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The physics of kinetic effects on the resistive wall mode (RWM) stability is studied, and a

comparison between reversed field pinch (RFP) and Tokamak configurations is made. The toroidal,

magnetohydrodynamic (MHD)-kinetic hybrid stability code MARS-K, in which the drift kinetic

effects are self-consistently incorporated into the MHD formulation, is upgraded with an extensive

energy analysis module. In the tokamak configuration, the kinetic effect can stabilize the mode

with very slow, or vanishing plasma rotation, due to the mode resonance with the toroidal

precession drift of thermal trapped particles. In RFP, instead, stabilization of the RWM comes

mainly from the ion acoustic Landau damping (i.e., the transit resonance of passing particles). In

the high beta region, the critical flow rotation frequency required for the mode stabilization is

predicted to be in the ion acoustic range. Detailed physical analyses, based on the perturbed

potential energy components, have been performed to gain understanding of the stabilizing

mechanism in the two different systems. [http://dx.doi.org/10.1063/1.4737200]

I. INTRODUCTION

Understanding physics and stabilization of the resistive

wall mode (RWM) is an important task for the successful

operation of the present day and future fusion devices. The

RWM is generally a global kink-like, non-axisymmetric

instability, with the growth rates significantly reduced by the

surrounding conducting wall(s). For advanced tokamak sce-

narios, including those foreseen for ITER,1 and aiming at si-

multaneous maximization of the plasma pressure and a

steady state operation, the RWM poses a severe pressure

limit.2,3 For reversed field pinch (RFP) plasmas, the RWM

appears as potentially disruptive instability, whenever the

duration of the discharge is longer than the penetration time

of the passive conducting structure (resistive wall).

Two general methods are known for the RWM stabiliza-

tion: the active control and the so-called “passive control.”

For the active control, the perturbed magnetic field (or volt-

age) is measured by a set of sensor loops outside the plasma,

and is used to generate the control signal for a set of active

magnetic coils. Such mechanism has been extensively stud-

ied theoretically4–11,45 and has been successfully applied in

the present day fusion experiments.12–17,46 The “passive con-

trol,” also often referred to as “rotational stabilization,” relies

on a mechanism, where the RWM suppression is achieved

via plasma flow combined with various dissipations such as

the presence of plasma viscosity, resistivity, the continuum

spectra damping (the Alfven continuum and/or the ion

acoustic damping), as well as kinetic resonances with parti-

cle drift motions. A large number of studies, by both theory

and experiments, have shown that in tokamak plasmas, the

RWM can be suppressed by a plasma rotation.18–21 In partic-

ular, recent experimental development on the RWM study

has indicated that a very slow, sometimes maybe even van-

ishing plasma rotation, can stabilize the mode in tokamak

plasmas.22–24 Theoretical model has been proposed for the ex-

planation, where the main dissipation channel of the free

energy is the mode resonance with the precession drift motion

of trapped particles.25–27 In RFPs, instead, the presently oper-

ating devices have not given indication of the rotational stabi-

lization. Theoretical studies in fluid theory, taking into

account the plasma viscosity and continuum damping, pre-

dicted that the plasma flow velocity, required for the RWM

stabilization, was in the Alfven velocity range.28,29 Such a

high velocity is not achieved in the present day RFP experi-

ments. On the other hand, it is not clear whether a plasma re-

gime can be found for RFP plasmas, where the RWM can be

stabilized at a slower (than the Alfven speed) plasma flow,

and where the mode stabilization is provided by drift kinetic

damping. Recent study30 did not find such a plasma regime in

RFP. This work shows that the RWM can be fully suppressed

by kinetic effects, in a high b RFP plasma. In addition, an

energy analysis of the mode stabilization physics is performed

in this paper. The RFP configuration does not impede obtain-

ing high bp plasmas, which should be achievable in future

RFP devices. In fact even in a presently operating RFP device

(MST), the bp value can be reached up to 20%,31 by perform-

ing the so-called pulsed poloidal current drive (PPCD).

Unfortunately, the presence of a thick wall in MST prevents a

direct experimental study of the RWM instability.

In this work, we investigate the kinetic resonant effects

on the RWM stability for both RFPs and tokamaks. We per-

form detailed comparison of the physical mechanisms for the

mode damping in the two configurations. Since RFP nor-

mally possesses a circular cross section for the plasma shape,

we also consider tokamak plasmas with a circular shape, in

order to exclude additional shaping effects. The non-

perturbative MHD-kinetic hybrid toroidal stability code

MARS-K (Ref. 32) is used for this study. In this approach,

the drift kinetic theory cooperates with the MHD equation
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via the perturbed kinetic pressure tensor. Therefore, it allows

the kinetic effect, as the same order as MHD part, to modify

the complex eigenfunction and the eigenvalue. A new mod-

ule for computing various potential energy components has

been integrated into the code, allowing in-depth analyses and

a better understanding of the physical mechanisms behind

computational results. A detailed comparative study of the

kinetic-modified RWM stability between the two systems,

tokamaks and RFPs, provides very useful insights into the

physics of the passive stabilization of the modes.

II. MODEL AND FORMULATIONS

A. Toroidal self-consistent kinetic model

The MARS-K code numerically solves the linearized,

single-fluid MHD equations with self-consistent inclusion of drift

kinetic resonances in toroidal geometry.32 For a given curvilinear

flux coordinate system ðs; v;/Þ, and by assuming that all the

perturbations have the form Aðs; v;/; tÞ ¼ Aðs; vÞe�ixt�in/, we

can write the core equations, involving the kinetic terms, in the

Eulerian frame:

�iðxþ nXÞn ¼ vþ ðn � rXÞR2r/ (1)

�iqðxþ nXÞv ¼ �r � pþ j� Bþ J�Q

� q½2XẐ � vþ ðv � rXÞR2r/� (2)

�iðxþ nXÞQ ¼ r� ðv� BÞ þ ðQ � rXÞR2r/ (3)

iðxþ nXÞp ¼ v � rP (4)

j ¼ r�Q; (5)

where s is the normalized radial coordinate, labeling the equilib-

rium flux surface, v is a generalized poloidal angle. x ¼
ic� xr is the complex eigenvalue of the mode (c being the

mode growth rate, xr the mode rotation frequency in the labora-

tory frame). The mode frequency is corrected by a Doppler shift

inX, with n being the toroidal mode number, X the plasma rota-

tion frequency in the torodial direction /. n, v, Q, j, p represent

the perturbed quantities: the plasma displacement, the perturbed

velocity, magnetic field, current, and pressure tensor, respec-

tively. q is the unperturbed plasma density. R is the plasma

major radius. Ẑ is the unit vector in the vertical direction. B, J,

and P denote the equilibrium magnetic field, current, and pres-

sure, respectively. A conventional unit system is assumed with

the vacuum permeability l0¼ 1. For the RWM study, a set of

vacuum equations for the magnetic field Q, and the resistive

wall equation based on the thin-shell approximation, are solved

together with Eqs. (1)–(5).8 The plasma resistive term in the

Ohm’s law is dropped. Note that the ordinary 5/3 Pr � v term is

dropped from Eq. (4) for the perturbed fluid pressure. This term

is replaced by the drift kinetic terms which enter into the MHD

equations via the perturbed kinetic pressure tensor

p ¼ pIþ pkb̂b̂ þ p?ðI� b̂b̂Þ; (6)

which in turn is self-consistently included into the MHD for-

mulation via the momentum Eq. (2). In Eq. (6), b̂ ¼ B=B,

B ¼ jBj, I is the unit tensor. p is the scalar fluid pressure per-

turbation, pkðn?Þ, p?ðn?Þ are the parallel and perpendicular

perturbations of the kinetic pressure, respectively, and are

computed via

pke
�ixt�in/ ¼

X
e;i

ð
dCMv2

kf
1
L (7)

p?e�ixt�in/ ¼
X

e;i

ð
dC

1

2
Mv2
?f 1

L : (8)

The summation in Eqs. (7) and (8) is over the electron and

ion components. The integral is carried out over the particle

velocity space C. M is the particle mass, vk, v? are the paral-

lel and perpendicular velocity components of the particle. f 1
L

is the perturbed particle distribution function, which is

derived by solving the perturbed drift kinetic equation for

each particle species, following approaches by Antonsen33

and Porcelli.34 The expression for f 1
L is

f 1
L ¼ �f 0

e eke�ixt�in/
X
m;l

XmHmlkmle
in~/ðtÞþim< _v>tþilxbt; (9)

where f 0
e is the energy derivative of the particle equilibrium

distribution function (which is assumed Maxwellian for

thermal particles). e is the particle’s total energy. ek ¼
e� ZeU is the kinetic energy of the particle, with U being

the equilibrium electrostatic potential and Ze the particle

charge. ~/ðtÞ ¼ /ðtÞ� < _/> t denotes the periodic part of

the particle motion projected along the torodial direction

with < � > meaning the average over the particle bounce

period. m and n correspond to the harmonic numbers in to-

roidal and poloidal directions, respectively. l is the har-

monic number in the bounce orbit expansion. Xm and Hml

both relate to the perturbed particle Largrangian,32 with Xm

denoting the poloidal Fourier harmonics of the perpendicu-

lar fluid displacement and the magnetic field perturbation;

Hml denoting the geometrical factor associated with the

equilibrium quantities. kml represents the mode-particle res-

onance condition,

ka
ml ¼

n½x�N þ ðêk � 3=2Þx�T þ X� þ x
nxd � ½aðm� nqÞ þ l�xb þ nXþ xþ i�ef f

; (10)

where x�N and x�T are the diamagnetic drift frequencies due

to the plasma density and temperature gradients, respec-

tively. In the above solution of the drift kinetic equation, it

has been assumed that the effect of finite radial excursion

width of particles across magnetic surfaces is negligible. q is

the safety factor, �ef f is the effective collision frequency,

êk ¼ ek=T is the particle kinetic energy normalized by the

temperature. xd is the bounce-orbit-averaged precession drift

frequency. For trapped particles, a ¼ 0, and xb is the bounce

frequency. For passing particles, a ¼ r, r ¼ signðvkÞ, and

xb represents the transit frequency. In further discussions we

also use a notation xp for the transit frequency, in order to

be distinguished from the bounce frequency. Equation (10)

includes particle bounce, transit, as well as magnetic
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precession drift resonances with the mode. The imaginary

part of the resonant operator represents the energy transfer

between the mode and particles. A simple collisionality

effect is also included into the resonant operator, with a

detailed derivation reported in Ref. 32.

We note that the self-consistent approach allows kinetic

modification of the RWM eigenfunction. Moreover, the

unknown eigenvalue x enters into the resonance operator

(10). This is an important aspect of the self-consistency of

the kinetic formulation, which requires an iterative loop for

numerically finding the converged eigenvalue.

B. Quadratic energy terms

In order to gain better physical understanding, we

compute various components of the quadratic energy form,

for both fluid and drift kinetic energy perturbations, from

the self-consistent solution. An energy analysis module

have been developed and integrated into the MARS-K

code.

As well known, the quadratic energy form can be con-

structed by multiplying Eq. (2) by n�? and integrating over

the plasma volume VP.35,36 We then define the following

energy components of the fluid potential energy dWF and the

kinetic potential energy dWk

dWF ¼ dWmb þ dWmc þ dWpre þ dWcur (11)

dWmb ¼
1

2

ð
VP

jQ?j
2Jdsd vd/ (11a)

dWmc ¼
1

2

ð
VP

B2jr � n? þ 2n? � jj2Jdsd vd/ (11b)

dWpre ¼ �
1

2

ð
VP

ðn? � rPÞðj � n�?ÞJdsd vd/ (11c)

dWcur ¼ �
1

2

ð
VP

Jkðn�? � bÞ �Q?Jdsd vd/; (11d)

where J is the Jacobian of the flux coordinates, j is the cur-

vature of the magnetic field line. dWmb is the magnetic bend-

ing term representing the energy required to bend magnetic

field lines, dWmc corresponds to the energy necessary to

compress the magnetic field. Both terms are positive and

give stabilizing contributions. dWpre and dWcur represent

potential sources of instability, and are referred to as the

pressure driven and the current driven terms, respectively.

Both dWpre and dWcur can be negative. We consider cases

with vanishing perturbed surface current, where the surface

terms in the potential energy disappear. In the energy calcu-

lation, For the slow rotation we investigate in present work,

we neglect the Coriolis force terms in the RHS of Eq. (2).

The kinetic pressure tensor term in Eq. (2) leads to a volu-

metric drift kinetic energy

dWK ¼
1

2

ð
VP

Jdsd vd/ p?
1

B
ðQ�k þ rB � n�?Þ þ pkj � n�?

� �
(12)

as well as a surface term 1
2

Ð
SP ~p?n

�
? � nJsdvd/, which is neg-

ligible if the equilibrium pressure vanishes at the plasma

edge P¼ 0 (the perturbed kinetic pressure is roughly propor-

tional to the equilibrium pressure). Sp here is the plasma sur-

face, Js ¼ jrsjJ the surface Jacobian, n an outward normal

vector to the vacuum region.

We also compute the vacuum energy dWv1 and dWvb,

without wall and with an ideal wall at the minor radius b,

respectively

dWv1 ¼
1

2

ð
V1
jQj2Jdsd vd/ ¼ � 1

2

ð
Sp

bn
1V̂
�1
1 Jsd vd/; (13)

dWvb ¼
1

2

ð
Vb

jQj2Jdsd v ¼ � 1

2

ð
Sp

bn
1V̂
�b
1 Jsd vd/; (14)

where bn
1 is the normal magnetic field perturbation; V̂

�1;b
1 the

complex conjugate of the perturbed magnetic scalar poten-

tial, which is determined by the ideal wall position and bn
1 at

the plasma surface.36 The two energy terms (13) and (14) are

associated with the vacuum magnetic field perturbation,

induced by the plasma instability. They are always positive

and play a stabilizing role for the RWM. dWv1 and dWvb can

be written either in a volume integral, or in a surface integral

as shown in Eqs. (13) and (14).

Equations (11)–(14) are implemented in the MARS-K

code, and applied for the energy analysis of the RWM

physics in the present work.

III. CHARACTERISTICS OF FLUID RWM IN RFPS AND
TOKAMAKS

Although RWMs share certain similar behaviour in both

tokamaks and RFPs, there are a few dissimilarities resulted

from the differences between the two configurations that

lead to different conditions for the mode stabilization. We

find that the kinetic effects work differently on the RWM

instability as well in the two devices. In this section, we will

describe the differences between the two configurations, and

the resulting dissimilarities of the RWM characteristics in

the fluid approximation.

As well known, in tokamaks, RWMs are often driven by

the plasma pressure. The RWM instability appears in the range

of bN values (normalized b) between the so-called no-wall

limit bN
no-wall and the ideal wall limit bN

ideal-wall.37 In RFPs,

RWMs are the current driven modes instead. The reason is that

the RFP possesses a stronger poloidal magnetic field, reaching

the same order of the field strength as the toroidal field. This

implies a larger plasma current in RFPs than in tokamaks, for

the same value of the toroidal field. Therefore, the plasma is

easier to be “kinking” due to the weaker toroidal field. In fact,

ideal external kink instability is easier to be driven by the large

plasma current in RFP. Obviously, for the current driven

RWMs, the no-wall beta limit is zero, i.e., bN
no-wall¼ 0.

Furthermore, due to the toroidal field reversion, resulted

from the relaxation process, RFPs can operate in the stable re-

gime of the “resonant” (with rational surface being inside the

plasma) ideal kink modes. The RWM instabilities always

have their rational surfaces outside the plasma. They can be
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the so-called “externally non-resonant” modes (ENRM), if the

rational surfaces are located at q< q(a)< 0 (q(a) is the safety

factor at the plasma edge r¼ a), or the “internally non-

resonant” modes (INRM), if the rational surfaces are located

at q> q(0)> 0.11,38,39 We choose n> 0, it means for a given n

number, each poloidal harmonic with m> 0 corresponds to

INRM; the poloidal harmonics with m< 0 represents ENRMs.

In tokamaks instead, RWMs can have their rational surfaces

inside the plasma, and/or outside the plasma. The difference

in the location of rational surfaces (non-resonant versus reso-

nant) results in different conditions for the mode stabilization.

In RFP, the MHD theory, with classical viscous dissipation in

cylindrical geometry, has predicted28,29 that the required toroi-

dal plasma rotation velocity Voc, for full stabilization of the

RWM, is in the range of the Alfven velocity (around 0.2VAh-

1.0 VAh, where VAh is Alfven velocity defined by the equilib-

rium poloidal magnetic field). The value of Voc varies with

the mode number and the equilibrium parameters. In the case

of a resistive wall located near the plasma edge, the critical

velocity required for the stabilization satisfies the condition

kVoc�min{(kkVA)r¼ a,(kkVA)r¼ 0},29 where kk and k are the

parallel and toroidal mode wave numbers, respectively. Since

both INRM and ENRM, being the non-resonant modes, have

their rational surfaces far from the plasma edge, kk(a) and/or

kk(0) are larger (kk(a)� 0.2-1 for the RFPs) than that of the

RWM in tokamaks (where kk(a)� 0 often holds). Therefore,

the rotational stabilization of RWMs in RFPs requires higher

Voc than in tokamaks. In fact, in tokamaks, the MHD theory

predicted Voc is in the range of the ion sound speed (only a

few percent of the Alfven velocity).18–21

Finally, in RFPs the strong poloidal field makes the poloi-

dal asymmetry weaker than that in tokamaks, leading to a less

important role of the toroidal effects. From another point of

view, it can be understood that the stronger poloidal field

makes lower q (q is the safety factor) configurations; and the

distance between the two neighboring rational surfaces,

corresponding to two neighboring poloidal mode numbers

(e.g., m/n and (m 6 1)/n), is much larger than that in tokamaks.

This causes weaker toroidal mode coupling in RFPs than in

tokamaks. Furthermore, compared with tokamaks, the mag-

netic field curvature in RFPs is dominated by the poloidal field,

so the “bad curvature” region extends to the whole poloidal

angle, resulting in a weak ballooning structure for the mode.

Figure 1 compares the typical eigenfunctions (the radial

displacement nn) of the RWM, computed by MARS-K, for

the two different configurations. Figures 1(a) and 1(b) show

the modes in RFP, with n¼ 6 at e¼ a/R¼ 0.2295, and n¼ 4

at e¼ 0.4, respectively. The parameters F and H are defined

FIG. 1. The poloidal Fourier harmonics of the normal component of the plasma displacement, plotted along the minor radius, for the fluid RWM in (a) RFP

with aspect ratio e¼ a/R¼ 0.2295 and n¼ 6, (b) RFP with e¼ 0.4 and n¼ 4, (c) tokamak with q(a)¼ 3.68, q(0)¼ 1.14, and n¼ 1 (d) tokamak with q(a)¼ 1.64,

q(0)¼ 1.13, and n¼ 1. A straight field line coordinate system is used. No plasma rotation is assumed.
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as F¼B/(a)/<B/>, and H¼Bv(a)/<B/>, where B/(a) and

Bv(a) are the toroidal and poloidal magnetic fields in the

plasma edge, respectively, <B/> is the volume average of

the toroidal magnetic field. In the RFP plasma, for the unsta-

ble n¼ 6 mode, only the m¼ 1 poloidal harmonic has a large

radial displacement. The other poloidal harmonics

(m¼�1,62,63,64, � � �) appear with much smaller ampli-

tude. This is the consequence of the weak toroidal coupling

in the RFP configuration. Figure 1(b) plots the eigenfunction

for a smaller aspect ratio (“fat”) RFP with e¼ 0.4, again

showing the weak toroidal coupling. Figures 1(a) and 1(b)

indicate that the toroidal coupling effect in RFP is almost

independent of the aspect ratio. We also note the peaking of

the m¼ 0 harmonic, occurring at the m¼ 0 rational surface.

Figures 1(c) and 1(d) plot the radial displacements nn of

the RWM in the tokamak configuration with a circular cross-

section. Figure 1(c) shows a case for the n¼ 1 pressure

driven RWM, with q(0)¼ 1.14, q(a)¼ 3.68, and b¼ 0.01.

There are two rational surfaces q¼ 2 and q¼ 3 located inside

the plasma for this case. Figure 1(d) shows a case for the

n¼ 1 current driven mode, with q(0)¼ 1.13, q(a)¼ 1.64, and

b¼ 0.02. There is no rational surface inside the plasmas.

Both figures show a strong toroidal coupling effect, where

multiple poloidal harmonics co-exist with sufficiently large

amplitudes, all contributing to the n¼ 1 mode growth rates.

The sharp radial variation of the m¼ 2 and m¼ 3 harmonics,

shown in Fig. 1(c), indicates the Alfven resonance near the

q¼ 2 and q¼ 3 rational surfaces, respectively.

Figure 2 compares the 2D mode structure, in the toroidal

cross-section, between the RFP [Fig. 2(a)] and tokamak [Fig.

2(b)] plasmas. The two cases correspond to the eigenfunc-

tions shown in Figs. 1(a) and 1(c), respectively. The RWM

in the RFP, with the sole m¼ 1 dominant mode, has almost

no ballooning character. On the contrary, the tokamak RWM

has multiple poloidal harmonics growing together, and

exhibiting obvious ballooning character. Only the real com-

ponents of nn are plotted in both figures.

IV. DRIFT KINETIC EFFECTS ON RWM IN RFPS AND
TOKAMAKS

In this section, MARS-K code is applied for the RWM

study in both RFP and tokamak configuration. The MHD-

kinetic hybrid, self-consistent formulation, presented in

Sec. II, is followed. The wave-particle interaction is included

into the MHD equations via the pressure tensor term, and

described by the resonant operator (10), for each particle spe-

cies. The drift kinetic potential energy dWk, presented in

Sec. II, can be written as26

dWK ¼
�
ffiffiffi
p
p

2B0

X
e;i

ð
dWPe;i

(ð
dê

k
ê5=2

k e�êk

X
r

�
�ð

dK
X

l

ka
l ŝbjhe�iðlþanqÞxbt�in/HLilj

2

�)
; (15)

where W is the equilibrium poloidal flux, Pe;i the ion and

electron equilibrium pressure, K ¼ B0l=ek, with B0 being

the on-axis field strength). HL is the particle perturbed

Lagrangian.32 The integration is carried out in both real and

velocity spaces. The sum is over the poloidal Fourier m and

bounce harmonics l the passing and trapped particles, as well

as the particle species (e, i). For trapped particles, a ¼ 0,

�¼ 1/2, and ŝb is the particle bounce period normalized by a

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=2ek

p
; for passing particles, a ¼ 1, �¼ 1, and ŝb

denotes the normalized transit period. In this study, we con-

sider the mode resonance with the precession frequencies of

trapped particles (both ions and electrons), the ion bounce

frequency, and the transit frequency of passing ions. These

are the most important effects in the current study. In the fol-

lowing, the words “full kinetic” refer to the combined reso-

nant effects mentioned above. The bounce and the transit

frequencies of electrons are much higher than that of ions,

resulting in negligible contribution to the kinetic resonance

FIG. 2. The two-dimensional plots of the perturbed radial displacement of the fluid RWM. The maximum absolute value of the displacement is used to nor-

malize the mode: (a) the n¼ 6 mode in RFP with F¼�0.06, H¼ 1.58, bp¼ 0.17, and q(0)¼ 0.144, corresponding to the case of Fig. 1(a); (b) the n¼ 1 mode

in tokamak with q(0)¼ 1.14, q(a)¼ 3.68, b¼ 0.01, and bN¼ 2.85, corresponding to the case of Fig. 1(c). Shown is the real part of the displacement on a

selected toroidal cross section. No plasma rotation is assumed.
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effects on RWMs. The effect of the collisionality will be

studied in future paper.

A. Numerical results

In this subsection, we compare the behaviour of RWMs,

including kinetic effects in the two configurations: the RFP

and the tokamak with a circular cross-section. The parameters

are taken to be similar to the RFX-mod,40 with e¼ a/

R¼ 0.2295, the wall position b/a¼ 1.12, the electron density

at the magnetic axis neo¼ 2.5 � 1019/m3, and the temperature

ratio between the thermal ions and electrons is Ti/Te¼ 0.7.

These parameters will be applied to all the following analyses,

unless otherwise stated. The density profile is assumed as

ne(s)¼ ne0(1� s2). For the tokamak case, the pressure profile

is modelled as P(s)¼P0(1� s2)2. For the RFP case, we

choose P ¼ P0ð1þ ap1s2 þ ap2s4 þ ap3s6Þ. For the sake of

simplicity, a uniform toroidal plasma rotation frequency is

considered.

The growth rates of the n¼ 6 RWM, as a function of the

normalized plasma rotation frequency, is plotted in Fig. 3 for

various b values in the RFP plasma. Figure 3(a) shows the

computational results involving full kinetic effects of both

trapped and passing particles. Four poloidal beta values are

considered (bp¼ 0.06, 0.11, 0.15, 0.17). While increasing

bp, we kept the q(r) profiles nearly unchanged, with

q(0)� 0.145, q(a)��0.01, and the reversal parameter

F��0.06. The pinch parameter H has to be changed corre-

spondingly in the range 1.5 to 1.58. The definition of F, H,

and bp can be found in Ref. 39. Figure 3(a) shows that, for

the high b plasma, the RWM can be fully stabilizing at much

slower plasma rotation than that predicted by the fluid

theory.29 Inclusion of the kinetic effects leads to a critical

rotation frequency of X� 0.04xA, when bp reaches 0.15

(xA ¼ B0

R0
ffiffiffiffiffiffiffi
l0q0

p is the Alfvén frequency at the magnetic axis.).

With further increase of bp up to 0.17, the RWM can be sta-

bilized at even slower rotation of X� 0.028xA. The kinetic

stabilization is mainly contributed by passing ions through

the acoustic landau damping, as shown by Fig. 3(b).

The mode growth rates versus the normalized plasma

rotation frequency X/xA are plotted in Fig. 3(b), for the case

of b¼ 0.17. Four types of kinetic contributions are com-

pared: (1) the full kinetic effects (dot-dashed line), (2) the

precession resonance of trapped particles only (dotted line),

(3) the precession and the bounce resonances (long dashed

line), and (4) the transit resonance of passing particles alone

(short dashed line). The result of the fluid theory (without

kinetic effects, solid line) is also shown in the figure for the

comparison. The figure clearly shows that the transit reso-

nance plays a principle role, stabilizing the n¼ 6 RWM with

the slowest critical rotation speed (slower than that with the

full kinetic effects). The trapped particle (both ions and elec-

trons) precession resonance alone does not fully stabilize the

mode. The precession resonance combined with the bounce

resonance do not stabilize the mode either. Figure 3(b) also

shows that the critical flow velocity for the mode stabiliza-

tion by full kinetic effects (X/xA� 0.028) is larger than that

by transit resonance only (X/xA� 0.02). This implies that

the contributions from different kinetic resonances may play

opposite role and slightly cancel each other.

Compared to the RFP plasmas, the behaviours of RWMs in

tokamaks are rather different. Figure 4(a) plots the n¼ 1 RWM

growth rates, as a function of the normalized plasma rotation fre-

quency X/xA, for circular cross section tokamak plasmas, where

the full kinetic effects are taken into account. Two different equi-

libria are presented: (1) the first case with qo¼ 1.13, qa¼ 1.64,

and b¼ 0.02 (bN¼ 2.68), shown by the solid line. In this equi-

librium, there is no mode rational surface inside the plasma. We

find that the RWM is current drive. The kinetic effects cannot

stabilize the mode with plasma rotation. (2) The second case has

qo¼ 1.14, qa¼ 3.68, and b¼ 0.0105 (bN¼ 2.85), shown by the

dotted line. The RWM is pressure driven for this equilibrium

(the mode is stable when b¼ 0). The pressure scaling parameter

Cb ¼ ðbN � bno�wall
N Þ=ðbideal�wall

N � bno�wall
N Þ¼ 0.66. The ki-

netic effects stabilize the mode without plasma rotation or with a

slow rotation at X/xA< 0.0048. The major contribution to the

kinetic stabilization comes from the precession resonance of

trapped particles.

FIG. 3. The n¼ 6 RWM growth rate c versus the plasma rotation frequency X in RFP plasmas: (a) the rotation frequency scan including full kinetic effects of

both trapped and passing particles, with various bp values bp¼ 0.06(solid), 0.11(dashed), 0.15(dotted), 0.17(dot-dashed). The other parameters are kept almost

unchanged, with F��0.06 and q(0)� 0.145; (b) the rotation frequency scan including different types of kinetic resonances, at bp¼ 0.17. The c and X values

are normalized by the Alfvén frequency xA in the plasma center.
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Figure 4(b) shows the mode growth rates versus the

rotation frequency, taking into account different kinetic

effects for the pressure driven tokamak RWM (correspond-

ing to the case shown by the dotted line in Fig. 4(a)). Here

the dot-dashed line corresponds to the full kinetic effects,

showing that the full stabilization can be achieved in the fre-

quency range of X/xA� 0.0–0.0048. The dotted line corre-

sponds to the case, where only the precessional resonance of

trapped particles is considered. The dashed line presents the

case, where both the precession and the bounce resonances

of trapped particles are taken into account. The result of the

fluid theory is also plotted (solid line). The comparison

shows that the trapped particle precession resonance gives

the principle contribution to the mode stabilization, at slow

or vanishing plasma rotation. Again Fig. 4(b) shows that

the full kinetic effects results in a narrower stable region in

X/xA, than the precession resonance alone, implying a slight

cancellation of the mode stabilizing effect between different

kinetic resonances. As the rotation frequency X increases

beyond the above mentioned range, the mode becomes

unstable again. With further increase of the plasma rotation

frequency, the transit resonance starts to play a stabilizing

role by the ion acoustic damping, and mode growth rate

decreases. However, we do not find a full stabilization for

this equilibrium.

B. Physical understanding

Here, we perform detailed analysis of both fluid and

drift kinetic potential energy perturbations. With the aim of

improving the physical understanding, we consider the gen-

eralized dispersion relation20,41

cs�w ¼ �
dW1 þ dWk

dWb þ dWk
; (16)

where dW1 ¼ dWF þ dWv1, dWb ¼ dWF þ dWvb, dWvb,

and dWv1 are the vacuum energy with an ideal wall at minor

radius b and without the wall, respectively. s*w characterizes

the wall time of a resistive wall. dWF is the fluid energy com-

ponent as given in Eq. (11), dWk is the potential energy from

the kinetic resonance as presented in Eq. (15). The plasma

inertial contribution is found to be small compared to other

terms, and hence has been neglected in Eq. (16). All energy

components are evaluated using the RWM eigenfunctions,

obtained from the self-consistent computations. We note

that, even though not fully corresponding to the self-

consistent computation, Eq. (16) does approximately

describe the RWM physics in the region of slow rotation ve-

locity as we investigate here.

The kinetic energy dWk consists of the resonant (imaginary)

part and the non-resonant (real) part, dWk ¼ dWre
k þ idWim

k . It

follows from Eq. (16) that the stabilization of the RWM requires

the condition

dW1dWb þ dWre
k ðdWb þ dW1Þ þ ðdWre

k Þ
2 þ ðdWim

k Þ
2 > 0:

(17)

Generally, the imaginary part always gives a stabilizing effect.

The real part can be either stabilizing or destabilizing effects.

Figure 5 compares various energy components, normalized by

the total driven energy dWdriven¼�(dWpreþ dWcur) (the cur-

rent driven plus the pressure driven energy components) of

RWM, for the two configurations. Figure 5(a) is for the n¼ 6

RWM in the RFP plasma and (b) is for the n¼ 1 mode in the

tokamak plasma. Each figure has several groups of columns.

The first column shows the total driving energy components

(current driven and pressure driven). The second column rep-

resents the stabilizing energy components, including the

magnetic field line bending term dWmb, the magnetic com-

pressibility term dWmc and the vacuum magnetic energy term

dWv1. The third column shows the vacuum energy dWvb,

with an ideal wall located at the minor radius b. This is also a

stabilizing term and, together with dWF, determines the criti-

cal wall position for the ideal kink instability. The forth col-

umn in each group shows dW1 and dWb as defined in

Eq. (16). The last two columns represent the real and imagi-

nary parts of dWk, respectively.

Figure 5(a) shows the energy comparison for RFP plas-

mas, where only the ion transit resonances are considered.

There are three groups of columns. Group (1) is for an

equilibrium with bp¼ 0, F¼�0.063, H¼ 1.454,

FIG. 4. The n¼ 1 mode growth rate versus the plasma rotation frequency for tokamak equilibria: (a) the rotation scan including the full kinetic effects of both

trapped and passing particles, for two equilibria; (b) the rotation scan for the q(a)¼ 3.68 case, comparing contribution from various kinetic effects, as well as

the fluid theory prediction.
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q(0)¼ 0.147, and q(a)¼�0.0104. Neither plasma rotation

nor kinetic effects are included. Due to vanishing equilib-

rium pressure, only the current driven energy component

appears. Since the driven energy prevails in the balance

between the first and second columns, the no-wall ideal kink

mode is unstable, and hence the RWM is unstable. The

fourth column shows a negative dW1 and a positive dWb,

agreeing with the RWM instability following Eq. (16).

Group (2) is for an equilibrium with middle range bp,

bp¼ 0.064, and F¼� 0.063, H¼ 1.499, q(0)¼ 0.145,

q(a)¼�0.010063. This case corresponds to the solid curve

in Fig. 3(a). The flow velocity of xE/xA¼ 0.065 is assumed

in the computation, at which the kinetic resonances contrib-

ute a maximal value of dWk, along the whole velocity range

considered in Fig. 3(a). The pressure driven energy in this

case is only a small fraction of total driven term dWdriven.

The current driven is still the dominant destabilizing mecha-

nism. The computed dW1 and dWb have rather large values.

The kinetic energy component dWk has small real and imagi-

nary parts, being not sufficient to stabilize the mode.

Group (3) is for a high b RFP plasma, with bp¼ 0.17,

and F¼�0.062, H¼ 1.565, q(0)¼ 0.144, q(a)¼�0.0094,

corresponding to the dot dashed line in Fig. 3(a). Included

are the effects of the transit resonance of passing ions on the

n¼ 6 mode, at the flow velocity X/xA¼ 0.0203, which is

near the marginal instability. The fraction of the pressure

driven energy is significantly increased in this case, com-

pared with the case of b¼ 0.06. The magnetic compressional

term becomes slightly larger. Both dW1 and dWb become

smaller than that in groups (1) and (2). The kinetic energy

components, both dWre
k and dWim

k , play a stabilizing role and

lead to a very small growth rate—the mode is nearly margin-

ally stable. With further increasing X/xA, we obtain a com-

pletely stable RWM.

Figure 5(b) is the counterpart plot for tokamaks.

The group (1) is for an equilibrium with q(a)¼ 1.637,

q(0)¼ 1.13, and b¼ 0.02 (bN¼ 2.68), corresponding to the

solid line in Fig. 4(a) at X/xA¼ 0.002, where the kinetic

effect contributes a maximal value of dWk along the whole

range of the velocity. In this equilibrium, all rational surfa-

ces of the n¼ 1 modes are located outside the plasma.

The RWM is a current driven mode—the pressure driven

energy component is much smaller than the current driven

component. The total stabilizing components are also

smaller than the current driven component. The resulting

dW1 is rather large. Moreover, dWvb and dWb are much

larger than that in the second group. The kinetic energy

dWk, being roughly proportional to the equilibrium pres-

sure, is rather small and cannot stabilize the mode. In toka-

mak plasmas, due to the strong toroidal magnetic field, the

magnetic compression energy dWmc is very small and

almost invisible in the figure.

Group (2) is for a tokamak plasma with q(a)¼ 3.68,

q(0)¼ 1.14, and b¼ 0.0105 (bN¼ 2.85), corresponding to

the dotted curve in Fig. 4(b), which describes the effect of

precessional resonance of trapped particles on the n¼ 1

mode. The rotation frequency xE/xA¼ 0.007 is chosen near

the critical value for the marginal stability. The first column

in this group shows a large pressure driven fraction, contrib-

uting almost half of the driving energy. In fact the RWM is a

pressure driven mode for this equilibrium. The stabilizing

column from the fluid terms, dWmbþ dWv1, is larger than

that of group (1), and leads to a smaller dW1. The vacuum

energy dWvb is smaller as well, leading to a smaller dWb.

The kinetic energy dWk contributes sufficiently strong stabi-

lizing effect, such that the mode is marginally stable. Further

decreasing the plasma rotation X, the mode can be com-

pletely stabilized as showed in Fig. 4(b).

Figure 5 demonstrates a common feature of RWM for

both configurations: the kinetic stabilization requires a large

fraction of the pressure driven energy component. In fact,

even with large fraction of dWpre, the drift kinetic energy is

still small compared to other energy components. The stabi-

lization condition in Eq. (17) indicates that only with very

small dW1 or dWb (which leads to the first destabilizing

term (dWbdW1) being small), the kinetic effects can play a

significant role for the RWM stability. Numerical results

from Fig. 5 show that having small fluid energy components

dWb or dW1 is indeed the critical ingredient for the drift ki-

netic damping of the RWM. As is well-known, dW1 ! 0

implies the marginal RWM stability (or the marginal exter-

nal ideal kink stability without wall), and dWb ! 0 is the

FIG. 5. The potential energy components of the RWM, as defined in Eqs. (11)–(14) and normalized by the driven terms dWdriven¼�(dWpreþ dWcur), are cal-

culated at various plasma rotation velocities for (a) the n¼ 6 mode in RFP plasmas with with F��0.06, q(0)� 0.145, including the mode resonance with

transit frequency of passing ions only, at three chosen bp values: bp¼ 0.0, 0.06, and 0.17; (b) the n¼ 1 mode in tokamak plasmas with q(0)¼ 1.13, q(a)¼ 1.64,

b¼ 0.02, bN¼ 2.68 (group 1), and q(0)¼ 1.14, q(a)¼ 3.68, b¼ 0.01, bN¼ 2.85 (group 2). The mode resonance with precessional drifts of trapped ions and

electrons are considered.
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marginal ideal kink stability with ideal wall at b (b is near

the critical wall position).

In RFPs, almost in all the cases, stabilization occurs

only when dWb is very small, i.e., near the critical wall posi-

tion. Increasing the equilibrium pressure and/or moving the

resistive wall away from the plasma surface can reduce dWb.

Fig. 5(a) compares the three RFP results with increasing dif-

ferent bp values, but with almost the same q(r) profiles. More

detailed analysis shows that increasing the equilibrium pres-

sure decreases the perturbed fluid displacement in the normal

direction, nn, near the plasma edge, and increases the other

two components along the tangential direction; this causes

smaller normal magnetic perturbation bn at plasma-vacuum

interface. It turns out that the perturbed vacuum magnetic

energy dWvb (proportional to bn
2) becomes smaller, and so

does dWb. dWb ! 0 implies the marginal stability of the

external kink with an ideal wall. This is where the mode sta-

bility can become more sensitive to any type of dissipations

(or excitations). We find the same behaviour in tokamaks, as

in the RFP plasmas, if we keep the q(r) invariant while

changing the b value.

In tokamaks, both dWb ! 0 and dW1 ! 0 can occur.

When bN just above bN
no-wall, dW1 is very small, which

implies the marginal stability of RWM. While as bN going

up to be close to the bN
ideal-wall, dWb is very small, which

implies the marginal stability of the ideal kink mode. In both

case, the kinetic effects can be more important on the RWM

stabilization. The tokamak equilibrium with larger q(a)

implies that, for the same plasma current, the toroidal mag-

netic field is stronger. And the plasma is generally more re-

sistant to the “kink” instability. Therefore, a plasma with a

larger q(a) needs larger pressure driven energy to become

kink unstable. In fact, it is found that the second group, with

q(a)¼ 3.68, provides a stronger magnetic bending and

smaller dWvb, than the first group with q(a)¼ 1.67. The

smaller dWvb for the second group is associated with the

smaller magnetic perturbation at the plasma surface. For the

tokamak equilibria considered here, a larger q(a) leads to a

higher no-wall b limit, thus to a larger pressure driven poten-

tial energy dWpre. Consequently, it leads to a small dWb, and

the mode becomes easy to be stabilized by the kinetic

effects. For 1< q(a)< 2, we observe only current driven

RWMs, which cannot be stabilized by the kinetic effects of

thermal particles.

Next, we try to understand why the precessional reso-

nance of trapped particles, at very slow plasma rotation, can

give the RWM stabilization in tokamaks, but not in RFPs.

Figures 6(a) and 6(b) plot various frequencies, entering the

resonance operator km,l of Eq. (10), for RFP and tokamak

plasmas, respectively. The flux surface averaged precession

drift frequency xd, the bounce frequency xb of trapped par-

ticles (ions and electrons), the resonance ion transit fre-

quency term (m-nq)xp (xp is the transit frequency), and the

diamagnetic drift frequency x* (x*¼x*Nþx*T includes

both density gradient drift and temperature gradient drift) are

plotted as a function of the normalized radial coordinate s.

In both Figures 6(a) and 6(b), the dotted curves present

the precession frequencies of trapped electrons xde (the pre-

cession frequency of trapped ions is defined as xdi¼�(Ti/

Te)xde, and plotted as dual-dot-dashed line). Note that in the

tokamak configuration, the scale lengths of the magnetic cur-

vature and gradient are in order of O(1/R), which is one

order of O(e) smaller than that in RFP, which is in the order

of O(1/a). In fact, Fig. 6 demonstrates that the averaged pre-

cession frequency (over the flux surface) xd is near zero in

the tokamak, and is around 0.005�0.01 in the RFP configu-

ration. For very small rotation frequency X� 0, the ion and

electron contributions of the xd resonance, to the imaginary

part of dWk (dWim
k ), have opposite signs, and the two contri-

butions almost cancel each other. Therefore, the precessional

drifts mostly contribute to the real part of dWk (dWre
k ). As

the X (>0) value increases, the trapped electrons start to

play a more important role. The ratio x*/xd is significant in

determining the integrated value of the resonance operator

kml. The following three points may provide the reasons why

the trapped particles play different roles in tokamaks and in

RFPs. First, the fraction of the trapped particle in RFPs is

smaller than that in tokamaks. This is particularly true

near the low field side edge of the plasma. Second, the ratio

x*/xd is much larger in tokamaks, than that in RFPs,

FIG. 6. The radial profiles of various frequencies of trapped and passing thermal particles, averaged over the velocity space and over the poloidal angle. The

diagmagnetic frequency(x*), the precession frequencies of trapped ion (xdi) and electron (xde), the bounce frequency of trapped ions (xb/n), as well as the res-

onant transit frequencies (m – nq)xp/n of passing ions are plotted for (a) the RFP case with m¼ 1, n¼ 6, F¼�0.06, H¼ 1.58, bp¼ 0.17, q(0)¼ 0.144, and (b)

the tokamak case with m¼ 1, 2, n¼ 1, q(0)¼ 1.14, q(a)¼ 3.68, b¼ 0.0105, bN¼ 2.85.
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resulting in a larger value of dWk. Finally, the tokamak

plasma is characterized by a stronger toroidal coupling,

where several poloidal harmonics grow together, with com-

parable amplitude. Each poloidal harmonic can be in reso-

nance with particle precessions. The RWM in the RFP

plasma, on the contrary, has a weak toroidal coupling, and

only mode m¼ 1 gives the dominant contribution, due to the

precessional resonance, to the kinetic energy. Therefore, the

trapped particle precessional drifts can stabilize the RWM in

tokamaks for very plasma slow rotation, starting from X¼ 0,

while the same drifts play a minor role in the stabilization of

the mode in RFPs, in the frequency range

X =xA�xd� 0.005�0.01.

The particle phase space averaged precession frequency,

for a tokamak plasma, is plotted in Fig. 7(a) in the toroidal

cross section. It is interesting to notice the change of sign of

xd, from the low field side to the high field side. Moreover,

the magnitude of xd stays near zero in a large region. In fact,

we find that the precessional resonance gives the largest con-

tribution to dWk in the yellow area, as shown by Fig. 7(b).

The dashed line in Fig. 6(a) shows the resonant transit

frequency (m� nq)xp for the m¼ 1, n¼ 6 mode in the RFP

plasma. In the area of minor radius s� 0.2�0.3, correspond-

ing to X/xA� 0.025�0.035, the transit resonance starts to

give a significant contribution to dWk, leading to the stabili-

zation of the mode. With further increase of the flow veloc-

ity, the kinetic contribution dWk becomes more important,

and the mode becomes fully stable. Figure 8(a) shows the

amplitude of the kinetic energy jdWkj distribution in the to-

roidal cross section. The largest contribution comes from the

low field side near the plasma core region (the bright area).

This is because the perturbed particle Lagrangian HL, which

is well represented by the j � n? term, has the maximum in

this area, as shown by Fig. 8(b). The dominant contribution

FIG. 7. The 2D plots in the RZ-plane, of (a) the precession frequency xde of trapped electrons, averaged over the velocity space, and (b) the jdWkj for the

n¼ 1 marginally stable RWM, in the presence of the precessional resonance of trapped ions and electrons, for a tokamak plasma with X¼ 0.007xA,

q(0)¼ 1.14, q(a)¼ 3.68, b¼ 0.01, and bN¼ 2.85. The jdWkj is normalized by dWdriven. The value of xde is normalized by xA.

FIG. 8. The 2D plots in the RZ-plane, of (a) |dWk| for the n¼ 6 marginally stable RWM, including the transit resonance of passing ions alone, and (b) The

value of jj � n?j (in arbitrary unit), for a RFP plasma with X¼ 0.0203xA, F¼�0.06, H¼ 1.58, bp¼ 0.17, and q(0)¼ 0.144. |dWk| is normalized by dWdriven.
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to dWk comes from the m¼ 1 and the l¼ 0 harmonic in

Eq. (15). We notice that the bounce frequency xb/n in that

area is also close to the transit one, and should in principle

also give contribution to the kinetic energy. However, our

computations reveal that the bounce resonance gives minor

influence on the mode stability. This may be due to the small

fraction of trapped particles (compared to passing particles),

as well as the fact that the l¼ 1 bounce harmonic in the

Lagrangian HL is less important than the l¼ 0 harmonic.

Figure 9(a) plots the radial profiles for both the real and

imaginary parts of the kinetic energy dWk, due to the transit

resonance at X/xA¼ 0.02, for the RFP plasma. These radial

profiles are obtained as a result of the integration along the

poloidal angle, for the energy distribution shown in Fig. 8(a).

Figure 9(a) confirms that both the real and imaginary parts of

dWk reach their peak values in the range of s¼ 0.2�0.3.

For the tokamak equilibrium with q(a)¼ 3.68,

q(0)¼ 1.14, and b¼ 0.0105, the most important resonant

transit frequencies, for the n¼ 1 RWM, are the m¼ 1 and

m¼ 2 harmonics, presented by the dashed and dot-dashed

curves, respectively, in Fig. 6(b). The transit resonance

requires a much larger plasma rotation than the precessional

resonance. For this equilibrium, we did not find the full stabi-

lization of the RWM with the transit resonance.

Figure 9(b) plots of the radial distribution of both the

real and imaging parts of the kinetic energy dWk (integrated

over the magnetic surface), contributed by the precessional

resonance of trapped particles. The largest kinetic contribu-

tion appears in the range of minor radius, where xd� 0.

V. NON-PERTURBATIVE VERSUS PERTURBATIVE
RESULTS

In this work, we have adopted the self-consistent approach,

where the drift kinetic effects are coupled to the MHD equa-

tions in a non-perturbative manner. Another approach is the

perturbative one,42,43 where the fluid part is considered as

the lowest order term, and the kinetic part as the next order.

The drift kinetic energy is calculated using the eigenfunction of

the fluid RWM or the marginally stable ideal kink mode (with

an ideal wall). The non-perturbative approach allows a self-

consistent modification of the RWM eigenfunction, due to the

kinetic effects. Furthermore, the complex eigenvalue of

the RWM is obtained self-consistently by solving the hybrid

eigenmode equations, where the mode frequency dependent ki-

netic resonance operators are taken into account via the per-

turbed kinetic pressure tensor.

In the following, we give an example comparing these

two approaches. We use the same tokamak equilibrium as

for Fig. 1(d), with q(0)¼ 1.13, q(a)¼ 1.64, and b¼ 0.02

which is ideal for the study of the two approaches on the

n¼ 1 RWM since there is no mode resonant surface inside

the plasma, and hence no singular behaviour appears in the

mode eigenfunction. The plasma rotation X¼ 0 is assumed.

Figure 1(d) (Sec. III) showed the radial profiles of the

eigenfunctions nn, obtained by the fluid theory. The m¼ 1

harmonic is dominant, with the m¼ 2 harmonic having rela-

tively smaller amplitude. Shown in Fig. 10 is the eigenfunc-

tion for nn, obtained by the selfconsistent approach. Clearly,

the amplitude of the m¼ 2 harmonic is largely increased due

to the kinetic effects, and in fact becomes one of the domi-

nant modes.

FIG. 9. The radial distribution of the real and imaginary parts of dWk, integrated over the phase space and the poloidal angle, for (a) the n¼ 6 marginally sta-

ble RWM in the RFP plasma, where the mode resonance with the transit frequency of passing ions alone is included, with X¼ 0.0203xA; (b) the n¼ 1 margin-

ally stable RWM in the tokamak plasma, in the presence of the mode resonance with precessional drifts of trapped ions and electrons.

FIG. 10. The radial profiles of the poloidal Fourier harmonics of perturbed

radial displacement, for the self-consistently computed n¼ 1 RWM includ-

ing the full kinetic effects, for the tokamak equilibrium with q(a) ¼ 1.64. A

straight field line coordinate system is used. No plasma rotation is assumed.
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Consequently, the energy components normalized by

dWdriven and calculated from the two different eigenfunc-

tions, are also different as shown in Fig. 11. Two groups of

the energy components are plotted. The first one comes from

the perturbative approach, where the energy components are

computed using the eigenfunction of the fluid RWM. The sec-

ond group of energy is computed using the RWM eigenfunc-

tion obtained from the self-consistent approach. In the second

group, the current driven term contributes a larger fraction,

due to the kinetic modification of the mode eigenfunction.

The kinetic energy from the two approaches, though different,

is still much smaller than the fluid energy dW1. Therefore,

for this equilibrium, the kinetic effects cannot stabilize the

RWM following either approach. The variation of the mode

eigenfunction, as well as the energy components, does not

result in a qualitative difference in the mode eigenvalues (per-

turbative approach: (cþ ixr)/xA¼ 2.51�10�3�i3.55�10–4;

self-consistent approach: 2.74�10�3�i2.98�10�4). Because

dWk 	 dW1, it is understandable that the perturbative

approach should not give large discrepancy in the mode

eigenvalue, compared to the self-consistent approach.

The above analysis indicates that when RWM is unsta-

ble and far from the marginal stability condition, the fluid

energy components (dW1, dWb) are much larger than the ki-

netic energy dWk. In this case, the results from the two

approaches do not seem to show a large difference in the

mode growth rate. However, when dW1 and dWb are almost

comparable with dWk, for example when the RWM is near

the marginal stability, or when the plasma rotation is

included, the perturbative approach may lead to a large dis-

crepancy (even qualitative) from the non-perturbative one.

Some of the previous works have shown this point,32,47 and

we will further investigate it in detail.

VI. SUMMARY AND DISCUSSIONS

We have studied the drift kinetic effects on the RWM

for both RFP and tokamak plasmas, using the toroidal MHD-

kinetic hybrid code MARS-K. In MARS-K, the kinetic reso-

nant effects are incorporated into MHD formulation via the

perturbed kinetic pressure tensor. The unknown mode

growth rate and the mode eigenfunction are self-consistently

obtained by solving the hybrid eigenmode equations. A new

module for computing various potential energy components,

based on the kinetic-modified RWM eigenfunction, has been

developed and integrated into MARS-K. The module helps

to make comprehensive energy analyses and to obtain in-

depth physics understanding.

Our studies reveal that the kinetic dissipations on the

RWM instability, in RFPs and tokamks, are due to different

kinetic mechanisms, resulting in different stabilizing condi-

tions for the mode in the two systems. The differences in the

RWM behavior are directly linked to the characteristics of

the two different magnetic configurations. The RFP configu-

ration is characterized by the low q profile, with the poloidal

magnetic field (Bv) being in the same order as the toroidal

field (B/), and with a toroidal field reversal in the plasma

edge. The tokamak plasma has a stronger toroidal field B/,

being the order of 1/e greater than Bv, and with B/!1/R.

We briefly summarize the comparison results in the follow-

ing Table I.

A comparison of various potential energy components

in both configurations demonstrated certain common futures,

FIG. 11. The potential energy components, as defined in Eqs. (11)–(14) and

normalized by the driven terms dWdriven¼ –(dWpreþ dWcur), are plotted for

the n¼ 1 RWMs, for the q(a)¼ 1.64 tokamak equilibrium, where the full ki-

netic effects are included. Group (1) adopts the perturbative approach with

the fluid RWM eigenfunction. Group (2) is calculated in the self-consistent

approach. No plasma rotation is assumed.

TABLE I. Comparison between the RFP and the tokamak plasmas on the RWM stability, with the inclusion of kinetic resonances.

RFP Tokamak

RWMs are current driven modes. RWMs are often pressure driven modes.

All RWMs are “non-resonant” modes. RWMs can be either “resonant” or “non-resonant” modes.

Weak toroidal coupling, only one

poloidal harmonic dominant

Strong toroidal coupling, multiple poloidal

harmonics grow together with comparable amplitudes

Almost no ballooning character

in the mode structure

Usually clear ballooning character in the mode structure

Internal non-resonant modes can be stabilized

by the plasma rotation with the frequency being

in the ion acoustic range for high b plasmas.

Pressure driven RWM can be stabilized at very

slow plasma rotation (X< 0.5%xA),

or even without rotation.

Kinetic stabilization is mainly due to the mode

resonance with transit frequency of passing

particles (ion acoustic Landau damping).

Kinetic stabilization at slow velocity is

mainly due to the mode resonance with precessional

drifts of trapped particles.

The precessional resonance of trapped

particles can not stabilize the RWM.

Current driven modes can not be

stabilized by the precessional resonance.
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namely that the kinetic stabilization requires a large fraction

of the pressure driven energy component. Furthermore,

decreasing the energy components dWb and/or dW1, is

actually a critical ingredient in bringing the kinetic energy

component to play an important role in the mode stabiliza-

tion. In RFPs, we found that the stabilization often occurs

when dWb ! 0. Increasing the equilibrium pressure and/or

moving the resistive wall away from the plasma surface can

reduce dWb. The analysis found that increasing the plasma b
leads to the decrease of the normal component of the dis-

placement, as well as the normal perturbed magnetic field at

plasma edge, which in turn reduce the perturbed vacuum

energy dWvb, thus reduce dWb. In tokamaks, both dWb! 0

and dW1! 0 can occur, implying that the drift kinetic

effects can be more important near the no-wall or ideal-wall

beta limits. Moreover, a tokamak equilibrium with larger

q(a) implies that, for the same plasma current, the toroidal

field is stronger. Such plasma is more resistant to the kink

instability, thanks to the larger magnetic bending energy. In

our case, a larger q(a) also leads to a higher no-wall b limit,

thus a larger pressure driven potential energy dWpre. All

these factors explain that, with a larger q(a), it is easier to

stabilize the RWM by kinetic effects.

In this study, we use the wall position at b/a¼ 1.12 for all

of the calculations. Therefore, the effects of the wall position

on the kinetic stabilization have not been discussed. Actually,

this effect is also an important ingredient for the RWM stabil-

ity because it is directly related to the vacuum energy compo-

nent dWvb. This study will be presented elsewhere.44

A uniform flow velocity has been assumed in this study.

Compared to the shear flow, this assumption may lead to cer-

tain quantitative discrepancies. In tokamak plasmas, if the

mode rational surfaces are located inside the plasma, the sta-

bility may be more sensitive to the profile of the flow veloc-

ity. We leave this issue for the future work. Another

assumption is the circular cross section for the tokamak plas-

mas, in order to make a comparison with the circular RFP

plasma. We believe that the physics for the shaped tokamak

plasmas is similar to the pressure driven case that we have

studied in the present work.

The comparison between non-perturbative and perturba-

tive approaches has been made and the preliminary results

have been obtained by investigating one simple example for

the tokamak equilibrium. The investigation indicates that

when the RWM is unstable and far from the marginal stabil-

ity, although a large modification of the RWM eigenfunction

by the kinetic effects can appear, the perturbative approach

only gives a small quantitative discrepancy in the mode

eigenvalue, compared to the non-perturbative approach.

However, in many other situations that we investigated, in

particular, when RWM is near the marginal stability, or in

the presence of plasma rotation, the two approaches can lead

to rather large, even qualitative, discrepancies. The discrep-

ancies were also pointed out by other results in several

works.32,47 Further investigations and the detailed discus-

sions on the physical mechanism causing the discrepancies

between two approaches will be pursued and presented in

the future work.
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