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PHYSICS OF PLASMAS VOLUME 8, NUMBER 7 JULY 2001
Effect of the inductive electric field on ion flow in tokamaks
Peter J. Catto, R. J. Hastie, and I. H. Hutchinson
Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, Massachusetts 02139

P. Helander
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB, United Kingdom

~Received 6 December 2000; accepted 15 January 2001!

The effect of the inductive electric field of a tokamak on the parallel~and poloidal! ion flow in the
banana regime is evaluated. It is demonstrated that the flow is in the direction of the parallel current
and is surprisingly large—comparable to the usual banana regime ion temperature gradient drive.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1373676#
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I. INTRODUCTION

Recent observations of strong toroidal ion flows in A
cator C-Mod during Ohmic operation1 have motivated us to
consider the effect of the inductive electric field in a tokam
on the parallel and poloidal flow of ions. Typically the o
served toroidal flows are about a tenth or less of the
thermal speed and are in the direction of the plasma cur
~that is, co-directed! for high confinement~H-mode! opera-
tion. In neoclassical theory the influence of the induct
parallel electric field on ion transport is invariably ignore
This neglect decouples the ions from the electrons an
normally referred to as the ‘‘weak couplin
approximation.’’2 Because the role of the inductive electr
field on ion transport is expected to be weak, its impact
ion flow in tokamaks has been assumed to be insignifican
well. However, in what follows we will demonstrate that th
is not the case. Indeed, we will show that in the bana
regime the inductive electric field can drive parallel and p
loidal ion flow comparable to the usual ion temperature g
dient flow of neoclassical theory.2,3 It is important to remem-
ber, however, that the inductive electric field is not a sou
of toroidal momentum in a quasi-neutral plasma since it d
not explicitly enter the total conservation of toroidal angu
momentum equation which determines the radial elec
field. Therefore, any inductively driven toroidal flow acts
alter the relation between the radial electric field and toroi
rotation and is not a complete explanation of the Alca
C-Mod observations.

In a plasma with no parallel variation of the magnet
field strength, for example, a straight circular cylinder w
helical field, the parallel electric field,Ei , does not impose
any ion flow constraint because the electric field force act
on the ions is exactly balanced by the collisional fricti
with the electrons. The parallel ion flow is then indeterm
nate in this classical case; it is not connected withEi .

Neoclassically, however, in a magnetic-field configu
tion such as a tokamak, with field magnitude variation,
parallel electric field force on the trapped electrons is b
anced not by friction, but by the mirror force. The cons
quence of this mirror force is the Ware–Galeev trapped p
ticle pinch,4,5 and, of course, the neoclassical reduction
3331070-664X/2001/8(7)/3334/8/$18.00
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conductivity.2,3 The passing electrons have their electric fie
force balanced by collisional friction. We denote the fracti
of the parallel electric field force on the total electron pop
lation that is balanced by friction with the ions asI: The
effective passing fraction. The ions, therefore, experience
average parallel force per unit chargeE* ;Ei(12I ) consist-
ing of the difference between the direct electric field forc
Ei , and the electron friction,EiI . In equilibrium the total
force E* on both the trapping and passing ions must
balanced by the mirror force on the trapped ions, and whe
is, the Ware–Galeev pinch of the ions will exactly equal th
on the electrons, maintaining ambipolarity. The passing i
transfer the forceE* to the trapped ions by collisions an
they balance it with the mirror force. In order that the mirr
force on the ions has its correct value, the ions must ado
flow with a specific mean parallel velocityVi i . A rough
estimate of its magnitude may be obtained as follows.

The passing ions~massM, chargeZe, and mean velocity
Vp! transfer their momentum per particleMVp to the station-
ary trapped ions at a rate of approximately (12I )n i i , where
n i i is the ion–ion collision frequency and the trapped i
fraction is taken as 12I . Therefore, the drag force per un
charge on the passing ions isMVp(12I )n i i /Ze. Setting this
equal toE* , and noting that the average parallel ion velo
ity, Vi i , is related toVp by Vi i;IVp gives MVi i(12I )n i i

;ZeEiI (12I ). Notice that the parallel ion flowVi i is co-
directed and that in the absence of trapped particles (I 51) is
undetermined. Rewriting forIÞ1, we obtain the parallel ion
flow estimate

Vi i2ZeEiI /Mn i i .

Of course the coefficients in this equation based on a heu
tic derivation are not quantitatively reliable. The purpose
the present work is to perform a full kinetic theory calcul
tion of this effect and to show that its magnitude is sign
cant.

In Sec. II we solve a model ion kinetic equation6,7 to
evaluate the effect on the ions of an unbalanced parallel e
tric field and parallel friction between the ions and electro
More sophisticated ion–ion collision operators8 giving
slightly different numerical factors are considered in Appe
4 © 2001 American Institute of Physics

cense or copyright; see http://pop.aip.org/about/rights_and_permissions



to
an
tio
tic
a
-

ix

ith

he
a
s

n
-

e

n

ng
g
d

in

t

it

h
as

.

s-

the
c-
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dix A. Section III solves a model electron kinetic equation
determine the relation between the parallel electric field
the ion–electron friction and demonstrates that this rela
is related to the usual inward Ware–Galeev trapped par
pinch. At first only ion charge numbers much greater th
unity (Z@1) are considered in Sec. III for simplicity. How
ever, the result for large aspect ratio and generalZ is then
obtained from standard neoclassical results and Append
considers arbitrary aspect ratio andZ. The parallel and po-
loidal ion flow is evaluated in Sec. IV and we conclude w
a discussion in the last section.

II. ION KINETIC EQUATION AND SOLUTION

To focus on the inductive electric field effects on t
ions we ignore the usual ion temperature drive of stand
neoclassical theory and solve for the ion response by con
ering the reduced linearized ion kinetic equation2,3

v in•¹ f 1i2Cii $ f 1i%5
Ze

Ti
E* v i f 0i , ~1!

where f 1 j is the perturbed distribution function of speciesj
andCii is the linearized ion–ion collision operator. The io
charge isZe,n5B/B is the unit vector along the magnetic
field B, the parallel velocity isv i5(v222mB)1/2 with v the
speed, and the gradient is taken with the magnetic mom
m5v'

2 /2B held fixed. The quantityE* is defined as

E* 5Ei2
F iei

eNe
, ~2!

with Ei the parallel electric field, and the parallel frictio
between the electrons and ions is defined by

F iei5m*d3vv iCei$ f 1e%. ~3!

The unperturbed ion distribution functionf 0i is Maxwellian

f 0i5Ni S M

2pTi
D 3/2

expS 2
Mv2

2Ti
D , ~4!

with Ni and Ti the ion density and temperature, andM the
ion mass. The electron density isNe and m is the electron
mass, and quasineutrality requiresNe5ZNi .

In the banana regimen•¹ f 1i50 to lowest order. To
next order we annihilate the streaming term by multiplyi
by B/(v iB•¹q) with q the poloidal angle, and integratin
over a full poloidal circuit~a full bounce for the trapped an
2p for the passing!. Defining dt5dqB/v iB•¹q as the in-
cremental time along the trajectory, the resulting constra
equation to be solved becomes

rdtCii $ f 1i%52
Ze

Ti
f 0irdtv iE* . ~5!

For the trapped~subscriptt! ions rdtv iE* 50, while Cii is
even inv i so that

f 1i u t50. ~6!

For the passing~subscriptp! the orbit average is equivalen
to a flux surface average and Eq.~5! may be rewritten as
Downloaded 08 Aug 2012 to 194.81.223.66. Redistribution subject to AIP li
d
n
le
n

B

rd
id-

nt

t

K B

v i
Cii $ f 1i up%L 52

Ze

Ti
f 0i^BE* &, ~7!

where ^¯&5@*2p
p dq(¯)/B•¹q#/@*2p

p dq/B•¹q#. No-
tice that in the banana regime the solution forf 1i is odd in
v i , while its next order correction in collision over trans
frequency is even inv i . The Bv i moment and flux surface
average of Eq.~1!

eNe^BE* &52M^*d3v f 1iv in•¹~v iB!& ,

places a constraint on this next order even solution.
To illustrate the solution of Eq.~7! we consider the

Kovrizhnikh model like–particle collision operator, whic
retains pitch angle scattering and conserves momentum
well as energy and number@see Appendix A of Ref. 6 or Ref
7, for example#; namely

Cj j $ f 1 j%5nv iF ]

]m S mv i

B

] f 1 j

]m D1
f 0 j*d3vnv i f 1 j

*d3vnv i
2f 0 j

G , ~8!

where

n5n j j Q~x!5
n j j

x3 F S 12
1

2x2DEr f ~x!1
Er f 8~x!

2x G , ~9!

Er f (x)52p21/2*0
xdt exp(2t2) is the error function,

Er f 8(x)5dEr f(x)/dx, and for ionsx5(Mv2/2Ti)
1/2 and

n i i 521/2pZ4e4Ni ln L/M1/2Ti
3/2 with ln L the Coulomb loga-

rithm.
Employing Eq.~8! and defining

Y5^B*d3vnv i f 1i& ~10!

and

W52
Ze

Tin
^BE* &2

Y

*d3vnv i
2f 0i

, ~11!

Eq. ~7! becomes

]

]m S m^v i&
] f 1i up

]m D5W f0i . ~12!

Integrating fromm50 to m gives

] f 1i up

]m
5

W f0i

^v i&
. ~13!

Using Eqs.~6! and ~13! to evaluateY gives

~121!Y52
ZeNi

M
^BE* &I , ~14!

where the effective fraction of passing particles3 is

I 5
3

4
^B2&E

0

Bmax
21 dll

^~12lB!1/2&
'121.46«1/21¯ , ~15!

with R/R05B0 /B511« cosq, l52m/v2 a pitch angle
variable, and«5r /R0 the inverse aspect ratio. The expre
sion on the far right-hand side of~15! is the lowest order
result for circular flux surfaces and large aspect ratio;
integral form is valid for general geometry. In the next se
tion we will show thatE* 50 in the cylindrical limit«50,
so that in this limitY is unconstrained by Eq.~14!. As a
cense or copyright; see http://pop.aip.org/about/rights_and_permissions
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result, Y is free to adjust to conserve parallel momentu
when the cylindrical limit of Eqs.~7! and ~8! is considered.

Using Eq. ~14! we can evaluate Eq.~11! and thereby
rewrite Eq.~13! as

] f 1i up

]m
52

Ze

Tin
F11

NiTi In

~12I !M*d3vnv i
2f 0i

G ^BE* &

^v i&
. ~16!

Equation~16! can then be used to evaluate the parallel
flow

NiVi i5E d3vv i f 1i , ~17!

to find

Vi i5
ZeB̂ BE* &I

M ^B2&n i i
F I

~12I !^^Q&&
1 K K 1

QL L G , ~18!

where we define

^^Qq&&5
*0

`dxQqx4 exp~2x2!

*0
`dxx4 exp~2x2!

, ~19!

and, upon evaluating, obtain the coefficients^^Q&&50.4 and
^^Q21&&55.4. Of course, the coefficientŝ^Q&& and
^^Q21&& are sensitive to the details of the model ion–i
collision operator employed. In Appendix A the more s
phisticated model collision operators of Hirshman a
Sigmar8 are used to obtain the same result to within ab
10% as shown in Fig. 1, which plots

FIG. 1. Plots ofV̄ as defined in Eq.~20! vs I for the three different model
ion–ion collision operators. Equation~18! results are shown as the uppe
curve, the full Hirshman–Sigmar operator gives the lower curve, and
middle curve is obtained from the lowest order Hirshman–Sigmar opera
Downloaded 08 Aug 2012 to 194.81.223.66. Redistribution subject to AIP li
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V̄[
Mn i i ^B

2&Vi i

ZeB̂ BE* &I
, ~20!

versusI. In Fig. 1, Eq.~18! results in the upper curve, the fu
Hirshman–Sigmar operator gives the lower curve, and
middle curve is obtained from the lowest order Hirshma
Sigmar operator.

III. ELECTRON KINETIC EQUATION AND SOLUTION

To determine the relation between the parallel elec
field and the electron–ion friction, that is,E* , the electron
kinetic equation must be solved. Again, we keep only
inductive parallel electric field as the drive so we need o
consider

v in•¹ f 1e2Cei$ f 1e%2Cee$ f 1e%52
e

Te
Eiv i f 0e , ~21!

whereCee and Cei are the electron–electron and electron
ion collision operators, andf 0e is a Maxwellian withTe the
electron temperature

f 0e5NeS m

2pTe
D 3/2

expS 2
mv2

2Te
D .

To solve Eq.~21! and evaluate the parallel electron–io
friction from Eq.~3! it is convenient to introduce the Spitze
function f 1s which is the solution of2,9

Lei$ f 1s%1Cee$ f 1s%5
e

Te
Eiv i f 0e , ~22!

whereLei is the Lorentz operator

Lei$h%5neiv i

]

]m S mv i

B

]h

]m D , ~23!

with nei5neeZ/x3 and nee521/2pe4Ne ln L/m1/2Te
3/2 for

ZNi5Ne , andx5(mv2/2Te)
1/2 for electrons. Using Eq.~22!

and conservation of momentum in like particle collisions
rewrite Eq.~3!, gives

F iei5eNeEi1mE d3vv iLei$ f 1e2 f 1s2mVi iv i f 0e /Te%,

~24!

where we make use of

Cei$ f 1e%5Lei$ f 1e2mVi iv i f 0e /Te%. ~25!

From this form we see that theVi i term in the Lorentz op-
erator is negligible since it will result in corrections to E
~18! on the order of (m/M )1/2. Interestingly, theVi i correc-
tion in Eq. ~25! and the usual pressure and temperature g
dient terms, which are of the same order, are responsible
the weak coupling corrections to the heat and particle flu
estimated in Table IV of Ref. 2. However, the modificatio
of the parallel ion flow due to the inductive electric field
not considered there.

To determinef 1e we must solve the electron kineti
equation~written in terms of the Spitzer function!

v in•¹ f 1e5Lei$ f 1e2 f 1s%1Cee$ f 1e2 f 1s%. ~26!

e
r.
cense or copyright; see http://pop.aip.org/about/rights_and_permissions
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In the banana limitn•¹ f 1e50 to lowest order, while
annihilating the streaming term to next order gives the c
straint equation

rdt@Lei$ f 1e2 f 1s%1Cee$ f 1e2 f 1s%#50, ~27!

where, as in Eq.~5!, the time integral is over the close
periodic motion. For the trapped electronsrdtLei$ f 1s%50
5rCee$ f 1s% giving

f 1eu t50. ~28!

To illustrate simply the evaluation ofE* we consider theZ
@1 limit so electron–electron collisions can be ignored
evaluating the passing electron response. As a result,
Spitzer function is simply

f 1s52
eEiv i f 0e

Tenei
, ~29!

and the passing electron constraint becomes

]

]m S m^v i&
] f 1eup

]m
2m K v i

] f 1s

]m L D50. ~30!

Integrating Eq.~30! from m50 to m and inserting Eq.~29!
gives the passing electron response

] f 1eup

]m
5

^v i] f 1s /]m&

^v i&
5

e^BEi& f 0e

Tenei^v i&
. ~31!

Inserting Eqs.~28!, ~29!, and~31! into Eq.~24!, perform-
ing the integrals, and multiplying byB and flux surface av-
eraging gives

^BE* &5~121!^BEi&, ~32!

where I is defined as in Eq.~15!. Notice thatE* 50 for «
50 so that the parallel electric field and parallel electro
ion friction balance in a cylinder as required. Moreover, t
solution for f 1e is odd inv i , while its next order in collision
over transit frequency correction is even inv i and must sat-
isfy the constraint placed on it byBv i moment and flux
surface average of Eq.~26!

eNe^BE* &5m^*d3v f 1ev in•¹~v iB!&.

The result~32! can be obtained for large aspect ratio
considering the moment expression for the particle fluxG
obtained by forming themcRBTv i /eB moment of Eq.~25!

G[*d3v f 1eRBTv i•¹~mcv i /eB!

5*d3v f 1evd•¹c

52cNeRBT^E* /B&'2cNeRBT^BE* &/^B2&, ~33!

wherevd is the curvature plus¹B drift velocity, BT is the
toroidal magnetic field, and higher order terms in« have
been neglected in the expression on the far right-hand s
Standard high aspect ratio banana regime transport theor
Z@1 in the absence of pressure and temperature grad
finds2

G'21.46«1/2cNeRBT^BE* &/^B2&, ~34!
Downloaded 08 Aug 2012 to 194.81.223.66. Redistribution subject to AIP li
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which when combined with Eq.~33! is consistent with Eq.
~32!. Consequently, the relation between the parallel elec
field and the parallel friction is contained in the standa
large aspect ratio banana regime results.

The evaluation of̂ BE* & is repeated in Appendix B
keeping electron–electron collisions with the model opera
of Eqs.~8! and ~9! to find

^BE* &5~12I !^BEi&F11
I ^^Q&&^^QZ&&

^^Q&&2I ^^QQZ&&G
[~12I !^BEi&@11L~ I ,Z!#, ~35!

where Q5Q(x) is as defined in Eq.~9! but with x
5(mv2/2Te)

1/2, andQZ5Q/@Q1(Z/x3)#. The functionL is
positive since ^^Q&&2I ^^QQZ&&5^^QZZ/x3&&1(12I )
3^^QQZ&& and depends only onI and Z. It represents the
enhancement due to electron–electron collisions and is p
ted versusI for Z51, 2, and 4 in Fig. 2. TheI dependence is
explicit in L, and theZ dependence of̂̂ QZ&& can be fitted to
find the approximate expression

L~ I ,Z!5
0.68~Z20.38!I

Z22~0.55Z20.18!I
. ~36!

Repeating the alternative banana regime derivation
Eqs. ~33! and ~34! with the variationally determined trans
port coefficients for arbitraryZ and large aspect ratio2 gives
the relation between̂BE* & and ^BEi& to be

^BE* &51.46@11~0.67/Z!#«1/2^BEi&. ~37!

In this limit electron–electron collisions enhance the i
flow by the factor@11(0.67/Z)#, which agrees with Eq.~36!
for Z51 and`; the slight disagreements at intermediateZ
are because of our use of a model like particle collision
erator to obtain Eq.~35!.

IV. PARALLEL AND POLOIDAL ION FLOW

To determine the parallel ion flow we need only inse
Eq. ~33! into Eq. ~18!

FIG. 2. The enhancement factorL in Eq. ~35! due to electron–electron
collisions plotted vsI for Z51, 2, and 4 for the model operator of Eq.~8!.
cense or copyright; see http://pop.aip.org/about/rights_and_permissions



e

re

al

he

th

en
al
ra

in
d

ie
e
,

re

t

-
f-

pi-

the

to
s is
e
m-
t is
ar-

ble
nd

in
to

and

e
he

ure-
be
y.
al
t of
k
ata
or-
k

-
ak

he

an-
and

ric
na
nd

the

ted
nd

ak
ng
e

3338 Phys. Plasmas, Vol. 8, No. 7, July 2001 Catto et al.
Vi i5
ZeB̂ BEi&~11L !I

Mn i i ^B
2& F 1

^^Q&&
1~12I !K K 1

QL L G .
~38!

The ion–ion collision frequency in Eq.~38! and elsewhere is
3(2p)1/2/(4t i), wheret i is the Braginskii collision time. As
noted earlier, thê^Qp&& and L coefficients in Eq.~38! are
sensitive to the details of the like particle collision mod
employed, andL depends onI andZ as well. Based on the
results in Appendix A and Fig. 1, errors of about 10% a
expected.

To compare the parallel ion flow to the ion therm
speedv i5(2Ti /M )1/2 we first define the loop voltageVloop

52pREi and ion mean free pathl i5v i /n i i . Then for Z
51 and keeping«1/2 corrections, Eq.~38! can be used to
estimate

Vi i

v i
'4.2~120.7«1/2!

l ieVloop

2pRTi
, ~39!

where I 5121.46«1/2, 11L51.67(120.9«1/2), ^^Q&&
50.4, and (12I )^^Q21&&57.9«1/2 are employed. For Alca-
tor C-Mod parameters ofR570 cm, «51021, Vloop

51 volt, Ne5231014cm23, and Ti51 keV, we find
Vi i /v i;331022; reasonably close to the magnitude of t
flows observed in C-Mod.1

The flow we have calculated should be added to
usual neoclassical expression for the parallel velocity2,10 to
obtain

Vi i u tot5
cTi

eBp
F1.17~120.67«1/2!

d ln Ti

dr
2

d ln pi

dr
2

e

Ti

dF

dr G
1

eB^BEi&~11L !I

Mn i i ^B
2& F I

^^Q&&
1~12I !K K 1

QL L G , ~40!

whereBp is the poloidal magnetic field and we have tak
Z51. In fact, our new term is an addition to the poloid
flow, normally represented by just the ion temperature g
dient term, which now becomes

Vi upol5
1.17~120.67«1/2!c

eB

dTi

dr
1

eBp^BEi&~11L !I

Mn i i ^B
2&

3F I

^^Q&&
1~12I !K K 1

QL L G . ~41!

It is, therefore, perhaps of most interest to compare the
ductive velocity with that caused by ion temperature gra
ent,ViT521.17(120.67«1/2)cTi /(eBpLT), whereLT is the
ion temperature gradient scale length and the coeffic
1.17(120.67«1/2) is appropriate for the poloidal flow in th
banana regime.10 Assuming the current is inductively driven
ignoring bootstrap currents, the electric field is directly
lated to the parallel currentJi as evaluated in Appendix B
and given by Eqs.~B7! and ~B8!

Vi i

ViT
'4.5~112.0«1/2!

LT

bper
S mTi

MTe
D 1/2S 2prJ i

cBp
D , ~42!

wherer is the minor radius. In writing Eq.~42! we have used
Z51, and kept«1/2 corrections toL, Eq. ~B8!, and Eq.~38!
with the numerical values of̂̂ Qp&& inserted. The coefficien
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of the«1/2 correction in Eqs.~39! and~42! is reduced by 0.6
if the full Hirshman–Sigmar result of Eq.~A13! is employed.
Here the factor 2prJ i /cBp is a measure of the current den
sity profile, equal to unity for uniform current. At the hal
radius pointLT /r andTi /Te may typically also be approxi-
mately one. The quantitybpe58pNeTe /Bp

2, which is the
poloidal beta accounting only for electron pressure, is ty
cally about 0.25 in Alcator C-Mod cases. Taking«51/3, the
combination of these factors is enough to counterbalance
mass ratio factor, leading toVi i /ViT;0.6 for deuterium.
Thus, the inductive electric field velocity is comparable
the accepted neoclassical poloidal rotation term, and thi
likely to be true in any tokamak with inductive current driv
in the banana regime. The only situation in which the te
perature gradient term is likely to be completely dominan
in extremely high poloidal beta plasmas, or in transport b
riers whereLT!r .

Although the effect we have calculated is of compara
magnitude to the experimentally observed toroidal flow, a
in the same direction~co-current!, it does not represent a
source or transport of toroidal momentum itself. Its ma
effect, therefore, is not to cause toroidal rotation but
change the relationship between the radial electric field
the toroidal velocity.11 In other words, ifEi were turned off
~which it could perhaps be by noninductive current driv!,
then the radial electric field would be forced to change if t
toroidal ~and hence parallel! velocity remained constant. In
practice this means that the relationship between meas
ments of parallel velocity and radial electric field needs to
corrected for this parallel electric field effect on ion velocit

An experimental test of the validity of the neoclassic
theory, including this new term, requires a measuremen
poloidal velocity, and specifically the velocity of the bul
ions. There do not seem to be sufficient experimental d
yet to perform this detailed test, although considerable inf
mation is available on impurity velocities in the Tokama
Fusion Test Reactor~TFTR! ~see the Appendix of Ref. 12!
and the DIII-D tokamak.13 Electrostatic potential measure
ments were performed in the Texas Experimental Tokam
~TEXT!,14 but in the plateau regime where the 1.17 in t
temperature gradient coefficient must be replaced by20.5
and where we expect the inductive velocity to be subst
tially smaller because the trapped particles are collisional
reduceE* below the banana level.

V. CONCLUSIONS

We have evaluated the effect of the inductive elect
field of a tokamak on the parallel ion flow in the bana
regime and demonstrated that it is surprisingly large a
quantitatively important. Moreover, we have shown that
parallel ion flow that arises in a torus in response toEi does
not vanish in the limit of small inverse aspect ratio,«!1. As
so often is the case in neoclassical theory,«→0 is a singular
limit. Prior neoclassical treatments have invariably neglec
the response of the ions to the inductive electric field a
thereby ignored its effect on the poloidal ion flow. This we
coupling assumption is thought to be valid for evaluati
transport coefficients,2 but our results lead us to conclud
cense or copyright; see http://pop.aip.org/about/rights_and_permissions
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that it is not well satisfied for evaluating the poloidal io
flow. As a result, the inductive electric field modification
the poloidal ion flow that we evaluate here should be ad
to the usual banana regime ion temperature gradient dri
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APPENDIX A: IMPROVED ION–ION TREATMENTS

The model collision operator, Eq.~8!, used in the main
text is a convenient operator, with appropriate conserva
properties.6,7 It permits a complete analytic solution of th
bounce averaged ion kinetic equation, Eq.~7!. This model
operator describes pitch angle scattering with the correct
lisional ratev, but it replaces the rest of the Fokker–Plan
operator by a simple heuristic momentum conserving te
Hirshman and Sigmar8 have, however, improved on thi
model and developed a systematic approach to genera
similar approximations to the Fokker–Planck collision o
erator. Their operators take account of the differing rates
pitch angle scattering, slowing down, energy diffusion, e
For linear problems in which the drive in the kinetic equati
is odd in v i , their operators are also relatively simple a
reduce the solution of Eq.~7! to a simple linear algebra prob
lem of modest dimensions. Applied to the classical Spit
problem,2,9 the Hirshman–Sigmar operator, which we w
use in this appendix, has been shown to be accurate to b
than 1%.8 It has also been shown to give accurate results
neoclassical resistivity in the large aspect ratio limit«
→0). Since its derivation is independent of any geometri
simplifications, its use in neoclassical problems is not
stricted to the large aspect ratio limit, and there is reaso
expect that it will also yield accurate results at finite asp
ratio.

The operator consists of a Lorentz, pitch angle scat
ing, part, together with four separate momentum conserv
contributions

Cii $ f 1i%5nv i

]

]m S mv i

B

] f 1i

]m D1
M

Ti
v i f 0iF ~n2ns!

u~x!

2x2

1sns1x2~hnh1knk!G , ~A1!

wherex5(Mv2/2Ti)
1/2. In Eq. ~A1! the frequenciesn j are

functions of energy, andu(x), r, h, andk are velocity space
moments off 1i defined as follows:

n~x!5n i i @F~x!2G~x!#/x3, ns54n i i G~x!/x,

nh53n i i @3G~x!14x2G~x!22F~x!#/x3,

nk52n i i @2G~x!24x2G~x!1F~x!#/x3, ~A2!

F~x!5Er f ~x!, G~x!5@F~x!2xF8~x!#/2x2
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u~x!5
3

4p E dVv i

f 1i

f 0i
, s5

3*d3vv insf 1i

2*d3vx2nsf 0i
,

h5
3*d3vv inhx2f 1i

2*d3vx6nhf 0i
, k5

3*d3vv inkx
2f 1i

2*d3vx6nkf 0i
, ~A3!

with dV the incremental velocity space solid angle andn i i

defined following Eq.~9!.
The method of solution of Eq.~7!, using this collision

operator, is analogous to that outlined in the main text. T
equation is integrated once in the pitch angle variablem to
obtain an expression for] f 1i /]m, which still contains the
momentsu(x), s, h, andk. This expression is then used t
generate four equations for these moments, which are ca
lated explicitly, thus completing the solution forf 1i . Finally
the longitudinal ion flow is obtained from Eq.~17!. How-
ever, whereas the integral termY of the simple model opera
tor can be obtained analytically as a function of the effect
passing particle fractionI @see Eq.~14!#, closed analytic
forms for u(x,I ), s(I ), h(I ), and k(I ) cannot be obtained
from the Hirshman–Sigmar operator. The added comple
is caused by the appearance of the energy dependent mo
u(x,I ), which must be eliminated separately from thes, h,
andk moments, and results in the appearance ofI dependent
integrals as will be shown shortly@see Eqs.~A7! and ~A8!#.
Numerical evaluation of these integrals is required for eacI
value, and the resulting ion longitudinal flow can then
fitted by a low order polynomial inI.

The solution proceeds as follows. Integrating the ion
netic equation once yields

] f 1i up

]m
52

f 0iX~x!

n^v i&
~A4!

for passing ions, and zero for trapped ions, where

X~x!5 K eBE*
M L 1

~n2ns!

2x2 ^Bu~x!&1ns^Bs&

1x2~nh^Bh&1nk^Bk&!. ~A5!

Using this expression for] f 1i /]m the momentŝ Bu(x)&,
^Bs&, ^Bh&, and ^Bk& can be evaluated. After elimination o
^Bu(x)& the equations for̂Bs&, ^Bh&, and^Bk& take the form

^Bs&@a4s2Ib4ss#

5I @^eBE* /M &b4s1^Bh&b6sh1^Bk&b6sk#,

^Bh&@a8h2Ib8hh#

5I @^eBE* /M &b6h1^Bs&b6sh1^Bk&b8hk#, ~A6!

^Bk&@a8k2Ib8kk#

5I @^eBE* /M &b6k1^Bs&b6sk1^Bh&b8hk#,

with

an j5
2

Ap
E

0

`

dxe2x2
xnn j ,
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bn j5
2

Ap
E

0

` dxe2x2
xnn j

~12I !n1Ins
, ~A7!

bni j5
2

Ap
E

0

` dxe2x2
xnn in j

~12I !n1Ins
.

Using Eqs.~A4! and ~A5! the parallel ion flow velocity can
also be obtained in terms of^eBE* /M & and the moments
^Bu(x)&, ^Bs&, ^Bh&, and ^Bk&. Eliminating ^Bu(x)& from
this expression gives

Vi i

B
5

4I

3^B2&
~^eBE* /M &b41^Bs&b4s1^Bh&b6h

1^Bk&b6k!. ~A8!

Finally, solving the 333 matrix problem for̂ Bs&, ^Bh&, and
^Bk& and substituting the results into the preceding expr
sion for Vi i we obtain an expression for the ion flow as
function of ^BE* &/n i i and I, the fraction of passing ions
Using the lowest order Hirshman–Sigmar approximati
which retains only theu(x) and s momentum conserving
terms (h505k), the result is

Vi i

B
5

4eI^BE* &
3M ^B2& S b41

Ib4s
2

a4s2Ib4ss
D , ~A9!

while a more complicated expression is obtained when
full Hirshman–Sigmar operator is used. In the above exp
sion all theb coefficients are functions of the circulatin
particle fractionI and must be calculated numerically. Thea
coefficients are numerical. The normalized ion flow

V̄~ I !5
Vi i

B

Mn i i ^B
2&~12I !

e^E* B&
~A10!

has been calculated over the complete range 0,I ,1, for
both the lowest order Hirshman–Sigmar operator and the
Hirshman–Sigmar operator. The results are shown in Fig
together with the analytic expression obtained in the m
text using the simple deflection operator of Eq.~8!. Simple
analytic fits to these results are as follows:

V̄5I @2.5I 15.4~12I !#, ~A11!

V̄hs05I @5.0523.08I 10.53I 2#, ~A12!

and

V̄hs5I @4.7423.01I 10.78I 2#. ~A13!

APPENDIX B: ELECTRON–ELECTRON COLLISIONS

To retain electron–electron collisions to evaluate the
lation between̂ BE* & and^BEi& we use the model operato
of Eqs. ~8! and ~9! to determine the passing response
solving

K B

v i
[Cee$ f 1eup%1Lei$ f 1eup%L 5

e

Te
^BEi& f 0e . ~B1!

Integrating once and proceeding as in Sec. II gives
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] f 1eup

]m
5

e^BEi&QZf 0e

TeneeQ^v i&
F11

IQ^^QZ&&

^^Q&&2I ^^QQZ&&G , ~B2!

whereQ is defined in Eq.~9! andQZ5Q/@Q1(Z/x3)# with
x5(mv2/2Te)

1/2 for electrons. Solving Eq.~22! for the
Spitzer function using the same model electron–electron
erator gives

f 1s52
eEiv iQZf 0e

TeneeQ
F11

Q^^QZ&&

^^Q&&2^^QQZ&&G . ~B3!

Inserting Eqs.~28!, ~B2!, and ~B3! into Eq. ~24! with the
parallel ion flow term neglected, performing the integra
and multiplying byB and flux surface averaging gives E
~33!.

To form the parallel friction we first integrate Eq.~3! by
parts and recall Eq.~28! to obtain

F iei5mE d3vneiv im] f 1e /]mup . ~B4!

Inserting Eq.~B2!, multiplying by B, flux surface averaging
performing the integrals by employing Eqs.~15! and ~19!
gives

F iei5eNe^BEi&I K K ZQZ

x3Q F11
IQ^^QZ&&

^^Q&&2I ^^QQZ&&G L L .

~B5!

Forming ^BE* & by using ZQZ /x3Q512QZ to rearrange
terms yields Eq.~35!.

Using Eq.~B2! to evaluate the parallel current

Ji52eE d3vv i f 1e5eE d3vv im] f 1e /]mup , ~B6!

gives

Ji5
e2Ne^BEi&BI

mneê B2& K K QZ

Q F11
IQ^^QZ&&

^^Q&&2I ^^QQZ&&G L L .

~B7!

At large aspect ratio and forZ51

I K K QZ

Q F11
IQ^^QZ&&

^^Q&&2I ^^QQZ&&G L L '2.45I S 120.186I

120.373I D ,

~B8!

which becomes 3.2(122.0«1/2) at large aspect ratio.
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