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Effect of the inductive electric field on ion flow in tokamaks
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Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, Massachusetts 02139
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The effect of the inductive electric field of a tokamak on the par&iet poloidal ion flow in the
banana regime is evaluated. It is demonstrated that the flow is in the direction of the parallel current
and is surprisingly large—comparable to the usual banana regime ion temperature gradient drive.
© 2001 American Institute of Physic§DOI: 10.1063/1.1373676

I. INTRODUCTION conductivity?? The passing electrons have their electric field
) o ] force balanced by collisional friction. We denote the fraction

Recent observations of strong toroidal ion flows in Al- of the parallel electric field force on the total electron popu-
cator C-Mod during Ohmic operatidmave motivated Us t0 |ation that is balanced by friction with the ions &sThe
consider the effect of the inductive electric field in a tokamakgffective passing fraction. The ions, therefore, experience an
on the para_llel and poloidal flow of ions. Typically the ot_)- average parallel force per unit charg~E(1—1) consist-
served toroidal flows are about a tenth or less of the ionng of the difference between the direct electric field force,
thermal speed and are in the direction of the plasma currert | and the electron frictionE,l. In equilibrium the total
(that is, co-directedfor high confinementH-mode opera-  fgorce E, on both the trapping and passing ions must be
tion. In neoclassical theory the influence of the inductivepgjanced by the mirror force on the trapped ions, and when it
parallel electric field on ion transport is invariably ignored. js the Ware—Galeev pinch of the ions will exactly equal that
This neglect decouples the ions from the electrons and igp, the electrons, maintaining ambipolarity. The passing ions
normally ~ referred to as the “weak coupling transfer the forceE, to the trapped ions by collisions and
approximation.” Because the role of the inductive electric they halance it with the mirror force. In order that the mirror
field on ion transport is expected to be weak, its impact offgrce on the ions has its correct value, the ions must adopt a
ion flow in tokamaks has been assumed to be insignificant agy with a specific mean parallel velocity,;. A rough
well. However, in what follows we will demonstrate that this gstimate of its magnitude may be obtained as follows.
is not the case. Indeed, we will show that in the banana The passing ionémassM, chargeZe, and mean velocity
regime the inductive electric field can drive parallel and po-Vp) transfer their momentum per partidiéV/, to the station-
loidal ion flow comparable to the usual ion temperature gragry trapped ions at a rate of approximately(f) »;; , where
dient flow of neoclassical theoR? It is important to remem- v; is the ion—ion collision frequency and the trapped ion
ber, however, that the inductive electric field is not a sourcraction is taken as % 1. Therefore, the drag force per unit
of toroidal momentum in a quasi-neutral plasma since it doe%harge on the passing ionsN&V,(1— 1) v;; /Ze. Setting this

not explicitly enter the total conservation of toroidal angularequa| toE, , and noting that the average parallel ion veloc-
momentum equation which determines the radial electrigy, V)i, is related toV, by V;j~1V, givesMV;(1—1);

field. Therefore, any inductively driven toroidal flow acts t0 —zeE|(1-1). Notice that the parallel ion flow; is co-

alter the relation between the radial electric field and toroidaljirected and that in the absence of trapped partidlesl( is

rotation and is not a complete explanation of the Alcatoryndetermined. Rewriting for# 1, we obtain the parallel ion
C-Mod observations. flow estimate

In a plasma with no parallel variation of the magnetic-
field strength, for example, a straight circular cylinder with V,i—ZeEl/Muj; .
helical field, the parallel electric field,, does not impose
any ion flow constraint because the electric field force actind>f course the coefficients in this equation based on a heuris-
on the ions is exactly balanced by the collisional frictiontic derivation are not quantitatively reliable. The purpose of
with the electrons. The parallel ion flow is then indetermi-the present work is to perform a full kinetic theory calcula-
nate in this classical case; it is not connected &th tion of this effect and to show that its magnitude is signifi-
Neoclassically, however, in a magnetic-field configura-cant.
tion such as a tokamak, with field magnitude variation, the  In Sec. Il we solve a model ion kinetic equatidnto
parallel electric field force on the trapped electrons is bal-evaluate the effect on the ions of an unbalanced parallel elec-
anced not by friction, but by the mirror force. The conse-tric field and parallel friction between the ions and electrons.
quence of this mirror force is the Ware—Galeev trapped parMore sophisticated ion—ion collision operaforgiving
ticle pinch?® and, of course, the neoclassical reduction inslightly different numerical factors are considered in Appen-
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dix A. Section Ill solves a model electron kinetic equation to B e

determine the relation between the parallel electric field and <U_Cii{f1i|p}> =- ?f0i<BE*>, (7)
the ion—electron friction and demonstrates that this relation '

is related to the usual inward Ware—Galeev trapped particlwhere (---)=[[7 dd(---)/B-V3]/[ [T d9/B-VI]. No-
pinch. At first only ion charge numbers much greater tharfice that in the banana regime the solution fer is odd in
unity (Z>1) are considered in Sec. Ill for simplicity. How- vy, while its next order correction in collision over transit
ever, the result for large aspect ratio and gengrid then  frequency is even im;. The Bvy moment and flux surface
obtained from standard neoclassical results and Appendix Bverage of Eq(1)

considers arbitrary aspect ratio add The parallel and po- _ 3
o ) ) ) eN(BE,)=—M{[fd°vf;v,n-V(v,B)),
loidal ion flow is evaluated in Sec. IV and we conclude with K(BE,) (Jdvfyon- V(v ))
a discussion in the last section. places a constraint on this next order even solution.

To illustrate the solution of Eq(7) we consider the
Kovrizhnikh model like—particle collision operator, which
retains pitch angle scattering and conserves momentum as
well as energy and numbgsee Appendix A of Ref. 6 or Ref.

To focus on the inductive electric field effects on the 7, for examplég; namely

II. ION KINETIC EQUATION AND SOLUTION

ions we ignore the usual ion temperature drive of standard d [uvy ofy\  foifdPvwu,fy]
neoclassical theory and solve for the ion response by consid- Cjj{fqj} =y (9_(? (9_]) + w . (8
ering the reduced linearized ion kinetic equafidn ® H vritop |
Ze where
on- V= Cilfur = - E.vi foi,s () v 1 Erf’(x)]
I — .. — o
v=r;;QX)=33|1 sz) Erf)+—— O

wheref; is the perturbed distribution function of species
andC;; is the linearized ion—ion collision operator. The ion Erf(x)=277‘1/2f6dtexp(—t2) is the error function,
charge isZe,n=B/B is the unit vector along the magnetic- Erf’(x)=dErf(x)/dx, and for ionsx=(Mv?/2T;)*? and
field B, the parallel velocity is=(v?—2uB)*? with v the 3, = 2127Z%*N; In AIM¥2T¥2 with In A the Coulomb loga-
speed, and the gradient is taken with the magnetic momentthm.

,u=vf/28 held fixed. The quantitf, is defined as Employing Eq.(8) and defining
Fiei Y=(Bfd3vwv,fy 10
E*:E”_e_[\TI’ ) < J [ ll> (10)
e and
with E; the parallel electric field, and the parallel friction
: . ) Ze Y
between the electrons and ions is defined by W= — T_<BE*>_ TPl (12)
i v v vv IV oi
Flei=mfd®v Ceiff1e}. 3
) S S ) Eq. (7) becomes
The unperturbed ion distribution functidr; is Maxwellian
M |32 Muv? i(ﬁt(l})—&fli'p) =Wy (12
=N — - J J '
fo N'<277Ti> exr{ 2T; ) @ # a
_ i i Integrating fromu=0 to u gives
with N; and T, the ion density and temperature, akidthe
ion mass. The electron density M, and m is the electron atailp _ Wiy, (13)
mass, and quasineutrality requifds=ZN,; . .  {v)

In the banana regime-Vf;;=0 to lowest order. To
next order we annihilate the streaming term by multiplying
by B/(v,B- V) with J the poloidal angle, and integrating eN
over a full poloidal circuit(a full bounce for the trapped and (1-1)Y=- W<BE*>| , (14)
27 for the passing Definingdr=d9B/vB-VJ as the in-
cremental time along the trajectory, the resulting constrainwhere the effective fraction of passing particlées
equation to be solved becomes

Using Egs.(6) and(13) to evaluateY gives

1= (B2 f SR PR 15
EﬁdTCii{fli}:_?foﬂSdTvnE* - )
! with R/Ry=By/B=1+s cosd, A=2ulv? a pitch angle
For the trappedsubscriptt) ions $d7v E, =0, while C;; is  variable, ands =r/R; the inverse aspect ratio. The expres-
even inv; so that sion on the far right-hand side @i5) is the lowest order
_ result for circular flux surfaces and large aspect ratio; the
f1if=0. ® ar ‘
integral form is valid for general geometry. In the next sec
For the passingsubscriptp) the orbit average is equivalent tion we will show thatE, =0 in the cylindrical limite =0,
to a flux surface average and H&) may be rewritten as so that in this limitY is unconstrained by Eql4). As a

Downloaded 08 Aug 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



3336 Phys. Plasmas, Vol. 8, No. 7, July 2001 Catto et al.

— My(BAV
= —— = (20)
ZeB(BE,)I
versudl. In Fig. 1, Eq.(18) results in the upper curve, the full
Hirshman-Sigmar operator gives the lower curve, and the
middle curve is obtained from the lowest order Hirshman—
Sigmar operator.

IlI. ELECTRON KINETIC EQUATION AND SOLUTION

To determine the relation between the parallel electric
field and the electron—ion friction, that ig,, , the electron
kinetic equation must be solved. Again, we keep only the
inductive parallel electric field as the drive so we need only
consider

e
vn- Vfle_ Cei{fle}_ Cee{fle}: - T_ EHUI\fOev (21)
e

whereC,. and C,; are the electron—electron and electron—
ion collision operators, anfl, is a Maxwellian withT, the
electron temperature

. N m 3/2 mvz
= 5= eXp — 5=
_ o , tem el 24T, 2T,
FIG. 1. Plots ofV as defined in Eq(20) vs | for the three different model
ion—ion collision operators. Equatiofl8) results are shown as the upper To solve Eq.(21) and evaluate the parallel electron—ion

curve, the full Hirshman—-Sigmar operator gives the lower curve, and thefriction from Eq (3) it is convenient to introduce the Spitzer
middle curve is obtained from the lowest order Hirshman—Sigmar operator . RN . 9
function ;5 which is the solution of

e
. . Lei{fls}+cee{fls}: T_EHUIIfOe' (22)
result, Y is free to adjust to conserve parallel momentum e
when the Cylindrical limit of EqS(?) and (8) is considered. WhereLei is the Lorentz operator

Using Eqg.(14) we can evaluate Eql1) and thereby

. d [ pvy dh
rewrite Eq.(13) as Lei{h}= vev i3\ B 7 (23
ﬁfli|p __ E 1+ NiTil 14 <BE*> (16) ith . / 3 d _21/2 4N | A/m1/2-|-3/2 f
I Tiv (1-HMSdPvvuife] (v) 0 vei~veel /X 8TC Yog 2 "me el 22

ZN,=N,, andx=(mv?/2T.)Y?for electrons. Using Eq22)
Equation(16) can then be used to evaluate the parallel ionand conservation of momentum in like particle collisions to

flow rewrite Eq.(3), gives
NiVIIi:f d®vufy, 17 FueizeNeEH“me d®vvLe{fie—f1s—MVjiv foe/Te},
, (24
to find where we make use of
Z BE, )l | 1
V)= ki 7 ) +< <—>>} (18) Ceitf1ef=Leilfre—mVjivfoe/Te}. (29
M(B9)vii [(1-1){((Q)) Q . .
From this form we see that thé; term in the Lorentz op-
where we define erator is negligible since it will result in corrections to Eq.
. 4 o (18) on the order of (/M)¥2. Interestingly, theV,; correc-
(Q%)— JodxQ¥* exp( —x°) (19) tion in Eq.(25) and the usual pressure and temperature gra-
Jodxxt exp( —x?) dient terms, which are of the same order, are responsible for

the weak coupling corrections to the heat and patrticle fluxes
estimated in Table IV of Ref. 2. However, the modification
of the parallel ion flow due to the inductive electric field is

and, upon evaluating, obtain the coefficie(t®))= 0.4 and

((Q 1))=5.4. Of course, the coefficientd(Q)) and

({Q~1)) are sensitive to the details of the model ion—ion not considered there

collision operator employed. In Appendix A the more so- . ' I
To determinef,, we must solve the electron kinetic

phisticated model collision operators of Hirshman ande uation(written in terms of the Spitzer function
SigmaP are used to obtain the same result to within about q P

10% as shown in Fig. 1, which plots viN- Vie=Lei{f1e— f1s} T Ceel f1e— f1s}- (26)
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annihilating the streaming term to next order gives the con-

straint equation

$dr[Lei{fre—Fisf+ Cedl fre—f1s}]1=0, 27

where, as in Eq(5), the time integral is over the closed

periodic motion. For the trapped electrofd 7L ;{fs}=0

= fﬁcee{fls} giving
f1elt=0. (28)

To illustrate simply the evaluation &, we consider th&

>1 limit so electron—electron collisions can be ignored in

0.4 0.6 0.8 1
I

0.2

evaluating the passing electron response. As a result, the

Spitzer function is simply

eEv;foe
fig=— ——, 29
1s TeVei ( )
and the passing electron constraint becomes
3 f1elp df1s
ﬁ(#(vo on MV =0. (30)

Integrating Eq.(30) from x=0 to x and inserting Eq(29)
gives the passing electron response
IFrelp _ (01df1s/dp) _ e(BE)foe

I (vy) Tevevy)
Inserting Eqs(28), (29), and(31) into Eq.(24), perform-

ing the integrals, and multiplying bB and flux surface av-
eraging gives

(31

(BE,)=(1-1)(BE), (32

wherel is defined as in Eq(15). Notice thatE, =0 for ¢

=0 so that the parallel electric field and parallel electron
ion friction balance in a cylinder as required. Moreover, the

solution forf 1, is odd inv, while its next order in collision
over transit frequency correction is evenupand must sat-
isfy the constraint placed on it bBv, moment and flux
surface average of E¢26)

eNg(BE, )=m([d%f1c0yn-V(vB)).

The result(32) can be obtained for large aspect ratio by
considering the moment expression for the particle flux PO"

obtained by forming thencRBrv;/eB moment of Eq.(25)
I'=[d%f,RB;-V(mew,/eB)
=[dfievg- Vi
=—CcN.RB(E, /B)~—cN.RBBE,)/(B?), (33

wherevy is the curvature plu¥ B drift velocity, By is the
toroidal magnetic field, and higher order terms drhave

FIG. 2. The enhancement factarin Eq. (35 due to electron—electron
collisions plotted vd for Z=1, 2, and 4 for the model operator of E®).

which when combined with E¢33) is consistent with Eq.
(32). Consequently, the relation between the parallel electric
field and the parallel friction is contained in the standard
large aspect ratio banana regime results.

The evaluation of(BE, ) is repeated in Appendix B
keeping electron—electron collisions with the model operator
of Egs.(8) and(9) to find

1{(Q)(Q2))
(@) —1{{QQz)

=(1-1){BE)[1+L(1,2)],

(BE,)=(1—1)(BE)| 1+

(39

where Q=Q(x) is as defined in Eqg.(9) but with x
=(mv?/2T,) Y2, andQ,=Q/[Q+(Z/x3)]. The functionL is
positive since ((Q))—1{{(QQz)={(QzZ/x%))+(1-1)
X({QQz)) and depends only ohand Z. It represents the
enhancement due to electron—electron collisions and is plot-
ted versug for Z=1, 2, and 4 in Fig. 2. Thédependence is
explicitin L, and theZ dependence qf{Q,)) can be fitted to
find the approximate expression

0.64Z—0.391
Z°—(0.5%2-0.181 "

L(1,2)= (36)
Repeating the alternative banana regime derivation of

Egs. (33) and (34) with the variationally determined trans-

t coefficients for arbitrarg and large aspect rafigives

the relation betwee(BE, ) and(BE,) to be

(BE,)=1.461+(0.67Z)]eYXBE)). (37)

In this limit electron—electron collisions enhance the ion
flow by the factof 1+ (0.67Z)], which agrees with Eq.36)

for Z=1 and«; the slight disagreements at intermedidte
are because of our use of a model like particle collision op-
erator to obtain Eq(35).

been neglected in the expression on the far right-hand side.
Standard high aspect ratio banana regime transport theory for
Z>1 in the absence of pressure and temperature gradient¥. PARALLEL AND POLOIDAL ION FLOW

finds’
To determine the parallel ion flow we need only insert

I'~—1.46YCN,RB(BE, )/(B?), (34  Eq. (33 into Eq.(18)
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ZeB(BE)(1+L)I[ 1 1 of the 2 correction in Eqs(39) and(42) is reduced by 0.6
=" M, (B%) way +(1-1) 0 if the full Hirshman—Sigmar result of E§A13) is employed.
! (38)  Here the factor Z1J,/cB, is a measure of the current den-

. ) o ) . sity profile, equal to unity for uniform current. At the half-
The ion—ion collision frequency in E¢38) and elsewhere is 44y pointL1/r andT, /T, may typically also be approxi-

3(27)Y(47), wherer, is the Braginskii collision time. As mately one. The quantit,.=87N.T./B2, which is the
noted earlier, thé(QP)) and L coefficients in Eq(38) are ; ; pe T P ; ;
" ’ / X ) 1A poloidal beta accounting only for electron pressure, is typi-
sensitive to the details of the like particle collision modelcany about 0.25 in Alcator C-Mod cases. Takiag 1/3, the
employed, and. depends orl andZ as well. Based on the ., mpination of these factors is enough to counterbalance the
results in Appendix A and Fig. 1, errors of about 10% are,.ss ratio factor, leading t,;/V,;~0.6 for deuterium.
expected. _ _ Thus, the inductive electric field velocity is comparable to
To compare tr11/(23 parallel ion flow to the ion thermal y,o accepted neoclassical poloidal rotation term, and this is
s_peedvi—(ZTi (M) we first deflne_the loop voltag¥y,, likely to be true in any tokamak with inductive current drive
=27RE, and ion Jhean free pathj=v; /v;. Then forZ i, 1he panana regime. The only situation in which the tem-
=1 and keeping:~* corrections, Eq(38) can be used 0 o atre gradient term is likely to be completely dominant is

estimate in extremely high poloidal beta plasmas, or in transport bar-
Vi eV riers wherelL<r.
Ili 1y M loop i
25 ~AAL=0.77) oot (39 Although the effect we have calculated is of comparable
I 1

magnitude to the experimentally observed toroidal flow, and

where |=1-1.46", 1+L=1.67(1-0.%"9), ((Q)) in the same directiorico-curren}, it does not represent a
=0.4, and (+-1)((Q " 1))=7.9"? are employed. For Alca- source or transport of toroidal momentum itself. Its main
tor C-Mod parameters ofR=70cm, e=10"1, Vi, effect, therefore, is not to cause toroidal rotation but to
=1volt, Ne=2x10"cm® and T;=1keV, we find change the relationship between the radial electric field and
Vi lvi~3X10"?; reasonably close to the magnitude of thethe toroidal velocity:* In other words, ifE, were turned off
flows observed in C-Mod. (which it could perhaps be by noninductive current dyjve

The flow we have calculated should be added to thehen the radial electric field would be forced to change if the
usual neoclassical expression for the parallel veléeftyo  toroidal (and hence parallehelocity remained constant. In

obtain practice this means that the relationship between measure-
cT, dinT, dinp, e do ments of paraII(_aI velocity and rqd@l electric fleld_ needs tq be

\/”i|tot=_B 1.171-0.67=? 9 dar T oar corrected for this parallel electric field effect on ion velocity.
€Bp ' r i dr An experimental test of the validity of the neoclassical

eB(BE,)(1+L)I I 1 theory, including this new term, requires a measurement of
M v, (B2) [((Q)) +(1—|)< <6>>} (400 poloidal velocity, and specifically the velocity of the bulk
I

ions. There do not seem to be sufficient experimental data
whereB,, is the poloidal magnetic field and we have takenyet to perform this detailed test, although considerable infor-
Z=1. In fact, our new term is an addition to the poloidal mation is available on impurity velocities in the Tokamak
flow, normally represented by just the ion temperature grafFusion Test ReactdiTFTR) (see the Appendix of Ref. 12

dient term, which now becomes and the DIII-D tokamaR? Electrostatic potential measure-
o PTIOS 0T eBEE LI SN pomee e Tors Sgennena ok
lpor= eB dr M v;i(B?) ; P g '

temperature gradient coefficient must be replacedty5

[ 1 and where we expect the inductive velocity to be substan-

X wy +(1-1 )< <6> > } (4)  tially smaller because the trapped particles are collisional and
reduceE, below the banana level.

It is, therefore, perhaps of most interest to compare the in-

ductive velocity with that caused by ion temperature gradi-

ent,Vyr=—1.17(1-0.67 ) cT,/(eB,L+), whereLy is the V. CONCLUSIONS

ion temperature gradient scale length and the coefficient \ve have evaluated the effect of the inductive electric
1.17(1-0.6%"?) is appropriate for the poloidal flow in the field of a tokamak on the parallel ion flow in the banana
banana reg|méo ASSUming the current is indUCtiVer driVen, regime and demonstrated that it is Surprising|y |arge and
ignoring bootstrap currents, the electric field is directly re-quantitatively important. Moreover, we have shown that the
lated to the parallel currenl; as evaluated in Appendix B parallel ion flow that arises in a torus in respons&taloes

and given by Eqs(B7) and (B8) not vanish in the limit of small inverse aspect raties 1. As
. L Lt (mT, V2( 213, S0 _often is the case.in neoclassical the@rﬁo i_s a singular
—~4.51+2.0s"9) , (42 limit. Prior neoclassical treatments have invariably neglected
VT Bpel \MT, cB,

the response of the ions to the inductive electric field and
wherer is the minor radius. In writing Eq42) we have used thereby ignored its effect on the poloidal ion flow. This weak
Z=1, and kept=*2 corrections td_, Eq. (B8), and Eq.(38)  coupling assumption is thought to be valid for evaluating
with the numerical values d{ QP)) inserted. The coefficient transport coefficient$,but our results lead us to conclude
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that it is not well satisfied for evaluating the poloidal ion and
flow. As a result, the inductive electric field modification to 3
the poloidal ion flow that we evaluate here should be added _ i E _ 3] d%vuwehy;
u(x) ype dQu, . S
oi

to the usual banana regime ion temperature gradient drive.  2[duxPsfo
h= 3 d3v vpx?fy B 3 A3 px?fy; A3
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funded by the U.K. Department of Trade and Industry anGoperator, is analogous to that outlined in the main text. The
Euratom o '’ 7 “equation is integrated once in the pitch angle varigbl®

obtain an expression faff,;/du, which still contains the
momentsu(x), s, h andk. This expression is then used to
APPENDIX A: IMPROVED ION-ION TREATMENTS generate four equations for these moments, which are calcu-
lated explicitly, thus completing the solution fby; . Finally
fhe longitudinal ion flow is obtained from Eq¢l7). How-
ever, whereas the integral tetof the simple model opera-

The model collision operator, E@8), used in the main
text is a convenient operator, with appropriate conservatio
propertie$’ It permits a complete analytic solution of the . . . .
bounce averaged ion kinetic equation, Eg. This model tor can be ob_talned ar)alyucally as a function of the effepuve
operator describes pitch angle scattering with the correct copassing particle fraction [see Eq.(14)], closed analy tic
lisional ratev, but it replaces the rest of the Fokker—PIanckforms for u(x,1), s(1), h(1), andk(l) cannot be obtained

operator by a simple heuristic momentum conserving termfrom the Hirshman—Sigmar operator. The added complexity

Hirshman and SigmArhave, however, improved on this is caused by the appearance of the energy dependent moment

model and developed a systematic approach to generati )((jll() which musgbe ell|m|_natre]>d separatelybfégm Ehdeh
similar approximations to the Fokker—Planck collision op-a moments, and results in the appearanceagpendent

erator. Their operators take account of the differing rates fof 1€9rals as will be shown shortisee EqsA7) and (A8)].
pitch angle scattering, slowing down, energy diffusion, etc Numerical evaluation _of these mte_gral_s is required for dach
For linear problems in which the drive in the kinetic equationY2U€: and the resulting ion longitudinal flow can then be
is odd inv,, their operators are also relatively simple angfitted by a low order polynomial i. _ o
reduce the solution of E7) to a simple linear algebra prob- 1€ solution proceeds as follows. Integrating the ion ki-
lem of modest dimensions. Applied to the classical Spitzef'€liC €quation once yields

problem?® the Hirshman—Sigmar operator, which we will Jf ] foiX(X)
use in this appendix, has been shown to be accurate to better P=— (o) (A4)
than 1% It has also been shown to give accurate results for K !

neoclassical resistivity in the large aspect ratio limit ( for passing ions, and zero for trapped ions, where
—0). Since its derivation is independent of any geometrical
BE,

simplifications, its use in neoclassical problems is not re- _ /€ (v—us)

stricted to the large aspect ratio limit, and there is reason to X(x) M * 2x° (Buk)) +vs(BS)
expect that it will also yield accurate results at finite aspect
ratio. +x3(vp(Bh)+ 1 (BK)). (A5)

. The operator copsists of a Lorentz, pitch angle scattgrUSing this expression fo#f,;/du the momentsBu(x)),
ing, part, together with four separate momentum conservinggg (Bh), and(BK) can be evaluated. After elimination of

contributions (Bu(x)) the equations foBs), (Bh), and(BK) take the form
fy M
Ci{fy}= vm% %v” i—:) ?v”foi (v—ry) % (Bs)[aas—1Basdl
| =1[(eBE, /M)Bas+(Bh) Besn+ (BK)Besil,
+SVS+ XZ(th+ kvk) y (Al) <Bh>[a8h_|ﬂ8hh]
wherex=(Mv?%2T;)"2 In Eqg. (A1) the frequencies; are =I[(eBE, IM)Bgn+(BS)BssnT (BK) Bgnil, (AB)
functions of energy, and(x), r, h, andk are velocity space
moments off ;; defined as follows: (BK)[ g — | Baiid
v(X) =i [ D(X)—G(X) X3,  vs=41;; G(X)/X, =I[(eBE, /M)Bex+(BS) Besk+ (Bh) Bankl,
=3, [3G(X) + 4x2G(x) — 2P (x) ]/x3, with
e =2v;[ 2G(X) — 4x2G(X) + D (x) /%3, (A2) 5 (= ,
Bx)= 3 o ) anj:—f dxe " x"y;,
(X)=Erf(x), GX)=[P(x)—xP'(x)]/2x \/; 0
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2 (= dxefxzxnvj ‘9f1e|p_ e(BE;)Qzfoe 1Q((Qz))
Bri=—= | 7 (A7) = + - . (B2
\/; o (I=-Dv+lvg I eVedQ(V)) ((Q)—1{{QQz))
o whereQ is defined in Eq(9) andQ,=Q/[Q+ (Z/x%)] with
“_ir‘dxe X"y x=(mv2/2T,)Y2 for electrons. Solving Eq(22) for the
Poij = JrJo (I=Dv+lvg’ Spitzer function using the same model electron—electron op-

erator gives
Using Eqs.(A4) and (A5) the parallel ion flow velocity can

also be obtained in terms ¢EBE, /M) and the moments flo=— eEUIIQZfOe[lJr Q{(Q2)) ' B3)

(Bu(x)), (Bs), (Bh), and(BK). Eliminating (Bu(x)) from s TeveQ Q) —((QQz2))

this expression gives Inserting Egs.(28), (B2), and (B3) into Eq. (24) with the
Vi I parallel ion flow term neglected, performing the integrals,
§'= m((eBEk IM)B4+(Bs)Bsst(Bh)Bgn and multiplying byB and flux surface averaging gives Eq.

(33).
+(BK)Bex) - (A8) To form the parallel friction we first integrate E(B) by
. . . parts and recall Eq28) to obtain

Finally, solving the 3<3 matrix problem forBs), (Bh), and

(BK and substituting the results into the preceding expres- _ j 3

sion for V; we obtain an expression for the ion flow as a Fiei=m | d®vvewyudfiel dulp. B4

function of (BE, )/v; and |, the fraction of passing ions. Inserting Eq.(B2), multiplying by B, flux surface averaging,

Using the lowest order Hirshman—Sigmar approximationyerforming the integrals by employing Eq&5) and (19)
which retains only theu(x) and s momentum conserving gives
[
L 19UQ) m

terms =0=Kk), the result is
(Q)~1(QQ2))
(B5)

ﬁ_4eI(BE*)( | B3s )
4 45— | Bass ’

while a more complicated expression is obtained when th&0rming (BE, ) by using ZQ;/x*Q=1-Q; to rearrange
full Hirshman—Sigmar operator is used. In the above expresterms yields Eq(35).

2Qy
x°Q

Flei=eNe(BE))! <<

B  3M(B? (A9)

sion all the 8 coefficients are functions of the circulating Using Eq.(B2) to evaluate the parallel current
particle fractionl and must be calculated numerically. The
coefficients are numerical. The normalized ion flow Ji= —ef dsvvuf1e=ef dPovyudfielduly, (B6)
2 .
V(I)=% MV.|e<<|I3E>(Bl> 1) (A1) 9ves
* ;J _ °Ng(BE))BI [ [Q; 1Q((Q2))
has been calculated over the complete rangel €1, for 1 muedB?) QLT {Q)-1H{QQN ]/ [
both the lowest order Hirshman—Sigmar operator and the full (B7)

Hirshman—Sigmar operator. The results are shown in Fig. 14, large aspect ratio and f&=1
together with the analytic expression obtained in the main

text using the simple deflection operator of E8). Simple Q 1. 1Q((Qz)) .45 1-0.184

analytic fits to these results are as follows: Q {(QN—1{{QQz ' 1-0.373)°
_ (B8)
V=128 +541-D], (AL1) which becomes 3.2(22.0¢'?) at large aspect ratio.
V=1[5.05-3.08 +0.532], (A12)

and . ) _ _
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