov-
erned by the electromagnetic fields in the laboratory frame.
Writing the particle velocity in this frame as v=u f +V, we
can obtain V by solving Eq. �51�. If, at each instant, we

coevolve u f and V for a set of particles, we can obtain the
particle trajectories in the laboratory frame by solving

dx

dt
= u f�x,t� + V .

The velocity u f is determined by E�B and polarization
drifts; it does not contain the particle velocity since it is a
frame velocity. Computing the particle motions after first
subtracting off the electric field drifts does not necessarily
lead to more accurate results than would be obtained by solv-
ing the equations of motion in the laboratory frame, but it
may be advantageous to use the frame defined by Eq. �79�
for the purpose of gyrophase averaging. Moreover, in the
case of ions the equivalent fields E� and B� can depend sig-
nificantly on u f and hence, via Eq. �79�, are influenced by
spatial and temporal gradients in the laboratory frame fields.
In these circumstances it may be easier to gain an intuitive
understanding of the dynamics of charged particles by com-
puting their orbits in a frame moving at velocity u f.

It should also be noted that the rotating frame equations
are well behaved for all values of the rotation parameter, ��

� ;
taking the limit as this tends to zero yields the standard labo-
ratory frame equations. The limit ��

� →
 corresponds to ei-
ther the ambient magnetic field or the charge-to-mass ratio
going to zero. The drift ordering breaks down in this limit
but the exact Vlasov and Fokker–Planck equations remain
entirely regular and describe the evolution in phase space of
unmagnetized species. Gyrokinetic ordering in the equivalent

fields requires �c
�� �Ė� /E��, �Ḃ� /B��, and rL

����E� /E��
+ ��B� /B����1. While these conditions may not always be
satisfied, the exact equations can always be transformed to
any nonrelativistic comoving frame using the analysis pre-
sented here.

VI. DISCUSSION

We now relate our work to a paper on nonlinear gyroki-
netics in rotating axisymmetric plasmas �an important special
class of noninertial frames� by Artun and Tang.19 These au-
thors consider frame toroidal flow velocities u f

=�R���R2�� and derive from a transformed Vlasov equa-
tion �Eq. �12� in Ref. 19� a gyrokinetic equation. They par-
tially follow our procedure by introducing a shift of origin in
velocity space, vrot=vlab−u f �note that our u f =V of Artun
and Tang�, but retain laboratory frame position coordinates
xlab. As we have shown, both our kinematic approach and the
much more general Hamilton’s principle deliver expressions
of definitive simplicity for both the Vlasov equation and the
Newton–Lorentz equations in K f. Indeed, the Vlasov equa-
tion employed by Artun and Tang contains, in addition to the
transformed Maxwell fields, velocity-dependent terms and
� /�x, the gradient operator in the laboratory frame rather
than the rotating frame.

The results derived by these authors should agree with
any obtained from our equations, if carried to all orders,
since both sets of equations are obtained from the inertial
frame equations by purely mathematical manipulations.
However, our equations exhibit a far simpler structure and
reveal real physical characteristics of the motion which are
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obscured by the appearance of �u f, which appears in all the
formulas of Artun and Tang. We have shown that in the
noninertial frame the gyromotion is about the equivalent
field B� and adiabatic invariants are also defined with respect
to this field. This simplicity is due to the well-known general
covariance of Lagrange’s equations under arbitrary transfor-
mations to generalized coordinates and the relativistic invari-
ance of A�v�. In all formulations where our transformations
are not used to transform to a comoving noninertial frame,
one will find, in addition to the Lorentz forces in the frame,
inertial forces depending on the frame velocity and its spatial
gradients in complicated ways, and also depending on the
particle velocity with no simple physical interpretation. Of
course, one is free to use any coordinate system �including
the inertial laboratory frame� to solve problems, but we be-
lieve that our approach is more general and offers both rigor
and intuitive appeal and should be easier to implement in
full-orbit or gyro-orbit codes.

Next we discuss the relationship between the present
analysis and previous work by Brizard.3 Some general con-
sequences which follow will also be stated. Brizard3 consid-
ered the derivation of the nonlinear gyrokinetic equation in a
toroidally corotating frame for the case of an axisymmetric
tokamak plasma. Such frames, of course, constitute an im-
portant subset of the general class of noninertial frames con-
sidered in the present paper. To clarify the nomenclature, the
following conventions are noted: the laboratory frame coor-
dinate and velocity variables in Brizard’s paper are �x ,v� and
the plasma flow velocity is denoted by u; this is equivalent to
our u f. Brizard’s noninertial frame coordinate and velocity
variables are �r ,c�; c is thus equivalent to our V. Brizard
proceeds to derive the gyrokinetic equation in the noninertial
frame using a phase-space Lagrangian Lie-transform pertur-
bation method.

Within a self-consistent ordering expansion, carried to
third order in the particle mass/charge ratio �see Appendix B
of Ref. 3�, Brizard introduces a particle velocity,

u0
� = u0�b +

b

B
� ��0 + Wb , �80�

where b is the unit vector in the direction of B, u0� is the
component parallel to B of the zeroth order fluid velocity, �0

is the zeroth order electrostatic potential, and W is the par-
ticle velocity parallel to B. Brizard also introduces an effec-
tive magnetic field,

B� 	 � � A� = B +
m

Ze
� � u0

�. �81�

This field depends on both the particle’s position and its
velocity in the direction parallel to the magnetic field in the
laboratory frame. It differs from our equivalent field B�,
which, for a given flow u f, depends on particle position only.
As we have shown, when viewed in a noninertial frame, a
charged particle gyrates with respect to B� rather than B �or
B��. The consequences of Brizard’s analysis are most clearly
exhibited in his Eqs. �18� and �19� for the drift orbit of the
charged particle in the comoving frame,

Ẋ =
b

eB�
� � �H +

B�

mB�
�

�H

�W
, �82�

Ẇ = −
B�

mB�
� · �H , �83�

where X is the guiding center position,

H = e� + �B + 1
2mu0

� · u0
� �84�

is the guiding center Hamiltonian, and B�
� is the component

of B� parallel to B, i.e.,

B�
� = B�1 +

b

�
· � � u0

�� . �85�

Comparing Eq. �81� with Eq. �59� we note two key differ-

ences. First, the “parallel” component of Ẋ	Vgc in Eq. �81�
is taken along B� rather than B or B�. Second, the perpen-
dicular component is orthogonal to B rather than B�; the
exact Lorentz–Newton equations in the noninertial frame
�Eq. �51�� indicate that B� should be regarded as the true
effective field in this frame. As we have noted, all particle
drifts and adiabatic invariants should be defined with respect
to the equivalent fields in K f. The physical reason for this is
straightforward: In the laboratory frame the motion of a
charged particle is determined solely by the E and B fields
satisfying Maxwell’s equations. In any inertial frame moving
with constant velocity u relative to the laboratory, the motion
is determined in the nonrelativistic limit by the potentials
Alab and �lab−A ·u. When the comoving frame is an accel-
erating one, inertial terms contribute to both A� and ��. In
these circumstances it is natural to use B� as the magnetic
field in an orbit theory calculation.

Since the starting point of Brizard’s analysis is the exact
nonrelativistic Lagrangian, and the multi-time-scale pertur-
bation theory used by him via the Lie-transform method is
equivalent to the approach based on Whitham’s theory,7 one
would expect these two approaches to yield identical results,
if carried to the same order in the appropriate expansion
parameters. Although Whitham’s analysis was performed in
the context of nonlinear dispersive wave theory, his results
apply to any Lagrangian and corresponding action principle,
subject to the necessary asymptotic ordering of perturbation
theory. It is a general principle of electrodynamics that the
electromagnetic fields determining the motions of charged
particles �in any frame� depend only on the particle posi-
tions, not their velocities. If we were to set B�=B�+�B and
u0=u f so that �B=−mW / �Ze�� �b, and regarded particle
guiding center motions as being parallel to B� to zeroth or-
der, with ZeV��B assumed to be a small perturbation to
the Lorentz force, we would then infer the existence of a
“cross-field Coriolis drift” with respect to this zeroth order
motion. No such drift appears in the analysis if the parallel
direction is defined by B�. The choice of equivalent fields is
not unique but this example shows that the interpretation and
physical meaning of terms in ordered expansions may de-
pend on the particular choice that is made.

As noted by Peeters et al.,4 it is appropriate to use a
comoving frame when applying gyrokinetic theory to rapidly
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rotating tokamak plasmas since in these circumstances the
electric field in the laboratory frame does not satisfy the
usual gyrokinetic ordering. However, we believe that the ap-
proach outlined in Sec. IV of the present paper provides a
more physically appealing route to the formulation of gyro-
kinetic theory in a noninertial frame than that employed by
Brizard. Subject to drift ordering being applicable in the non-
inertial frame, our guiding center equations are applicable for
arbitrary nonrelativistic frame flows, including strongly
sheared, non-neoclassical poloidal flows.

It should be noted that the motions of electrons in a
frame corotating with a tokamak plasma are determined by
� f and A, since in this case the modifications to the poten-
tials arising from the frame flow are invariably negligible.
The fact that the bulk ion motions in the rotating frame are
determined by �� and A� rather than the Maxwell fields,
combined with the need to maintain quasineutrality, leads to
the self-consistent expressions for �lab given by Eqs. �71�
and �72�.17 Charged particle trajectories in the laboratory
frame must, of course, be independent of the frame in which
the equation of motion is solved; this frame independence is
guaranteed by the use of the exact Lagrangian given by Eq.
�44�. Since, in a noninertial frame, A� depends on the par-
ticle charge-to-mass ratio, the effective flux surfaces also de-
pend on Ze /m.12 One consequence of this is that gyrokinetic
simulation codes which model transport within flux tubes
rather than the entire plasma should employ different flux
tube geometries for electrons and bulk ions if the gyrokinetic
equations for these species are solved in a comoving frame.
However, there is no difficulty in using our formalism to
obtain the required equations.

VII. CONCLUSIONS

Using Hamilton’s principle of least action we have dem-
onstrated that the equation of motion of a charged particle in
a nonrelativistic but otherwise arbitrary noninertial frame has
the same form as it does in an inertial frame, with effective
electric and magnetic fields that depend on both the Maxwell
fields in the noninertial frame and the frame flow, u f. The
sole effect of the Coriolis force is to introduce an additional
term in the effective vector potential, �m /Ze�u f. In the case
of a tokamak plasma rotating toroidally at a constant angular
velocity � which is either uniform or depends only on R, this
gives rise to an additional vertical field. The Maxwell electric
potential in the noninertial frame differs from the inertial
frame potential by −A ·u f, where A is the Maxwell vector
potential �which is frame independent�; the effective poten-
tial �� differs from the Maxwell potential in the noninertial
frame by muf

2 / �2Ze�. The effective vector potential depends
only on the solenoidal �incompressible� part of the frame
flow, whereas the effective electric potential depends on both
the solenoidal and irrotational parts of u f. The Vlasov,
Fokker–Planck, Langevin, drift orbit, drift-kinetic, gyroki-
netic, and fluid equations can be formally derived exactly as
in the case of an inertial frame, except that the effective
fields and potentials must be used. A dissipationless two-fluid
model developed by the present authors can be used to relate

the toroidal flow in a tokamak plasma to the equilibrium
laboratory frame electric potential; the corresponding effec-
tive fields in the comoving frame can then be easily calcu-
lated. Our analysis is computationally testable under toka-
mak plasma conditions, and can be readily extended to
include relativistic flows and spacetime curvature, thereby
making it applicable to extreme astrophysical plasma envi-
ronments, such as the magnetospheres of rapidly rotating
pulsars. Although we have given particular attention to rotat-
ing frames, the analysis may also have applications to plas-
mas undergoing radial acceleration, for example, those in
inertial confinement fusion experiments20 or supernova
explosions.21
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