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Toroidal curvature induced screening of external fields by a resistive plasma
response

Yueqiang Liu,a) J. W. Connor, S. C. Cowley, C. J. Ham, R. J. Hastie, and T. C. Hender
Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, United Kingdom

(Received 28 May 2012; accepted 29 June 2012; published online 20 July 2012)

Within the single fluid theory for a toroidal, resistive plasma, the favorable average curvature

effect [Glasser et al., Phys. Fluids 18, 875 (1975)], which is responsible for the strong stabilization

of the classical tearing mode at finite pressure, can also introduce a strong screening effect to the

externally applied resonant magnetic field. Contrary to conventional understanding, this screening,

occurring at slow plasma rotation, is enhanced when decreasing the plasma flow speed. The

plasma rotation frequency, below which this screening effect is observed, depends on the plasma

pressure and resistivity. For the simple toroidal case considered here, the toroidal rotation

frequency has to be below �10�5xA, with xA being the Alfv�en frequency. In addition, the same

curvature effect leads to enhanced toroidal coupling of poloidal Fourier harmonics inside the

resistive layer, as well as reversing the sign of the electromagnetic torque at slow plasma flow.

[http://dx.doi.org/10.1063/1.4739062]

I. INTRODUCTION

The role of the plasma response to external non-

axisymmetric magnetic fields in tokamaks has become

increasingly important in view of the mitigation of edge

localized modes (ELMs) using resonant magnetic perturba-

tions (RMP),1–4 the resonant field amplification effect in

high pressure plasmas,5,6 as well as (dynamic) error field cor-

rection.7 While some of the external fields are intentionally

applied for a good purpose (e.g., ELM mitigation using RMP

fields), the others are often unintended and not desirable,

since they degrade the plasma performance in terms of both

macroscopic stability and confinement.

The theory of the plasma response to external fields has

been extensively investigated, from early work, mostly in cy-

lindrical geometry,8,9 to recent work in both cylindrical10,11

and toroidal geometry.12,13

While cylindrical theory is often useful in understanding

the linear and non-linear,10 as well as kinetic11 physics associ-

ated with the plasma response, it sometimes leads to qualita-

tively different results from the toroidal theory prediction. A

typical example is the response of a resonant harmonic (m, n),

with the poloidal harmonic number m and the toroidal har-

monic number n, when the corresponding rational surface

q¼m/n (q is the safety factor) is located inside the plasma. In

cases where a strong screening effect occurs, e.g., due to an

ideal plasma response, or a fast plasma flow, the cylindrical

theory would predict a vanishing resonant field on the inner

side of the rational surface (where q < m=n for a monotoni-

cally increasing q-profile). Toroidal theory, on the other hand,

predicts a finite amplitude of the resonant harmonic on the

inner side of the rational surface, even though the field is per-

fectly shielded at the radial position of the rational surface.

This is due to the toroidal coupling of the resonant harmonic

to non-resonant harmonics, which can freely penetrate through

the rational surface. Sometimes, particularly for tight aspect

ratio plasmas, the coupling can be so strong that the peak am-

plitude of the resonant harmonic exceeds that of the vacuum

field.12,13 In this work, we report another example where the

toroidal effect plays an essential role in the plasma response.

We consider a slowly rotating plasma, and numerically find a

regime in the resistive plasma response, where decreasing the

toroidal rotation frequency leads to an enhanced response of

the resonant harmonic at the corresponding rational surface.

The screening effect in this case comes from the same term in

the toroidal tearing mode (TM) theory14 which is responsible

for the TM stabilization, resulting from the favorable average

magnetic field curvature in a torus. We use the MARS-F code15

to compute the plasma response. The code solves for the lin-

ear response of the plasma to a given external field, with a pre-

scribed (fixed) plasma toroidal rotation. The external field is

generated by currents located in the vacuum region. The com-

bined MHD-vacuum-coil equations are solved together in

MARS-F. One can refer to Ref. 12 for details of the MARS-F for-

mulation when applied to the plasma response computations.

For the purpose of clarifying the physics, we assume

simple toroidal equilibria as described in Sec. II. Section III

reports the MARS-F results of the finite pressure gradient

induced screening at slow plasma flow. This numerical find-

ing is analytically explained in Sec. IV. The analytic under-

standing helps to design a new approach for computing the

tearing index for a toroidal plasma, as demonstrated in Sec.

V. Section VI reports additional effects associated with the

favorable average curvature term, such as the enhancement

of the toroidal coupling, as well as the sign reversal of the

electromagnetic j� b torque at slow plasma flow. Section

VII draws conclusion and discussion.

II. EQUILIBRIUM

We consider two toroidal equilibria—one with vanishing

plasma pressure, and the other with a finite pressure—both

having the same parabolic (surface-averaged) toroidal current
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density profile hJ/isurf ¼ J0ð1� s2Þ, where s �
ffiffiffiffiffiffi
wn

p
, and wn

is the normalized poloidal flux, with wn ¼ 0 at the magnetic

axis, and wn ¼ 1 at the plasma boundary. The current ampli-

tude J0 is eventually determined by choosing the safety factor

q at the magnetic axis or at the plasma edge. The plasma has a

large aspect ratio of 10 and a circular cross section. We

choose the on-axis q-value to be q0 ¼ 1:05. The edge q-value

is qa ¼ 2:46 for the pressure-less equilibrium, and qa ¼ 2:62

for the finite pressure equilibrium, which has a normalized

beta value of bN � b½%�a½m�B0½T�=Ip½MA� ¼ 1:60, where

b ¼ hPi=ðB2
0=2l0Þ is the ratio of the volume averaged plasma

pressure to the magnetic pressure, a the minor radius of the

plasma boundary, B0 the vacuum toroidal field strength at the

magnetic axis, and Ip the total plasma current. The radial pro-

files of the safety factor and the equilibrium pressure are plot-

ted in Fig. 1.

The reason for considering a large aspect ratio plasma is

to allow an easy analytic interpretation of the numerical

results. As we will show in this work, a large aspect ratio

theory not only confirms the qualitatively new features found

by MARS-F runs but also gives a quantitative agreement with

the computational results, thus confirming the correctness of

the numerical procedures.

We shall consider the resistive plasma response to a

n¼ 1 external magnetic field, in the presence of an ideally

conducting wall located at a minor radius of 1.4a. Only one

rational surface, with q¼ 2, is present inside the plasma for

this field configuration.

III. NUMERICAL COMPUTATION OF THE PLASMA
RESPONSE

Figure 2 shows the MARS-F computed resistive plasma

response to an external magnetic field perturbation produced

by coils located near the outboard mid-plane at the minor ra-

dius of 1.2a. The exact coil geometry is not important to

observe the effects reported in the figure. The plasma

response is measured by the ratio of the amplitude of the res-

onant harmonic of the total response field (including the field

produced by both coil currents and the perturbed plasma cur-

rents), at the corresponding rational surface location, to that

of the vacuum field. We scan the toroidal rotation frequency

of the plasma. For simplicity, a uniform plasma flow profile

in minor radius is assumed, characterized by an angular fre-

quency X. We also vary the magnetic Lundquist number

S � sR=sA, where sA ¼ R0
ffiffiffiffiffiffiffiffi
l0q
p

=B0; sR ¼ a2=g. R0 and a are

the major and minor radii of the plasma, respectively, q
is the plasma density (a uniform radial profile is assumed for

the plasma density in this work), and g is the plasma resistiv-

ity (a uniform radial profile is also assumed for g).

At a finite plasma pressure (bN ¼ 1:6 in our case), two

regimes of rotational screening of the resonant harmonic

(m¼ 2 in our case) are identified. The first regime occurs at

very slow toroidal rotation speed, with X <� 10�5xA. In

this regime, the (total) plasma response increases with

increasing toroidal flow speed, following approximately a

FIG. 1. Radial profiles of (a) safety factor q, and (b) equilibrium pressure,

for a large aspect ratio toroidal plasma with circular cross section. The pres-

sure is normalized by B2
0=l0. The radial coordinate s �

ffiffiffiffiffiffi
wn

p
is defined via

the normalized poloidal flux wn. The vertical dashed line in (b) indicates the

radial location of the q¼ 2 rational surface.

FIG. 2. Computed resistive plasma response for the m¼ 2 resonant har-

monic at slow plasma rotation. At finite pressure (bN ¼ 1:6), two regimes of

rotational screening of the plasma response are identified, with opposite

trends. The two dashed straight lines indicate analytic scaling laws.
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scaling law of X1=4. In other words, the plasma flow does not
provide a screening effect of the external field but tends to

amplify the field instead. This trend (as well as the scaling

law) does not depend on the plasma resistivity. We shall

call this regime the GGJ-regime, for reasons to be clarified

later on.

When the plasma rotation frequency exceeds a certain

level (about 10�4xA in our example), the flow does start to

provide a screening effect on the external field, i.e., an

increase of the rotation speed leads to a reduced (total)

plasma response for the resonant harmonic, following an ap-

proximate scaling law of X�5=4. This second regime corre-

sponds to the resistive-inertial (RI) regime of the plasma

response.9 The transition region between the GGJ-regime

and the RI-regime depends on the plasma resistivity and

pressure. This dependence will be clarified in Sec. IV, when

an analytic interpretation of the numerical results is given.

It is interesting to notice that the plasma response peaks

in an intermediate region between the GGJ-regime and the

RI-regime. In particular, at S ¼ 108 and X ¼ 5� 10�5xA,

the plasma response amplitude is about 20 times higher than

the vacuum field—a significant amplification of the external

resonant field by the plasma response. This strong amplifica-

tion occurs when the tearing mode is close to marginal sta-

bility, and the plasma rotation speed matches the natural

frequency of the mode (see Fig. 6 in later discussions).

We note that the GGJ-regime occurs only at a finite

plasma pressure. More precisely, it occurs only when the

local pressure gradient at rational surface is finite, which is

the case in our example. With vanishing pressure (and hence

local pressure gradient), the plasma response saturates at a

constant level as the flow speed is reduced. One such exam-

ple is shown in Fig. 2.

The reduction of the plasma response (with decreasing

rotation frequency) in the GGJ-regime is associated with the

generation of a finite amplitude perturbed m/n¼ 2/1 plasma

current at the rational surface. Figure 3(a) shows one exam-

ple of the MARS-F computed poloidal component of the m/

n¼ 2/1 current near the q¼ 2 rational surface. The m¼ 2 is

the dominant harmonic for the poloidal component of the

perturbed currents. Note that these perturbed plasma cur-

rents, induced by the plasma response to external fields, are

highly localized along the minor radius, with an appreciable

amplitude observed only within the resistive layer. A finite

amount of the net perturbed current (across the layer) is re-

sponsible for providing the eventual screening effect at very

slow rotation. A significant amount of the perturbed toroidal

current is also observed. This current has large sideband

poloidal harmonics, which are balanced by the perturbed ra-

dial current across the layer (to satisfy the divergence-free

condition for the full current).

At vanishing plasma pressure, the 2/1 perturbed current

has odd symmetry across the rational surface, as shown by

Fig. 3(b) for the poloidal component. The toroidal compo-

nent, not shown here, also has an oddly symmetric, predomi-

nant 2/1 harmonic. The cancellation effect between

perturbed currents, flowing in opposite directions on either

sides of the rational surface, leads to reduced screening for

the plasma with vanishing pressure.

IV. ANALYTIC INTERPRETATION

We propose an analytic interpretation of the numerically

computed plasma response results shown above, based on an

earlier work by Fitzpatrick and Hender.8 In the presence of a

static external magnetic field wvac (w here denotes the poloi-

dal flux of the perturbed field), the full plasma response can

be separately considered in two regions: the internal layer

region near rational surfaces, where the plasma resistivity

and inertia are important, and the external ideal region,

where the plasma resistivity and inertia can be neglected.

According to Ref. 8, the external (ideal) response wext can be

decomposed into two parts: the conventional solution w0 of

the Newcomb equation in the absence of external field (with

appropriate boundary conditions at the plasma center and at

an ideal wall or infinity), and the ideal plasma response w1 in

the presence of the external field (i.e., with the boundary

condition w1ðrsÞ ¼ 0). For a pressure-less plasma, the exter-

nal response wext experiences a jump in its derivative with

respect to the minor radius, on crossing the rational surface.

FIG. 3. Comparison of the poloidal components of the m¼ 2 plasma

response currents near the q¼ 2 rational surface, at (a) a finite plasma pres-

sure bN ¼ 1:6 and (b) vanishing plasma pressure. The same plasma resistiv-

ity and rotation frequency are assumed, with S ¼ 109 and X ¼ 10�8xA.

Note that the range of the x-axis covers only 0.08% of the whole plasma

minor radius in each case.

072509-3 Liu et al. Phys. Plasmas 19, 072509 (2012)
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This gives an external tearing index D0ext in the presence of

the external field, to be matched to the internal D0int from the

layer solution.

The external D0ext is calculated as

D0ext �
½w0ext�rs

wextðrsÞ
¼
½w00�rs

þ ½w01�rs

w0ðrsÞ
¼ D00 þ

½w01�rs

w0ðrsÞ
; (1)

where ½�� denotes the jump across the rational surface, and

wextðrsÞ ¼ w0ðrsÞ represents the fully reconnected flux. D00,

by definition, is the tearing index in the absence of external

fields. For a linear response, w1, and hence ½w01�rs
, is propor-

tional to the external field amplitude

½w01�rs
¼ awvacðrsÞ: (2)

Equations (1) and (2) yield

wextðrsÞ
wvacðrsÞ

¼ a

�D00 þ D0ext
:

For a straight cylinder with circular cross section, the coefficient

a is calculated to be a ¼ 2m (assuming vanishing plasma current

outside the rational surface).8 The matching condition between

the external and the internal layer solutions, D0ext ¼ D0int, finally

leads to the following expression for the plasma response:

wextðrsÞ
wvacðrsÞ

¼ a
�D00 þ D0int

: (3)

Note that D0int is calculated by solving the inner layer equa-

tions,14,16 and D0int is generally a function of the tearing mode

(complex) frequency. For a large aspect ratio circular plasma

with finite pressure, D0int is calculated as17

D0int ¼ 2:12AðcsAÞ5=4
1� p

4
DRBðcsAÞ�3=2

h i
; (4)

A � nq0

q

� ��1=2

ð1þ 2q2Þ1=4S3=4;

B � nq0

q

� �
ð1þ 2q2Þ�1=2S�1=2;

(5)

where c is the tearing mode growth rate (generally a complex

number). The prime is defined with respect to the minor ra-

dius r: q0 ¼ dq=dr. DR is the resistive interchange index that

can be analytically calculated for a large aspect ratio circular

plasma.17 All the equilibrium quantities are defined at the

rational surface rs. Note that Eq. (4) is the large aspect ratio

version of a more generic expression, Eq. (88) from Ref. 14.

The term associated with DR is the key factor responsible

for the screening of the plasma response at very slow rotation

(the GGJ-regime), reported in the above numerical results.

This term, first introduced by Glasser, Greene, and Johnson

(GGJ)14 for a general torus, originates from the favorable av-

erage magnetic curvature in the layer region. A similar term,

in the constant-w approximation, was also derived for a resis-

tive pinch,16 where a stabilizing effect on the TM was shown

when the plasma pressure decreases outward. This screening

effect disappears as the local radial gradient of the plasma

equilibrium pressure vanishes at the rational surface. [DR is

roughly proportional to dPeq=drjrs
and is normally a small

negative number (resistive interchange stable). DR¼�0.04

for our numerical equilibrium with bN ¼ 1:6.]

In the case of vanishing DR (in our equilibrium with

bN ¼ 0), it can easily be shown that Eq. (4) precisely con-

verts to the plasma response model derived in Ref. 9, for the

resistive-inertial regime, on replacing c by iX in (4), repre-

senting the Doppler shifted mode frequency due to the

plasma rotation X. In this regime, the plasma response scales

as X�5=4 at sufficiently large rotation frequency, confirming

our numerical findings. Also, the plasma response saturates

to a constant value as plasma rotation vanishes.

In the case of a finite DR value, the GGJ-term signifi-

cantly modifies the inner layer response, and hence D0int. Equa-

tion (3), combined with (4), predicts a different scaling of the

plasma response at very slow rotation: wextðrsÞ / X1=4. This

again confirms the numerical results, showing that the GGJ-

term plays a screening effect on the external field at very slow

plasma rotation.

The analytic scalings in (4) and (5) suggest that the rotation

has to be smaller than minfS�1=3jDRj2=3; SjDR=D0
0j4g (assum-

ing the magnetic shear at the rational surface to be of order 1

quantity), in order to observe the GGJ-regime. For typical

plasma parameters, S�1=3jDRj2=3 < SjDR=D0
0j4, and hence the

GGJ-term induced screening occurs when the toroidal rotation

frequency, normalized by the central Alfv�en frequency, is below

XGGJ � S�1=3jDRj2=3
. For the large aspect ratio plasma consid-

ered here, XGGJ � 10�4 at S ¼ 109, confirming the results

shown in Fig. 2. However, for a tight aspect ratio plasma, the

jDRj can be one order of magnitude larger. If we are interested

in the screening effect near the plasma edge region, the Lund-

quist number can be 2-3 orders of magnitude smaller than 109.

Therefore, the GGJ-term induced screening can be observed at

much faster plasma flow.

V. COMPUTING THE TEARING INDEX USING THE
PLASMA RESPONSE

The expression (3) suggests a possible approach to com-

puting the conventional tearing index D00 (in the absence of

external fields) by computing the plasma response to external

fields, provided that the inner D0int can be calculated in

some way. For a generic toroidal equilibrium, D0int can be

evaluated either using the analytic toroidal layer solution

(Eq. (87) from Ref. 14), which is valid within certain limits,

or a code such as DELTAR (Ref. 18) to numerically solve the

toroidal resistive layer equations.

For our simple equilibria, we shall use Eq. (4) to evalu-

ate D0int, and then use Eq. (3) to compute D00, based on the

MARS-F computed resistive plasma response wext=wvac at the

rational surface.

First, consider the equilibrium with vanishing pressure.

Figure 4 shows the least-square fitting to the results of the

MARS-F computed response (both amplitude and phase), using

the analytic relation (3) combined with (4). The two

unknowns D00 and a are used as the fitting parameters. This

yields D00 ¼ 7:73 and a ¼ 6:25.

072509-4 Liu et al. Phys. Plasmas 19, 072509 (2012)
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Here, we make a remark on the plasma response

computation, when the tearing mode is actually unstable

(e.g., D00 > 0 for the pressure-less case). There is of course

no physically meaningful steady state response for an unsta-

ble plasma. However, numerically it is still possible to find

the “steady-state” solution of an unstable system. This basi-

cally corresponds to finding the stationary point (@=@t ¼ 0)

of an (unstable) system. The plasma response, computed in

this sense, still contains the information of the (positive)

poles of the system. A similar idea has been exploited in con-

structing plasma response models for feedback stabilization

of unstable resistive wall modes.23

On the other hand, MARS-F can also solve for the tearing

mode eigenvalue problem without the external fields, and

with the same ideal wall condition at r¼ 1.4a. The computed

tearing mode growth rates c are then inserted into the disper-

sion relation (4) to yield D0int. This approach has been used

previously.19,20 In the absence of the external field,

D0int ¼ D00, i.e., the conventional tearing index. The value of

D00, computed in this way, is not sensitive to the S number, as

long as S is sufficiently large. For S ¼ 108, MARS-F finds

D00 ¼ 7:86, agreeing well with that of the plasma response

computations.

We remark that the above TM growth rate method,

based on the dispersion relation (4) (omitting the GGJ-term

for the pressure-less plasma considered here), tends to signif-

icantly under-estimate D00 at S-values below 106. For

instance, the method yields D00 ¼ 6:19 for S ¼ 105. This is

essentially due to the asymmetric radial distribution of the

equilibrium current near the rational surface.21 If the correc-

tion factor from Ref. 21 is taken into account, D00 can be

recovered within a relative error of 5%, for S-values as low

as 103. For the results reported in this paper, we consider

S � 106, this asymmetry correction factor is small.

For a pressure-less plasma, we have also devised a third

method of computing D00, based on the construction of large

and small solutions for the outer region solution.22 This third

method, completely different from the response method and

the TM growth rate method reported here, gives D00 ¼ 7:71

for our example, again within a good agreement with the

other two methods.

We also tested the response method for a truly TM-

stable, pressure-less plasma, with the same plasma shape and

the same equilibrium current profile, but with elevated q val-

ues (q0 ¼ 3:1; qa ¼ 4:9). In this case, the response method

gives D00 ¼ �1:68, whilst the construction method gives

D00 ¼ �1:66.

Next, we show an example of the response method

applied to the finite pressure plasma, where a screening

effect is observed in the slow rotation GGJ-regime. In this

case, the least-square fit to the plasma response, shown in

Fig. 5, yields D00 ¼ 31:37. The TM growth rate method, on

the other hand, gives D00 ¼ 31:45.

For this equilibrium, the tearing mode is again unstable at

low S values (e.g., S ¼ 106). However, above a critical value

of Scrit ¼ 9:2� 107, the TM is stabilized by the GGJ-effect.

The MARS-F computed TM eigenvalues, in the absence of the

plasma flow, are plotted in the complex plane in Fig. 6. Evi-

dently the computed plasma response, shown in Fig. 2, is for

an unstable plasma at S ¼ 106, and stable plasmas at S ¼ 108

and S ¼ 109. We note that the tearing mode becomes margin-

ally stable at S ¼ Scrit ¼ 9:2� 107 for our equilibrium, with a

natural frequency of the mode xTM ¼ 4:7� 10�5xA at the

marginal stability. The maximal response amplitude, shown in

Fig. 2 at S ¼ 108;X ¼ 5� 105xA, occurs as the tearing mode

approaches the marginal stability and the plasma rotation

speed matches the natural frequency of the mode. It is clear

from Eq. (3) that the denominator from the right hand side

approaches zero as the above two conditions are satisfied, and

hence an infinitely large plasma response is expected in

theory.

FIG. 4. The real and imaginary parts of the numerically computed plasma

response (dots) and the least-square fits (lines) using the analytic relation

(3), for a large aspect ratio equilibrium with vanishing plasma pressure. The

plasma response is scanned versus the toroidal rotation frequency X. The

magnetic Lundquist number for the plasma is assumed to be S ¼ 106.

FIG. 5. The real and imaginary parts of the numerically computed plasma

response (dots) and the least-square fits (lines) using the analytic relation

(3), for a large aspect ratio equilibrium with finite plasma pressure

(bN ¼ 1:6). The plasma response is scanned versus the toroidal rotation fre-

quency X. The magnetic Lundquist number is assumed to be S ¼ 106. The

horizontal axis along the top of the figure is subject to an additional normal-

ization factor of X1 � S�1=3jDRj2=3
.
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The computed TM eigenvalues, shown in Fig. 6, can be

inserted into Eq. (4) to calculate D0int. We find that a numeri-

cal factor, of about 0.4 for the case considered here, needs to

multiply the GGJ-term in Eq. (4), in order to obtain D0int with

a minimal imaginary part (about 3.5% of the real part). [In

the absence of the plasma flow, D00 from the ideal region is a

real number. Consequently, D0int from the layer solution,

which should match the outer solution, is also real despite

the fact that the TM growth rate c can be a complex number.]

This numerical factor varies with the choice of plasma

equilibria.

A close examination of the equilibrium parameters

reveals that, for the finite pressure case considered here, the

factor jGDRj1=2 ¼ 3:72 > 1, and hence the validity of the

dispersion relation (4) is violated (the definition of the G-fac-

tor, as well as the H-factor mentioned below, is given in

Refs. 14 and 17). In this case, another dispersion relation,

Eq. (A9) from Ref. 14 and re-produced below for a large as-

pect ratio plasma, should be used instead

D0int ¼
p
2s

nq0

q

� �2 S2

1þ 2q2

" #1=6

Q5=4

�
(
ðaRþ þ bÞC½ð3� RþÞ=4�

C½ð5� RþÞ=4�

� ðaR� þ bÞC½ð3� R�Þ=4�
C½ð5� R�Þ=4�

)
; (6)

where Q � csA=Q0;Q0 � ½ðnq0=qÞ2=ðSð1þ 2q2ÞÞ�1=3; a � 1

� DR=Q3=2; b � DR=Q3=2 þ CQ3=2 � ðC� KDRÞDR; s �
½C2Q3 þ 4ðC� KDRÞDR�1=2; R6 � ð�CQ3=26sÞ=2. All the

equilibrium quantities, including the C, K factors as calcu-

lated in Ref. 17, are evaluated at the rational surface.

The above dispersion relation (6) is valid for a vanishing

H-factor (i.e., when the so-called constant-w approximation

holds). For our equilibrium, H¼ 0.036 is small. Indeed,

inserting the MARS-F computed TM growth rates, shown in

Fig. 6, into (6), we obtain D0int with a negligible imaginary

part.

It was stated in the Appendix of Ref. 14 that Eq. (6)

recovers (4) by a Taylor expansion of the gamma functions.

We find that a more rigorous derivation (following the same

gamma function expansion, but keeping the finite term which

is proportional to jGDRj) results in an additional factor, such

that Eq. (4) is modified to

D0int ¼ 2:12ð1þ gÞAðcsAÞ5=4
1� 1

1þ g

p
4

DRBðcsAÞ�3=2

� �
;

(7)

where g ’ ðp
4
� 1ÞGDR. The factors A and B are again defined

by Eq. (5). For cases where jGDRj1=2 > 1 (but not too much

larger than unity so that the Taylor expansion of the gamma

functions in Eq. (6) still holds), the factor 1/(1þ g) can signifi-

cantly deviate from unity. In fact for our example, 1/(1þ g)

¼ 0.25, which is comparable to the value of 0.4 found numeri-

cally with MARS-F results. The agreement should become better

on reducing the jGDRj1=2
value. We checked another equilib-

rium, where the jGDRj1=2
value is reduced to 0.38 by running

MARS-F with the ratio of the specific heats C ¼ 100. In this

case, both analytic theory and the MARS-F results find a correc-

tion factor of 1/(1þ g)¼ 0.96.

We remark two important roles played by the correction

factor 1/(1þ g). First, it introduces the plasma compressibil-

ity into the TM dispersion relation, since g is inversely pro-

portional to C. The plasma compressibility normally drops

out of the TM dispersion relation (Eqs. (87) and (88) from

Ref. 14) when it is treated as a higher order effect in the layer

theory. Second, this correction factor is essential for produc-

ing real D0int from the computed (complex) TM growth rate.

VI. OTHER EFFECTS ASSOCIATED WITH FINITE
PLASMA PRESSURE

We report two additional effects associated with the GGJ

term for finite pressure plasmas. The first is the enhanced to-

roidal coupling of poloidal Fourier harmonics in the layer

region. This effect is illustrated in Fig. 7, where the eigenfunc-

tions of unstable tearing modes, one with vanishing plasma

pressure and the other with a finite plasma pressure

(bN ¼ 0:71), are compared in the layer region. These two

plasmas have the same aspect ratio of 10, the same equilib-

rium current profile as described in Sec. II, and the same cen-

tral safety factor q0 ¼ 1:05. The magnetic Lundquist number

is also chosen to be the same, S ¼ 106. An ideal wall, located

at r¼ 1.4a, is assumed. The growth rate of the tearing mode at

bN ¼ 0 is csA ¼ 7:50� 10�4. The growth rate at bN ¼ 0:71

is csA ¼ 7:56� 10�5 þ 5:33� 10�5i. Note that the complex

growth rate for the finite pressure case is due to the GGJ term.

No plasma rotation is assumed in these computations.

Comparing figures (a,c) with (b,d), we observe that both

the local plasma displacement and the perturbed parallel cur-

rent density have an enriched poloidal spectrum at finite

FIG. 6. The computed TM eigenvalues plotted in the complex plane, as the

magnetic Lundquist number S varies, for a finite pressure, non-rotating resis-

tive plasma. The point, where the real growth rate bifurcates into two (com-

plex conjugate) branches, corresponds to S ¼ 2� 107. The critical S value,

for marginal stability of the TM, is Scrit ¼ 9:2� 107.
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pressure. The m¼ 1, 3 sideband harmonics, with respect to

the m¼ 2 resonant harmonic, have a much enhanced ampli-

tude at finite pressure. This effect is even more pronounced

for the parallel current density, where the secondary side-

bands, m¼ 0, 4, also gain appreciable amplitudes, and where

the amplitude of the resonant harmonic (m¼ 2) actually

becomes smaller than that of the non-resonant harmonics.

The same observations hold for several other cases that we

have considered.

The second interesting effect, associated with the finite

pressure plasma response, is the electromagnetic torque pro-

duced on the (rotating) plasma by an external static field.

Figure 8 shows one example, where the total toroidal j� b

torques, acting on the plasma column, are compared for the

two equilibria described in Sec. II. The external field is

produced by a dc-current (with the same current amplitude

for the two cases) located at a minor radius of 1.2a, in the

presence of a perfectly conducting wall located at 1.4a. The

toroidal plasma rotation frequency X is scanned.

The most interesting feature in the electromagnetic tor-

que is the presence of a positive torque (i.e., in the same

direction as the plasma flow), at very slow plasma rotation,

FIG. 7. Radial profiles of the poloidal Fourier harmonics for the plasma radial displacement (a, b) and perturbed parallel current density (c, d). Compared are

the eigenfunctions of unstable tearing modes for the case with vanishing plasma pressure (a, c) and the case with a finite plasma pressure bN ¼ 0:71 (b, d). The

vertical dashed lines indicate the radial location of the q¼ 2 rational surface. The Lundquist number is S ¼ 106 for both cases.

FIG. 8. Comparison of the computed total toroidal electromagnetic torque Tj�b

across the plasma column, induced by the response of a rotating resistive

plasma to a static external field, produced by a coil current located at the minor

radius r¼ 1.2a. Two plasmas, with the same Lundquist number S ¼ 109 but

with different equilibrium pressures (bN ¼ 0 and 1.6, respectively), are com-

pared. The MARS-F computed torques (dots) are also compared with the analytic

estimates (lines).
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due to the finite pressure plasma response. In fact, the total

torque reverses sign at a certain rotation frequency, for the fi-

nite pressure plasma. No such reversal is obtained for the

zero pressure case.

This torque reversal effect implies the existence of a fi-

nite steady state plasma rotation frequency, for a finite pres-

sure plasma, even without invoking the finite plasma

viscosity assumption. [The finite plasma viscosity is nor-

mally the force that balances the electromagnetic torque, in

order to achieve a steady state plasma rotation9.]

Figure 8 also shows a significant amplification effect of

the torque amplitude due to finite plasma pressure. This

amplification is even stronger with increasing plasma

resistivity.

The computed dependence of the toroidal torque on the

plasma rotation frequency (dots in Fig. 8) is well approxi-

mated by the analytic formula from Ref. 9:

Tj�b ¼ C
Im½D0intðXÞ�

j � D00 þ D0intðXÞj
2
jwvacj

2; (8)

where C > 0 is a geometrical factor independent of the

plasma resistivity and rotation. D00 and D0int are the same as

defined in Sec. IV. The lines in Fig. 8 represent the above

analytic formula, applied for both vanishing and finite pres-

sure cases. The analytic formula, Eq. (7), is used to evaluate

D0int, and a least-square-fit to the plasma response field is

used to calculate D00, as described in Sec. V. We emphasize

that, even though the above analytic formula (8) is derived

for zero-pressure plasmas, it works well also for finite pres-

sure cases. The only difference is to replace the pressure-less

D0int (e.g., Eq. (29a) from Ref. 9) with the expression (7). The

less satisfactory agreement between the MARS-F results and

the analytic theory for the finite pressure case at faster rota-

tion is due to the resonance of the finite frequency plasma

response with continuum waves, which are not included into

the analytic theory.

VII. CONCLUSION AND DISCUSSION

We have reported an interesting physics effect of the

screening of external fields by the resistive plasma response,

at plasma rotation frequencies below � S�1=3jDRj2=3
, where

S is the magnetic Lundquist number, and DR is the resistive

interchange index. This screening, due to the favorable aver-

age magnetic curvature effect on the tearing mode, is always

associated with the finite pressure gradient at the rational

surface.

For a simple toroidal equilibrium, we have demonstrated

that the MARS-F computed plasma response to coil-generated

external fields is well reproduced with the help of an analytic

TM dispersion relation. Moreover, using the analytic disper-

sion relation, we can recover the tearing index from the com-

puted plasma response. This offers an alternative approach

of computing tearing index, which is a rather challenging

task for toroidal plasmas with finite pressure gradient near

rational surfaces.

Based on resistive MARS-F computations, we also find an

enhanced toroidal coupling of the poloidal Fourier harmonics,

for the tearing mode eigenfunction in the resistive layer

region, in the presence of the GGJ effect. The same effect also

leads to the reversal of the sign of the toroidal electromagnetic

torque, when an external static field is applied to a rotating

resistive plasma with finite pressure. This sign reversal of the

j� b torque predicts the existence of a finite (but slow) steady

state rotation even in the absence of a balancing viscous

torque.

The screening effect associated with the GGJ-term

occurs at very slow plasma flow (�10�5 �10�4xA) for the

large aspect ratio plasma considered in this work. On the

other hand, typical toroidal flow speed observed in experi-

ments ranges from a fraction of percent to several percent of

the Alfv�en speed. From this point of view, the results in this

work are of more theoretical interest. However, there are at

least two occasions where the GGJ-term induced screening

can be of practical importance. The first is the RMP experi-

ments with high plasma pressure, where the jDRj value can

be one order of magnitude larger than the case considered in

this paper, and where the magnetic Lundquist number can be

of order 106 or even lower, if we are primarily interested in

the field screening near the plasma edge. The second occa-

sion is the magnetic braking experiments, in which the

plasma flow can be nearly fully damped. In the RMP case,

the presence of the GGJ-screening does not necessarily pre-

vent the field from penetrating into the plasma, since this can

occur at a finite rotation. Also, other effects such as the elec-

tron diamagnetic flow, which is absent from the present sin-

gle fluid model, may play a significant shielding role for the

RMP field penetration.24

Some of the other effects reported in this work, e.g., the

enhanced toroidal coupling and the strong amplification of

the electromagnetic torque due to the GGJ effect, should be

more generic.
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