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On neoclassical transport near the magnetic axis

P. Helander
Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom

(Received 8 February 2000; accepted 8 March 2000

The theory of neoclassical transport near the magnetic axis in a tokamak is discussed. It is shown
that the ordinary treatment of transport in the plateau regime holds in most of the region within a
trapped orbit width of the magnetic axis, and is not modified by “potato” orbits. It is also
demonstrated that transport at low collisionality is not diffusive in nature and cannot be described
independently of the sources of particles and heat in the region near the magnetic axis. A variational
principle is formulated for the near-axis transport problerhS1070-664X00)00107-5

I. INTRODUCTION plasma center and there is no magnetic dkldowever, it is
] ) uncertain whether such a configuration would be stable or
~ Inthe last few years there has been a revival of intereskyainaple in practice. On the other hand, the presence of
in the old problem of neoclassical transport near the mag(g|ectron potato orbits might give rise to a neoclassical boot-
netic axis of a tokamak. Conventional neoclassical theGry strap current near the axis after all. Such a current was cal-
assumes that the ion orbit width is much smaller than the, jated in Ref. 8, and, based on this, a stable, completely
distancer from the magnetic axis. Far from the axis, where ,stranned equilibrium was found numerically in Ref. 10.
this assumption is valid, the widest orbits are shaped like |15 the purpose of the present paper to comment on the
bananas and have a width of the order recent literature and to point out a number of mathematical
ry=2€"%1/0Q,, (1)  shortcomings and physical misconceptions. In fact, we have
found that all of the recently published papéRefs. 5-11
where() ,=eB,/m is the poloidal gyrofrequency, the ve-  contain errors, some of which are of a fundamental nature.
locity, ande=r/R the inverse aspect ratio. The banana widthour paper is organized as follows. In Sec II, we analyze the
rp increases toward the magnetic axis, and wheir, the  guiding-center orbits, which play a central role in the kinetic
shapes of trapped orbits change noticeably and resemble pgansport theory developed in the next two sections. In Sec
tatoes rather than bananas. These orbits are the widest on@s we treat the potato-plateau regime introduced by Shaing
that exist in a tokamak; they have a width that can be estiand Hazeltine in Ref. 9. We find that transport in this colli-
mated by equating the banana widf to r. This gives the  sjonality regime is not affected by potato orbits since the
“potato width”* resonant particles are circulating. Therefore, the transport is
fo=(29%p2R) 13 2 similar to that f(_)und in conventional neoqlassical theory in
P ' most of the regiorr=r,. In Sec. IV we discuss the colli-
where q=rB/RB, is the safety factor ang=mv/eB the  sionless, “potato regime,” which is analogous to the usual
gyroradius. banana regime. This has been the subject of some contro-
Recently there have been a number of attempts to imversy recently as Ref. 5 and Refs. 6—8 arrive at opposite
prove on conventional neoclassical theory, which is valid forresults: The former finds that the ion heat diffusivity van-
r>r,, so as to be able to treat the near-axis region ishes at the magnetic axis, the latter that it becomes infinite.
=0(rp), see Refs. 5-11. There are two reasons for the inWe show that the transport is nonlocal in nature in the region
terest in this topic. First, the ion potato width can be a con+=r, and therefore does not obey a diffusion equation near
siderable fraction of the minor radius in a tokamak if thethe magnetic axis. Rather than prescribing the plasma gradi-
current density in the center is small, which is common inents, as in Refs. 5—-8 and 11, it appears more fruitful to
discharges with negative magnetic shear. In such plasmas tlreclude the source term in the transport analysis. We formu-
neoclassical ion confinement in the core should be governeldte a variational principle for the resulting kinetic problem.
by “potato” transport rather than by the usual theory. Sec-In Sec. V our conclusions are summarized.
ond, the bootstrap current is proportional to the fraction of
trapped particlesf,~ €' in the banana regime and there-
fore vanishes on the magnetic aXfdt is impossible to find Il ORBITS
a simultaneous solution to the Grad—Shafranov equation and
the transport equation for particles or energy if the currentis  |n this section we briefly review the theory of guiding
exclusively given by the bootstrap curréft:®Therefore itis  center trajectories in a tokamak, including the near-axis re-
difficult to attain a steady-state tokamak without driving agion. A general axisymmetric magnetic field can be written
seed current in the center. It has been suggested that it may
be possible to create a plasma with a current “hole,” so that
the current density vanishes completely in a region near the B=I1(y)Vo+ VXV,
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where ¢ is the poloidal flux andp the toroidal angle. For
simplicity, we shall assume that the flux surfaces are ellipti-
cal, so that D

r2=272/Kk?+ x?

is a flux function, that the toroidal field dominates over the ¢
poloidal field, B,<B,, whereB,=|Vy|/R and B,=I/R,
and that the tokamak safety factor z
-2, éB—-V‘Pd = KrB/y/ v
a=5 P Bwgdf=krB/¥(r)

is approximately constant over the region we are consider-
ing. Herex and z are the horizontal and vertical distances
from the magnetic axis, arklis the flux-surface elongation.
These assumptions are usually well satisfied near the center
of a tokamak. X

In general, the shape of the orbits can be deduced frorEIG. 1. Orbits close to the magnetic axis. Trapped orbits that pass through

; — 2
the three constants of motiorE(u,p,), WhereE=mv</2  the axis(A), also known as potato orbits, have relatively large widths. Most
+ed is the energyu = mUEIZB the magnetic moment, and circulating orbits passing through the axB) stay within a few Larmor

p.=e(lv,/Q—)=—ey, the toroidal canonical momen- radii of the axis. Most orbits in near-axis region are circulaii@yand stay

. . . . close to a particular flux surface. At a distance of only one potato width
tum. To S|m_pI|fy the analysis we assume that th_ere IS NQ7om the axis, the trapped orbits resemble bandBas
strong electric field, so that the electrostatic potentiatar-
ies by much less thak/e over a guiding center orbit. We
can then use the particle speedas a constant of motion
rather than E, and we can usey\zvfsolvzsz(l There are two types of solutions to this equation. For most
— E)RIR, instead ofu, whereBy=1/R, denotes the mag- orbits&;=0(1) and the terme* is small, so that the solution
netic field strength at the magnetic axR=R,, and ¢ becomes
=v, /v the cosine of the pitch angle. 2

_1+& dpo

By eliminating ¢ from these relations one obtains e~ R (4)
& kRo
R\ AR [e(y—y)]? ’
R_o - R_o = TROU ) Thus, these orbits stay within about a gyroradius of the mag-

netic axis. If &, is very small,&,~(2qpe/Ro)Y>, then the
which determines the shape of the orbits in the coordinatesubic term is no longer negligible and

(R,¥). Itis now straightforward to calculate where the orbits o3

intersect the midplane=0. Sincey=kByr?/2q the points EN(quC))

of intersectione=x/R, are given by the quartic equation kRo
) , 2 which corresponds to the potato width estiméte
(I+e)"—N1+e)= quo(f R UR ©) More generally, it is instructive to write EG3) as
wherepy=muv/eB, and €2 = 2q%y, /kR3B,. This equation . 2qpo
has either two or four real roots, corresponding to whether € ~ €x 1ik62 RO\/(1+€)(1+€_)‘) : ®)
*

there are one or two orbits with a given set of invariants

(v,\,¢,). (Each orbit intersects the midplane twic€&ar  Since pg/Ry<<1 it is apparent that for most solutions we
from the magnetic axis, these cases correspond to whethetust havee?=¢2 , so that the orbit stays close to a particu-
the orbits are trapped or circulating. For given,X, ¢, ) lar magnetic surface. The maximum excursion for these or-
there is either one trapped orbit, or two circulating ones withbits is Ar=0(qpoe *?), which occurs for +A=0(e).
different signs ofv, . The only orbits which have large excursions;/r=0(1),

Let us first analyze the orbits that pass through the magare those for whiche<(qp/kRy)?® and 1-\<1 simulta-
netic axis. For such orbits the constant term in the quarticeously, i.e., the potato orbits analyzed previously.
equation(3) must vanish, + \ — (kRye2/2qp,)?=0, so that In summary, most orbits stay within a distance of the
e=0 is a solution. By finding the other solutions we canorder of the Larmor radius of a particular flux surface. This is
determine the other point where an orbit intersects the midtrue everywheren the plasma, even in the potato region
plane and thus obtain the orbit width. If we denote the valuesr,. A small proportionf;<1, of the particles are trapped
of ¢ at the magnetic axis by, then we havee? (or barely untrappedand have wider orbits. These particles
=—2qpoé&s/kRy andh=1—¢2, and we can write Eq3) as  are characterized by small parallel velocify|<f,. Far
2 from the magnetic axis, the trapped fractionfis- 2 In
S+ 4Qp0§ — ( quo) (1+£2—€)=0. the region close to the center, as defined ®y the fraction

kR, °° kRo 0 is f,~ (2qpo/kRo)*3. Figure 1 shows a few particle trajec-
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tories close to the magnetic axis. Most orbits in this regionrwhere Q= (v4rB/kq)(E/T—5/2—y)(dT/d)f,. (Although
are of the type C, i.e., identical to passing orbits farther awayhe resonant layer is narrow in this sense, it is still wide

from the magnetic axis. enough that the mirror force may be ignonetihe solution is
easily found by elementary meahand becomes
lll. PLATEAU REGIME 9= 7Q8(vEIqR)sING, 9)

The plateau regime of collisionality is defined by in the limit »—0. The collision operator is small in most of

1< v*<f{3, (6) velocity space but is important in the resonant regién

3 . . , , . ~ (vl wy) Y, where it resolves a singularity which otherwise
where v, =v/fio is the collisionality, withv the collision  4ises. As a result, the transport is insensitive to both the
frequency ando;=vr/qR the transit frequency of thermal, cqjision frequency and the structure of the collision opera-

well circulating particles. In this regime, the effective colli- o, The latter can. for instance. be replaced by a simple
sion frequency f02r scattering across f[he trapped-passing,qok operatorC(g)— — »g, without affecting the result.
boundary, vei=v/f, exceeds the poloidalbounce fre- Note that the only properties of orbits which were used
guencyw,~ fiw, for trapped and barely circulating particles. yyere thatr and ¢ are constant for resonant particles. Both
As a result, the orbits of these particles are interrupted byhace assertions hold also in most of the potato region
collisions, while the well circulating ones are collisionless. =<r,. Most well circulating orbits(including the resonant
Because of the smallness & near the magnetic axis, gneg are no different in this region than farther away from
the plateau regime is of fairly V‘i'ge applicability. Indeed, if the magnetic axis. The trapped orbits are different, but they
the conventional expressiofi~ €™, were valid all the way  5jay no role in plateau transport! In fact, they do not exist as
to the magnetic axis, one would conclude that the near-axigyey are interrupted by collisions. Thus, the transport close to
region is always in the plateau regiment-w,. Because of  {he magnetic axis must be similar to that found in the con-
the correction from potato orbité, does not quite vanish at - yenional theory. Of course, this theory breaks down at very
the axis. However, sincé~(20po/kRo)™"=(rp/R)™is  gmg|l distancegmuch less tham ) from the magnetic axis,
usually a very small number, even quite hot plasmas can bghere the orbits do have relatively large excursions. On the
in the plateau regime near the axis. Shaing and Hazeltingiher hand, transport theory is not meaningful on such short
have therefore developed a theory for plateau transport in th@gth scales, as will be discussed further in the Sec. V. In
near-axis reg|oﬁ.The_|r theory takes potato orbits into ac- aqgition, there is a further constraint associated with the dis-
count, and these orbits play a central role in the transport. paity petween kinetic and transport time scales, which limits

Before discussing this theory, we review the physics Ofihe gpplicability of the plateau regime close to the magnetic
conventional plateau-regime transport. The latter is domixyis as will be discussed in Sec. IV.

nated by a class of resonant particles for which the effective  \ye now turn to the recently published theory of Ref. 9.

. . _ 2 . .
collision frequencyvei=v/£° is equal to the poloidal fre-  rhis paper focuses on particles whose orbits pass through the

— — 1/3
quencyw,=do/dt=Ew;, SO thatfres~ (v/w) ™" These par-  magnetic axis, and the drift kinetic equation is written as
ticles are well circulating¢,.sf;, and therefore follow or-

dinary untrapped orbits. Their excursions from the flux 79 o
surface on which they are centered are snaflithe order @0 59 £ ~C(@)=Qsiné.
gp). In first order(in the smallness of the Larmor radjube et
drift kinetic equation is The poloidal frequencw ,=d#/dt varies strongly along po-
pr pr pr tato orbits. By changing the independent variables from
|;_1+'_1+"9_1_C(f1):_vd.VfO’ 7 (E.m ¢, ,6) to (E 04,9, ,6), the equation is transformed
ar 123 a0 into
where fy(r) is the zeroth-order, Maxwellian distribution 99 dw, 9
function, v4 the drift velocity, andC the linearized collision wyl =+ — —) —C(g)=Qsins. (10
operator. It is convenient to split off a part of the distribution 90 96 dwy
function by writing It is then argued that the second term on the left-hand side is
lv,(dinp e dd dinT smaI_I in the resonant region and can l?e d_ropped. The_ prob-
fi=9—— lem is thus transformed into a form which is mathematically

+=——+y——/fo,
Q1 dy  Tdy di equivalent to the usual plateau problem, and the solution
wherep=nT is the pressure anglis a constant, whose value becomes
is later chosen suitablgsee Ref. 2 The first two terms on :
the left-hand side of Eq7) are small since and¢ are nearly 9=mQd(wy)sin0
constant over the orbits of resonant particles. Moreover, beby analogy with Eq9). The transport can thus be calculated
cause of the narrowness &) of the resonant region, the along familiar lines.
collision operator can be approximated by its pitch-angle  However, it is important to realize that the resonant or-

scattering part, and the kinetic equation becomes bits to which this analysis is applied are circulating, and not
5 trapped as assumed in Ref. 9; they are situated well away
E (9_9_ i &_g:Qsine (8) from the trapped-circulating boundary. Their width is given
qR 0 2 y¢? ’ by (4) with &y~ &es and thus becomeses~ v, “* ,, which
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is (formally) much smaller than the potato width. Since the  In Refs. 6—8 a more ambitious solution of the kinetic
orbits pass through the magnetic axis, the resonant orbequation(11) was attempted, by making two approximations.
width r s is equal to the size of the region over which the Only orbits passing through the magnetic axis were consid-
usual transport laws need to be modified. Thus, conventionared, and the collision operator was simplified by including
plateau transport holds in most of the potato regicar, 15 only pitch-angle scattering across the trapped-passing bound-
and fails only in the region=r s close to the magnetic axis. ary, w,~=0. Both these approximations are difficult to justify.

In particular, potato orbits do not affect the transport any-When an orbit passing through the magnetic axis undergoes
where since these orbits are interrupted by collisions and tha collision, it is normally scattered onto an orbit which does
plateau transport fluxes are carried by well circulating onesnot go through the axis. Recall that although there are
trapped, wide orbits in the potato regiosr ,, most particle
trajectories in this region are circulating and approximately
follow magnetic field lines. In Fig 1, if a particle on potato

We now turn to the regime of very low collisionality, _orbit A _undergoes a collisi_on,_it typically en(_js up on a pass-
v, <1, where not only circulating orbits, but also trapped'n9 orbit of type C. The kinetics of these different types of

ones, are collisionless. Transport in this regime has beefiPits cannot be considered independently of each other.
treated in several recent pap&r&1°1! The starting point of This issue is also related to the replacement of the collision

IV. POTATO REGIME

these papers is the drift kinetic equation operator by scattering across the boundagy=0, which is
made in Refs. 6—8. This approximation was inspired by ear-
v Vi +vgV(fot+f)=C(fy), (1) Jier work by Hazeltine and Catto on transport in a bumpy

where the gradient is taken at fixeH,(). The new feature (Orus;® but does not appear to be justified in the present
as compared with conventional neoclassical theory is the rekontext. The pitch-angle derivatives in the scattering opera-
tention of the termvy-Vf,, which is as large as the usual Or transform as

termvy-Vf, sincef, varies on the scale of the potato width oty dwy ofy o, oty

while the equilibrium scale length associated wfigis much — = _ = —
longer. 9 9 dwy I I,

In .Relfl. S thg tl::nehc elguatloml) for |on§ W?hs SOIVe(? where both terms must be retained, in general. Indeed, in the
numerically, anc the results were compared with a ran Om[f)otato region, scattering across the boundagy-0,
walk estimate of the ion heat flux

(A2 ofg mv? Jwg 0ty T
Or=- . o o d 9 dwy T’
Adan dTiJ“(Af)z( 3) o is comparable to the radial derivative
=————| ——|u—=|e udu,
V2. dr o f, 2 ap, ofy v fq
where the effective collision time was taken asg 9& I Q iy’
=7u%?2, with 7 the ordinary ion collision time and

— 22T, Th tante h i ich th since the latter involves the short scale length,
—mo i- 1he constant was chosen so as 1o malch the =kBr,2)/2q, the scale length i corresponding to the potato

usual neoclassical result far from the magnetic axis, and on%idth (2). The point is that orbits change noticeably on the
the temperature gradient term was includediig/dr. The scale length of the orbit width

trapped particle fractio, and the step lengthr were both However, there is a more fundamental difficulty with the

regarded as functions of the velocityand the radius. For formulation of the transport problem itself as in Ed.).

velocities so small that the banana width is Sma'l',‘;"r than th(?\Iormally the time derivativéf/Jt and any source terms can

radius,rp<r, the banana expressiods =ry,, fy=e"“were "0 1006 in Eq11), and Refs. 5-8, 10, and 11 follow
lised,fvv_hlle /forllj,z such thatlrb>;| the hpotato regults§r h this practice. The usual reason for this neglect is that there is
I; trtg} atp_pl(;r}oLQ)all \‘;‘:gi;g;p 2/12 t.hétrt]eztr?ﬁ?(n\?;r?isﬁlesst €a separation of time scales between the establishment of a
' local equilibrium within each flux surfadevhich is fasj and

the cross-field transpofwhich is slow. However, such a
u— E) e 'du=0, situation does not necessarily prevail in the regieir , near

the magnetic axis.
sincerpocum, and in the potato region/r,—0 the heat For instance, consider the ion energy transport equation
diffusivity approaches zero by a formula derived in Ref. 5.
This result appears questionable as it results from the acci- 3<07nTi> 1 9

3/2

4anRY2 dT, (=
_ o

G==""1_ " qr
T2, dr

dental cancellation of two terms, which have only been esti- 2
mated in an approximate way. For instance, if the density
gradient were included or if the collision time had a differentand suppose that the energy souBgevanishes. Herg:--)
dependence on velocity thar?’? (for instance involving er- is the flux-surface average akdy) the volume enclosed by
ror functiong, a rather different resulimore like that of the flux surfacey. In the literature cited the heat transport
Shainget al®8) is obtained. was found to be diffusive

VAR AR (12)
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be determined from this equation; they cannot be prescribed
independently. This issue has recently been explained elo-
quently by Hazeltin® in the context of transport along a
magnetic field: spatial gradients are usually considered to be
~ vyl the driving force for transport, but this point of view is only
Xy Pt fruitful on length scales much longer than the step length in
in the papers by Shairgt al®~® This can be understood from the collisional random walk. On shorter length scales, in the
a random-walk argument. The transport is mainly due to thepresent case=r,, the transport is nonlocal in nature and
trapped and barely passing particles, which constitute a fraczannot be related uniquely to local gradients. Instead, the
tion f; of the total population and have an effective collision source term acts as the driving force for the transport, which

dT,
(Q-Vypy= Mgy (13)

where the heat diffusivity,, scales as

frequencyveq= v/f2. The random-walk step size is of the
order of the potato widthy,, and the heat diffusivity there-
fore scales as(¢~ftveﬁ¢,//§. While this scaling is probably

determines the gradients.
In the potato regime, where the source term and the col-
lision term are smaller than the left-hand side, it is appropri-

correct, we would like to emphasize that the diffusive formate to expand the distribution functioh=fy+f,;+ ..., so
(13) of the heat flux cannot be taken literally. Indeed, Refs.that

6—8 make clear that the heat flux in EG4J3) is the result of

a radial average over the potato region. Here, it seems worth-

while to discuss further why the transport la&3) cannot
hold locally.
The theory assumes thdifl;/d¢ is nearly constant on

the scale length of the potato width. Whether this is true will

be discussed shortly, but suppose it holds at some initi
instant,t=0. The energy equatiofl2), which can now be
written as

i

at
governs the subsequent evolution of the temperature gra

o T,

a

(V"+ Vd)'VfOZ 0,

which implies thatf, depends only on constants of motion,
fo=fo(v,\, ¢, ,0), whereo=uv,/|v,|. This function is de-
termined by the constraint equation that is obtained by taking
t]he orbit average of Eq14),

3§ [C(fo)+ S]dt=0. (15)

We shall make no attempt to solve E(.5), which is a
formidable problem, but we would like to point out that it is

dot difficult to formulate a variational principle for E¢L5).

ent. Since there is no heat source at the magnetic axid,'€ Variational form is the entropy functional

dT;/d¢ is immediately flattened there, and after the time

v f,
TE=—~

Xy V
dT;/d¢=0 in the entire potato region<r,. However, this
is shorter than the time ™ required to establish an equilib-
rium for the distribution function in velocity spadé.lt is
thus clear that the time derivativé; /gt cannot be neglected
in the kinetic equatior(11). Alternatively, the source term
must be retained. The energy equat{@a) then implies

daT _ 1 fws ()dy’

dw_ nX¢, 0 E l// lr/, ’

in steady state. Realistically, the souise must be taken to
be constant over the near-axis region, but td&hd is not
constant as required by the theory. For instancey jfis
taken from Shainget al,’~8 then dT/dy vanishes on axis,
while it becomes infinite if the heat diffusivity of Lin, Tang,
and Leé is used.(The latter actually predicts infinite tem-
perature on axig!Again, this shows that the diffusive heat

f
A=— J f—O[C(f0)+ZS]d3rd3v,
M

where the volume integral is taken over a radial region which
is much larger than the orbit width but much smaller than the
length scale associated with the density and temperature in
fo. The functionf,, is Maxwellian, with constant density
and temperature in this region. It is assumed fhas nearly
Maxwellian, which is the case if the source term is weak
enough, and thaty is close tof,,. If A is varied subject to

the constrainfy=fq(v,\, ¥, ,0), thensA =0 is equivalent

to Eq. (15). To see this, we recall that the phase-space vol-
ume element can be expressed as

d3rd3y =d3Jd%9,

where (,9) are action-angle variablé$-?! The action vari-
ablesJ=(J4,J,,J3) are constants of motion and thus func-
tions of (,\, ¥, ,o), while the angle variable# are phases
which evolve linearly in time along an orbitdd;/dt
=const, and run from 0 to 1. The first angle corresponds to

conduction law(13) only holds in a volume-averaged sense,the gyrophase, and the third one to the toroidal angle

as noted by Shainegt al. Moreover, retaining the source term
is likely to influence the kinetics of the transport problem.

Thus, in drift kinetics of an axisymmetric plasma, only the
second angley),, is of importance; it measures the phase

We are thus led to consider the full, steady-state driftalong the guiding-center trajectory. Varying the functional

kinetic equation

whereSis a source term, upon which the transport will de-
pend in general. The density and temperature gradients must

subject to the constraint thét should depend only on the
action variables now gives

25f,
5A=—ff—d3.1 f}; [C(fo)+S]dd,,
M
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and it follows thatSA =0 is equivalent to Eq(15). Here we  rent is suppressed by collisions and scales fike?/v, .
have used the self-adjointness of the linearized collision opThis is, for instance, the case for the plasma parameters used
erator and assumed that the source term is known. in Ref. 10.

In principle, the transport problemil4) can thus be Finally, we have shown that the plateau regime, as de-
solved by using trial functions to minimize the functiomal  fined in Eq.(6), is no different in most of the potato region
When minimized A becomes equal to the total entropy pro- r <r, than farther away from the magnetic axis. The physical

duction in the region, reason for this is that the transport is dominated by well-
f passing particles, which approximately follow magnetic field
Alfo]= f _OC(fo)d3rd3U_ lines. Only in a region very close to the magnetic axis,
fu ~qp(wy/v)3 do well-passing orbits deviate significantly

from flux surfaces.
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