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On neoclassical transport near the magnetic axis
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~Received 8 February 2000; accepted 8 March 2000!

The theory of neoclassical transport near the magnetic axis in a tokamak is discussed. It is shown
that the ordinary treatment of transport in the plateau regime holds in most of the region within a
trapped orbit width of the magnetic axis, and is not modified by ‘‘potato’’ orbits. It is also
demonstrated that transport at low collisionality is not diffusive in nature and cannot be described
independently of the sources of particles and heat in the region near the magnetic axis. A variational
principle is formulated for the near-axis transport problem.@S1070-664X~00!00107-5#
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I. INTRODUCTION

In the last few years there has been a revival of inte
in the old problem of neoclassical transport near the m
netic axis of a tokamak. Conventional neoclassical theory1–3

assumes that the ion orbit width is much smaller than
distancer from the magnetic axis. Far from the axis, whe
this assumption is valid, the widest orbits are shaped
bananas and have a width of the order

r b52e1/2v/Vu , ~1!

whereVu5eBu /m is the poloidal gyrofrequency,v the ve-
locity, ande5r /R the inverse aspect ratio. The banana wid
r b increases toward the magnetic axis, and whenr &r b the
shapes of trapped orbits change noticeably and resemble
tatoes rather than bananas. These orbits are the widest
that exist in a tokamak; they have a width that can be e
mated by equating the banana width~1! to r. This gives the
‘‘potato width’’ 4

r p5~2q2r2R!1/3, ~2!

where q5rB/RBu is the safety factor andr5mv/eB the
gyroradius.

Recently there have been a number of attempts to
prove on conventional neoclassical theory, which is valid
r @r p , so as to be able to treat the near-axis regionr
5O(r p), see Refs. 5–11. There are two reasons for the
terest in this topic. First, the ion potato width can be a c
siderable fraction of the minor radius in a tokamak if t
current density in the center is small, which is common
discharges with negative magnetic shear. In such plasma
neoclassical ion confinement in the core should be gover
by ‘‘potato’’ transport rather than by the usual theory. Se
ond, the bootstrap current is proportional to the fraction
trapped particles,f t;e1/2, in the banana regime and ther
fore vanishes on the magnetic axis.12 It is impossible to find
a simultaneous solution to the Grad–Shafranov equation
the transport equation for particles or energy if the curren
exclusively given by the bootstrap current.12,13Therefore it is
difficult to attain a steady-state tokamak without driving
seed current in the center. It has been suggested that it
be possible to create a plasma with a current ‘‘hole,’’ so t
the current density vanishes completely in a region near
2871070-664X/2000/7(7)/2878/6/$17.00
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plasma center and there is no magnetic axis.14 However, it is
uncertain whether such a configuration would be stable
attainable in practice. On the other hand, the presence
~electron! potato orbits might give rise to a neoclassical bo
strap current near the axis after all. Such a current was
culated in Ref. 8, and, based on this, a stable, comple
bootstrapped equilibrium was found numerically in Ref. 1

It is the purpose of the present paper to comment on
recent literature and to point out a number of mathemat
shortcomings and physical misconceptions. In fact, we h
found that all of the recently published papers~Refs. 5–11!
contain errors, some of which are of a fundamental natu
Our paper is organized as follows. In Sec II, we analyze
guiding-center orbits, which play a central role in the kine
transport theory developed in the next two sections. In S
III, we treat the potato-plateau regime introduced by Sha
and Hazeltine in Ref. 9. We find that transport in this co
sionality regime is not affected by potato orbits since t
resonant particles are circulating. Therefore, the transpo
similar to that found in conventional neoclassical theory
most of the regionr &r p . In Sec. IV we discuss the colli
sionless, ‘‘potato regime,’’ which is analogous to the usu
banana regime. This has been the subject of some con
versy recently as Ref. 5 and Refs. 6–8 arrive at oppo
results: The former finds that the ion heat diffusivity va
ishes at the magnetic axis, the latter that it becomes infin
We show that the transport is nonlocal in nature in the reg
r &r p and therefore does not obey a diffusion equation n
the magnetic axis. Rather than prescribing the plasma gr
ents, as in Refs. 5–8 and 11, it appears more fruitful
include the source term in the transport analysis. We form
late a variational principle for the resulting kinetic problem
In Sec. V our conclusions are summarized.

II. ORBITS

In this section we briefly review the theory of guidin
center trajectories in a tokamak, including the near-axis
gion. A general axisymmetric magnetic field can be writt
as

B5I ~c!¹w1¹wÃ¹c,
8
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2879Phys. Plasmas, Vol. 7, No. 7, July 2000 On neoclassical transport near the magnetic axis
wherec is the poloidal flux andw the toroidal angle. For
simplicity, we shall assume that the flux surfaces are elli
cal, so that

r 25z2/k21x2

is a flux function, that the toroidal field dominates over t
poloidal field, Bu!Bw , where Bu5u¹cu/R and Bw5I /R,
and that the tokamak safety factor

q5
1

2p R B"¹w

B"¹u
du5krB/c8~r !

is approximately constant over the region we are consid
ing. Herex and z are the horizontal and vertical distanc
from the magnetic axis, andk is the flux-surface elongation
These assumptions are usually well satisfied near the ce
of a tokamak.

In general, the shape of the orbits can be deduced f
the three constants of motion (E,m,pw), whereE5mv2/2
1eF is the energy,m5mv'

2 /2B the magnetic moment, an
pw5e(Iv i /V2c)52ec* the toroidal canonical momen
tum. To simplify the analysis we assume that there is
strong electric field, so that the electrostatic potentialF var-
ies by much less thanE/e over a guiding center orbit. We
can then use the particle speedv as a constant of motion
rather than E, and we can usel5v'

2 B0 /v2B.(1
2j2)R/R0 instead ofm, whereB05I /R0 denotes the mag
netic field strength at the magnetic axis,R5R0 , and j
5v i /v the cosine of the pitch angle.

By eliminatingj from these relations one obtains

S R

R0
D 2

2
lR

R0
5Fe~c2c* !

mR0v G2

,

which determines the shape of the orbits in the coordina
(R,c). It is now straightforward to calculate where the orb
intersect the midplanez50. Sincec5kB0r 2/2q the points
of intersectione5x/R0 are given by the quartic equation

~11e!22l~11e!5F kR0

2qr0
~e22e

*
2 !G2

, ~3!

wherer05mv/eB0 ande
*
2 52q2c* /kR0

2B0 . This equation
has either two or four real roots, corresponding to whet
there are one or two orbits with a given set of invaria
(v,l,c* ). ~Each orbit intersects the midplane twice.! Far
from the magnetic axis, these cases correspond to whe
the orbits are trapped or circulating. For given (v,l,c* )
there is either one trapped orbit, or two circulating ones w
different signs ofv i .

Let us first analyze the orbits that pass through the m
netic axis. For such orbits the constant term in the qua
equation~3! must vanish, 12l2(kR0e

*
2 /2qr0)250, so that

e50 is a solution. By finding the other solutions we c
determine the other point where an orbit intersects the m
plane and thus obtain the orbit width. If we denote the va
of j at the magnetic axis byj0 , then we havee

*
2

522qr0j0 /kR0 andl512j0
2 , and we can write Eq.~3! as

e31
4qr0

kR0
j0e2S 2qr0

kR0
D 2

~11j0
22e!50.
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There are two types of solutions to this equation. For m
orbitsj05O(1) and the terme3 is small, so that the solution
becomes

e.
11j0

2

j0

qr0

kR0
. ~4!

Thus, these orbits stay within about a gyroradius of the m
netic axis. If j0 is very small,j0;(2qr0 /R0)1/3, then the
cubic term is no longer negligible and

e;S 2qr0

kR0
D 2/3

,

which corresponds to the potato width estimate~2!.
More generally, it is instructive to write Eq.~3! as

e25e
*
2 S 16

2qr0

ke
*
2 R0

A~11e!~11e2l!D . ~5!

Since r0 /R0!1 it is apparent that for most solutions w
must havee2.e

*
2 , so that the orbit stays close to a partic

lar magnetic surface. The maximum excursion for these
bits is Dr 5O(qr0e21/2), which occurs for 12l5O(e).
The only orbits which have large excursions,Dr /r 5O(1),
are those for whiche&(qr/kR0)2/3 and 12l!1 simulta-
neously, i.e., the potato orbits analyzed previously.

In summary, most orbits stay within a distance of t
order of the Larmor radius of a particular flux surface. This
true everywherein the plasma, even in the potato regionr
&r p . A small proportion,f t!1, of the particles are trappe
~or barely untrapped! and have wider orbits. These particle
are characterized by small parallel velocity,uju& f t . Far
from the magnetic axis, the trapped fraction isf t;e1/2. In
the region close to the center, as defined by~2!, the fraction
is f t;(2qr0 /kR0)1/3. Figure 1 shows a few particle trajec

FIG. 1. Orbits close to the magnetic axis. Trapped orbits that pass thro
the axis~A!, also known as potato orbits, have relatively large widths. M
circulating orbits passing through the axis~B! stay within a few Larmor
radii of the axis. Most orbits in near-axis region are circulating~C! and stay
close to a particular flux surface. At a distance of only one potato wi
from the axis, the trapped orbits resemble bananas~D!.
cense or copyright; see http://pop.aip.org/about/rights_and_permissions



io
a

l,
li-
si

s.
b
.
,
if

ax

t

ltin
t

c-
rt.
o

m
tiv

ux

n

n

e

b
e
gl

de

f

e
the
ra-
ple

ed
th
n
t
m
hey
as

e to
n-

ery

the
ort

. In
dis-
its
tic

9.
the

om
d

e is
rob-
lly
tion

d

or-
ot

way
n

2880 Phys. Plasmas, Vol. 7, No. 7, July 2000 P. Helander
tories close to the magnetic axis. Most orbits in this reg
are of the type C, i.e., identical to passing orbits farther aw
from the magnetic axis.

III. PLATEAU REGIME

The plateau regime of collisionality is defined by

1!n* ! f t
23 , ~6!

wheren* 5n/ f t
3v t is the collisionality, withn the collision

frequency andv t5vT /qR the transit frequency of therma
well circulating particles. In this regime, the effective col
sion frequency for scattering across the trapped-pas
boundary,neff5n/ f t

2 , exceeds the poloidal~bounce! fre-
quencyvu; f tv t for trapped and barely circulating particle
As a result, the orbits of these particles are interrupted
collisions, while the well circulating ones are collisionless

Because of the smallness off t near the magnetic axis
the plateau regime is of fairly wide applicability. Indeed,
the conventional expression,f t;e1/2, were valid all the way
to the magnetic axis, one would conclude that the near-
region is always in the plateau regime ifn,v t . Because of
the correction from potato orbits,f t does not quite vanish a
the axis. However, sincef t;(2qr0 /kR0)1/35(r p /R)1/2 is
usually a very small number, even quite hot plasmas can
in the plateau regime near the axis. Shaing and Haze
have therefore developed a theory for plateau transport in
near-axis region.9 Their theory takes potato orbits into a
count, and these orbits play a central role in the transpo

Before discussing this theory, we review the physics
conventional plateau-regime transport. The latter is do
nated by a class of resonant particles for which the effec
collision frequencyneff5n/j2 is equal to the poloidal fre-
quencyvu5du/dt5jv t , so thatj res;(n/v t)

1/3. These par-
ticles are well circulating,j res@ f t , and therefore follow or-
dinary untrapped orbits. Their excursions from the fl
surface on which they are centered are small~of the order
qr!. In first order~in the smallness of the Larmor radius! the
drift kinetic equation is

ṙ
] f 1

]r
1 j̇

] f 1

]j
1 u̇

] f 1

]u
2C~ f 1!52vd•¹ f 0 , ~7!

where f 0(r ) is the zeroth-order, Maxwellian distributio
function,vd the drift velocity, andC the linearized collision
operator. It is convenient to split off a part of the distributio
function by writing

f 15g2
Iv i

V S d ln p

dc
1

e

T

dF

dc
1y

d ln T

dc D f 0 ,

wherep5nT is the pressure andy is a constant, whose valu
is later chosen suitably~see Ref. 2!. The first two terms on
the left-hand side of Eq.~7! are small sincer andj are nearly
constant over the orbits of resonant particles. Moreover,
cause of the narrowness~in j) of the resonant region, th
collision operator can be approximated by its pitch-an
scattering part, and the kinetic equation becomes

vj

qR

]g

]u
2

n

2

]2g

]j2
5Q sinu, ~8!
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whereQ5(vdrB/kq)(E/T25/22y)(dT/dc) f 0 . ~Although
the resonant layer is narrow in this sense, it is still wi
enough that the mirror force may be ignored.! The solution is
easily found by elementary means,2 and becomes

g5pQd~vj/qR!sinu, ~9!

in the limit n→0. The collision operator is small in most o
velocity space but is important in the resonant regionj
;(n/v t)

1/3, where it resolves a singularity which otherwis
arises. As a result, the transport is insensitive to both
collision frequency and the structure of the collision ope
tor. The latter can, for instance, be replaced by a sim
Krook operator,C(g)→2ng, without affecting the result.

Note that the only properties of orbits which were us
were thatr and j are constant for resonant particles. Bo
these assertions hold also in most of the potato regior
&r p . Most well circulating orbits~including the resonan
ones! are no different in this region than farther away fro
the magnetic axis. The trapped orbits are different, but t
play no role in plateau transport! In fact, they do not exist
they are interrupted by collisions. Thus, the transport clos
the magnetic axis must be similar to that found in the co
ventional theory. Of course, this theory breaks down at v
small distances~much less thanr p! from the magnetic axis,
where the orbits do have relatively large excursions. On
other hand, transport theory is not meaningful on such sh
length scales, as will be discussed further in the Sec. V
addition, there is a further constraint associated with the
parity between kinetic and transport time scales, which lim
the applicability of the plateau regime close to the magne
axis, as will be discussed in Sec. IV.

We now turn to the recently published theory of Ref.
This paper focuses on particles whose orbits pass through
magnetic axis, and the drift kinetic equation is written as

vuS ]g

]u D
E,m,c

*

2C~g!5Q sinu.

The poloidal frequencyvu5du/dt varies strongly along po-
tato orbits. By changing the independent variables fr
(E,m,c* ,u) to (E,vu ,c* ,u), the equation is transforme
into

vuS ]g

]u
1

]vu

]u

]g

]vu
D2C~g!5Q sinu. ~10!

It is then argued that the second term on the left-hand sid
small in the resonant region and can be dropped. The p
lem is thus transformed into a form which is mathematica
equivalent to the usual plateau problem, and the solu
becomes

g5pQd~vu!sinu

by analogy with Eq~9!. The transport can thus be calculate
along familiar lines.

However, it is important to realize that the resonant
bits to which this analysis is applied are circulating, and n
trapped as assumed in Ref. 9; they are situated well a
from the trapped-circulating boundary. Their width is give
by ~4! with j0;j res and thus becomesr res;n21/3r p , which
*

cense or copyright; see http://pop.aip.org/about/rights_and_permissions



he
rb

he
n

.
y
th
e

,
ed
ee

r
al
th

m

e
n

th

e

5
c
st
sit
n

tic
s.

sid-
ng
und-
y.
oes
es
are

ely
o
ss-
of
her.
ion

ar-
py
ent
ra-

the

o
he

e

n

e is
of a

tion

rt

2881Phys. Plasmas, Vol. 7, No. 7, July 2000 On neoclassical transport near the magnetic axis
is ~formally! much smaller than the potato width. Since t
orbits pass through the magnetic axis, the resonant o
width r res is equal to the size of the region over which t
usual transport laws need to be modified. Thus, conventio
plateau transport holds in most of the potato region,r &r p ,15

and fails only in the regionr &r resclose to the magnetic axis
In particular, potato orbits do not affect the transport an
where since these orbits are interrupted by collisions and
plateau transport fluxes are carried by well circulating on

IV. POTATO REGIME

We now turn to the regime of very low collisionality
n* !1, where not only circulating orbits, but also trapp
ones, are collisionless. Transport in this regime has b
treated in several recent papers.5–8,10,11. The starting point of
these papers is the drift kinetic equation

v i¹ f 11vd"¹~ f 01 f 1!5C~ f 1!, ~11!

where the gradient is taken at fixed (E,m). The new feature
as compared with conventional neoclassical theory is the
tention of the termvd"¹f 1 , which is as large as the usu
term vd"¹f 0 since f 1 varies on the scale of the potato wid
while the equilibrium scale length associated withf 0 is much
longer.

In Ref. 5 the kinetic equation~11! for ions was solved
numerically, and the results were compared with a rando
walk estimate of the ion heat flux

qr.2aE f t

~Dr !2

teff

] f 0

]r

mv2

2
d3v

52
4an

p1/2t

dTi

dr E0

`~Dr !2

f t
S u2

3

2De2udu,

where the effective collision time was taken asteff

5tu3/2f t
2 , with t the ordinary ion collision time andu

5mv2/2Ti . The constanta was chosen so as to match th
usual neoclassical result far from the magnetic axis, and o
the temperature gradient term was included in] f 0 /]r . The
trapped particle fractionf t and the step lengthDr were both
regarded as functions of the velocityv and the radiusr. For
velocities so small that the banana width is smaller than
radius,r b,r , the banana expressionsDr 5r b , f t5e1/2 were
used, while forv such thatr b.r the potato resultsDr
5r p , f t5(r p /R)1/2 were employed. At the magnetic axis th
latter apply for all velocities, and the heat flux vanishes

qr.2
4anR1/2

p1/2t

dTi

dr E0

`

r p
3/2S u2

3

2De2udu50,

since r p}u1/3, and in the potato regionr /r p→0 the heat
diffusivity approaches zero by a formula derived in Ref.
This result appears questionable as it results from the a
dental cancellation of two terms, which have only been e
mated in an approximate way. For instance, if the den
gradient were included or if the collision time had a differe
dependence on velocity thanu3/2 ~for instance involving er-
ror functions!, a rather different result~more like that of
Shainget al.6–8! is obtained.
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In Refs. 6–8 a more ambitious solution of the kine
equation~11! was attempted, by making two approximation
Only orbits passing through the magnetic axis were con
ered, and the collision operator was simplified by includi
only pitch-angle scattering across the trapped-passing bo
ary,vu.0. Both these approximations are difficult to justif
When an orbit passing through the magnetic axis underg
a collision, it is normally scattered onto an orbit which do
not go through the axis. Recall that although there
trapped, wide orbits in the potato regionr &r p , most particle
trajectories in this region are circulating and approximat
follow magnetic field lines. In Fig 1, if a particle on potat
orbit A undergoes a collision, it typically ends up on a pa
ing orbit of type C. The kinetics of these different types
orbits cannot be considered independently of each ot
This issue is also related to the replacement of the collis
operator by scattering across the boundaryvu.0, which is
made in Refs. 6–8. This approximation was inspired by e
lier work by Hazeltine and Catto on transport in a bum
torus,16 but does not appear to be justified in the pres
context. The pitch-angle derivatives in the scattering ope
tor transform as

] f 1

]j
5

]vu

]j

] f 1

]vu
1

]c*
]j

] f 1

]c*
,

where both terms must be retained, in general. Indeed, in
potato region, scattering across the boundaryvu.0,

]vu

]j

] f 1

]vu
;

f 1

f t
,

is comparable to the radial derivative

]c*
]j

] f 1

]c*
;

Iv
V

f 1

cp
,

since the latter involves the short scale lengthcp

5kBrp
2/2q, the scale length inc corresponding to the potat

width ~2!. The point is that orbits change noticeably on t
scale length of the orbit width.

However, there is a more fundamental difficulty with th
formulation of the transport problem itself as in Eq.~11!.
Normally the time derivative] f /]t and any source terms ca
be neglected in Eq.~11!, and Refs. 5–8, 10, and 11 follow
this practice. The usual reason for this neglect is that ther
a separation of time scales between the establishment
local equilibrium within each flux surface~which is fast! and
the cross-field transport~which is slow!. However, such a
situation does not necessarily prevail in the regionr &r p near
the magnetic axis.

For instance, consider the ion energy transport equa

3

2 K ]nTi

]t L 52
1

V8

]

]c
V8^q"¹c&1SE , ~12!

and suppose that the energy sourceSE vanishes. Herê•••&
is the flux-surface average andV(c) the volume enclosed by
the flux surfacec. In the literature cited the heat transpo
was found to be diffusive
cense or copyright; see http://pop.aip.org/about/rights_and_permissions
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^q"¹c&52nxc

dTi

dc
, ~13!

where the heat diffusivityxc scales as

xc;ncp
2/ f t

in the papers by Shainget al.6–8 This can be understood from
a random-walk argument. The transport is mainly due to
trapped and barely passing particles, which constitute a f
tion f t of the total population and have an effective collisi
frequencyneff5n/ f t

2 . The random-walk step size is of th
order of the potato widthcp , and the heat diffusivity there
fore scales asxc; f tneffcp

2 . While this scaling is probably
correct, we would like to emphasize that the diffusive fo
~13! of the heat flux cannot be taken literally. Indeed, Re
6–8 make clear that the heat flux in Eq.~13! is the result of
a radial average over the potato region. Here, it seems wo
while to discuss further why the transport law~13! cannot
hold locally.

The theory assumes thatdTi /dc is nearly constant on
the scale length of the potato width. Whether this is true w
be discussed shortly, but suppose it holds at some in
instant, t50. The energy equation~12!, which can now be
written as

3

2 K ]nTi

]t L 5
]

]c
nxc

]Ti

]c
,

governs the subsequent evolution of the temperature gr
ent. Since there is no heat source at the magnetic a
dTi /dc is immediately flattened there, and after the time

t.
cp

2

xc
;

f t

n
,

dTi /dc.0 in the entire potato regionr &r p . However, this
is shorter than the timen21 required to establish an equilib
rium for the distribution function in velocity space.17 It is
thus clear that the time derivative] f i /]t cannot be neglected
in the kinetic equation~11!. Alternatively, the source term
must be retained. The energy equation~12! then implies

dT

dc
52

1

nxc
E

0

c

SE~c8!dc8,

in steady state. Realistically, the sourceSE must be taken to
be constant over the near-axis region, but thendT/dc is not
constant as required by the theory. For instance, ifxc is
taken from Shainget al.,6–8 then dT/dc vanishes on axis
while it becomes infinite if the heat diffusivity of Lin, Tang
and Lee5 is used.~The latter actually predicts infinite tem
perature on axis!! Again, this shows that the diffusive hea
conduction law~13! only holds in a volume-averaged sens
as noted by Shainget al. Moreover, retaining the source ter
is likely to influence the kinetics of the transport problem

We are thus led to consider the full, steady-state d
kinetic equation

~v¸1vd!"¹f 5C~ f !1S, ~14!

whereS is a source term, upon which the transport will d
pend in general. The density and temperature gradients m
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be determined from this equation; they cannot be prescri
independently. This issue has recently been explained
quently by Hazeltine18 in the context of transport along
magnetic field: spatial gradients are usually considered to
the driving force for transport, but this point of view is on
fruitful on length scales much longer than the step length
the collisional random walk. On shorter length scales, in
present caser &r p , the transport is nonlocal in nature an
cannot be related uniquely to local gradients. Instead,
source term acts as the driving force for the transport, wh
determines the gradients.

In the potato regime, where the source term and the
lision term are smaller than the left-hand side, it is approp
ate to expand the distribution function,f 5 f 01 f 11 . . . , so
that

~v¸1vd!"¹f 050,

which implies thatf 0 depends only on constants of motio
f 05 f 0(v,l,c* ,s), wheres5v i /uv iu. This function is de-
termined by the constraint equation that is obtained by tak
the orbit average of Eq.~14!,

R @C~ f 0!1S#dt50. ~15!

We shall make no attempt to solve Eq.~15!, which is a
formidable problem, but we would like to point out that it
not difficult to formulate a variational principle for Eq.~15!.
The variational form is the entropy functional

L52E f 0

f M
@C~ f 0!12S#d3rd3v,

where the volume integral is taken over a radial region wh
is much larger than the orbit width but much smaller than
length scale associated with the density and temperatur
f 0 . The function f M is Maxwellian, with constant density
and temperature in this region. It is assumed thatf 0 is nearly
Maxwellian, which is the case if the source term is we
enough, and thatf 0 is close tof M . If L is varied subject to
the constraintf 05 f 0(v,l,c* ,s), thendL50 is equivalent
to Eq. ~15!. To see this, we recall that the phase-space v
ume element can be expressed as

d3rd3v5d3Jd3q,

where (J,q) are action-angle variables.19–21The action vari-
ablesJ5(J1 ,J2 ,J3) are constants of motion and thus fun
tions of (v,l,c* ,s), while the angle variablesq are phases
which evolve linearly in time along an orbit,dq i /dt
5const, and run from 0 to 1. The first angle corresponds
the gyrophase, and the third one to the toroidal anglew.
Thus, in drift kinetics of an axisymmetric plasma, only th
second angle,q2 , is of importance; it measures the pha
along the guiding-center trajectory. Varying the functionalL
subject to the constraint thatf 0 should depend only on the
action variables now gives

dL52E 2d f 0

f M
d3J R @C~ f 0!1S#dq2 ,
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and it follows thatdL50 is equivalent to Eq.~15!. Here we
have used the self-adjointness of the linearized collision
erator and assumed that the source term is known.

In principle, the transport problem~14! can thus be
solved by using trial functions to minimize the functionalL.
When minimized,L becomes equal to the total entropy pr
duction in the region,

L@ f 0#5E f 0

f M
C~ f 0!d3rd3v.

V. CONCLUSIONS

The topic of neoclassical transport in the region near
magnetic axis has been the subject of several re
papers.5–11 These works have convincingly shown that t
transport properties of a nearly collisionless plasma dep
sensitively on the particle orbits near the axis. However,
properties of the orbits themselves depend strongly on
radius, so that the transport changes on a length scale th
comparable to the step length in the collisional random-w
process. Under such circumstances the conventional pic
of diffusive transport is inappropriate, as it considers len
scales larger than the step length. It is no longer meanin
to write transport equations such as Eq.~13! since the heat
flux is not determined by the local temperature gradi
alone. Moreover, the temperature gradient is neither kno
nor ~necessarily! constant in the region close to the magne
axis; it must be determined as part of the transport probl
To some extent, these issues are recognized in Refs.
where a radial average is taken in the calculation of the h
flux. However, unlike the situation in a bumpy torus,16 there
is no intermediate length scale to average over.~A potato
orbit which is displaced radially by as little as a potato wid
changes shape noticeably.!

Although we have argued that the literature cited co
tains errors, both mathematical and conceptual, we bel
that the basic scalings derived in some of these works
correct and valuable. It is certainly true that the fraction
trapped particles does not vanish on the magnetic axis, b
f t;(2qr0 /kR0)1/3. This implies that the particle and he
fluxes should scale approximately as derived in Refs. 6
~rather than as in Ref. 5!, although the numerical coefficient
~and indeed the form of the diffusive transport laws! are
unreliable. Furthermore, there should be a nonvanish
bootstrap current and a trapped-particle correction to the
sistivity on the magnetic axis, as pointed out in Refs. 10 a
11. Unfortunately, the bootstrap current tends to be v
small—far lower than what is required for a convention
current profile. It should be noted that the electron pot
region~which is where potato-orbit effects ‘‘fill in’’ the hole
left by the conventional bootstrap current! is very small. It
can easily fall in the plateau regime,n* .1, where the cur-
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rent is suppressed by collisions and scales likej }r 2/n* .
This is, for instance, the case for the plasma parameters
in Ref. 10.

Finally, we have shown that the plateau regime, as
fined in Eq.~6!, is no different in most of the potato regio
r &r p than farther away from the magnetic axis. The physi
reason for this is that the transport is dominated by w
passing particles, which approximately follow magnetic fie
lines. Only in a region very close to the magnetic axisr
;qr(v t /n)1/3, do well-passing orbits deviate significant
from flux surfaces.
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