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The role of magnetohydrodynamic nonlinearities in precessiomah=1 fishbone oscillations

has been analyzed analytically and numerically. The work is based on the reduced
magnetohydrodynami@HD) equations including a linear energetic particle drive model. When
the energetic particle pressure is close to the instability threshold, the top-hat linear eigenmode
profile of the ideal MHDm=1 radial displacement splits up into a two-step structure around the
g=1 flux surface, due to the finite frequenayof the mode. The width of the individual steps is

a factory/ w smaller than the distance between them, wheig the growth rate of the mode. We

find that the MHD nonlinearities modify the mode structure further, and produce explosive
nonlinear growth, accompanied by frequency chirping, for modes that are near the instability
threshold. The results are quite different for fishbone oscillations that are excited well above the
stability threshold. The growth rates of these linearly fast growing modes decreases nonlinearly and
the MHD nonlinearities are stabilizing in this limit. The nonlinear MHD effects are important when
the plasma displacement is comparable to, or larger than, the scale length of the fishbone structure.
© 2002 American Institute of Physic§DOI: 10.1063/1.1421373

I. INTRODUCTION Two different regimes have been identified for the linear
phase of fishbone instabilify? The first regime of so-called
An oscillatory “fishbone” instability, with toroidal mode “precessional” fishbonésrefers to the case when the mode
numbern=1 and poloidal mode numban=1, was first frequencyw in the plasma reference frame is much greater
observed in experiments with perpendicular neutral beam inthan the thermal ion diamagnetic frequenay; ,
jection (NBI) on the Poloidal Divertor ExperimenPDX)
tokamak! The instability occurs in repetitive bursts, with the 0> Wy pi - Y

mode frequency decreasing by about a factor of 2 durin
q y g vy i@} this case, trapped energetic ions destabilizerthel, m

each burst. Large fishbone bursts are observed to cause " e when th do f ‘ ith th
losses of NBI-produced energetic ions, thus reducing the ef: mode when the mode Trequenay resonates wi €

o : . . requency of their precessional moti¢ey,). The mode fre-
ficiency of plasma heating. Experimentally, the radial .plasm%guency emerges from the Affaecontinuum, so the mode

Structure has singularities at the radial locatians, where

“ _ ” i = I 3 -
the “top-hat” structure of the internah=1 kink modé& the conditions of local AlfVa resonance,

associated with the safety factqe=1 in tokamak plasmas.

The frequency of the f|shbon_e oscnlatlo_ns in PDXwas found _ + Kjm(FAVA(TA), )
to be close to the magnetic precession frequency of the
trapped energetic ionéwqy,) = —i(Vgn- V), as well as to the  are fulfilled for a given fishbone frequenay, hereV,(r) is

thermal ion diamagnetic frequency,, ;. HereVyy, is the  the Alfven velocity, andk, the wave vector parallel to the
guiding center toroidal precession velocity, and the notatiorequilibrium magnetic fieldg, kjn(r)=(i/Bg)(Bo-V). Due
(...) represents averaging over the bounce time of the enete the continuum damping associated with the fluid reso-
getic ion orbit. The first theoretical interpretatfasf the fish-  nances, Eq(2), the precessional fishbones, Ed), are ex-
bones established the resonant wave particle interaction aited at relatively high values of the energefiot) ion beta,
the magnetic precession frequency of energetic iams, Bne=47Ph/B3> B, Here P, is the pressure of ener-

=(wgn), as a key drive of this instability. getic ions and the threshol@™ is determined by the

1070-664X/2002/9(1)/155/12/$19.00 155 © 2002 American Institute of Physics
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balancé between the fishbone kinetic drive due to the eneressentially not excited during the instability and the fishbone
getic ions, ¥, and the fishbone Alfue continuum damp- oscillations are of the Alfveic type. It is important to note

iNg, Ymup that the fluid nonlinearity, which is knowhto be small for
crity 3 local Alfven waves satisfying the dispersion relatian
Yhol Brot) = Yo - =kVa, is not small for the global fishbone mode satisfying

The second linear regime refers to the fishboneswithEq. (2) at two radial positions;=r 5, only. In order to focus
w=~w, . In this case, the structure of the Alfveontinuum  on the fluid nonlinearity, which is relevant for the Alivie
is strongly affected by the branch eof=w, ,; oscillations, type global mode, and to exclude the magnetosonic oscilla-
and a low-frequency “gap” is formed in the Alfvecon- tions, we use the nonlinear reduced MHD mddét com-
tinuum. The w~w, ,; fishbone mode lies within this fre- bined with a linear response for the energetic particles.

guency “gap” so that conditioni2) is not fulfilled and under Analysis of the reduced MHD model for fishbones is
these conditions the Alfwecontinuum damping is negligible performed analytically in Sec. Ill. It is shown that near the
for the w~w, ,; fishbone. instability threshold;y,oi— | Ymupl < ¥hot» the radial structure

Fishbone oscillations were later observed in many othepf the fishbone mode of frequenayhas two singular layers,
tokamaks with significant populations of energetic ions pro-one inside and one outside the=1 surface. The radial lo-
duced by ion cyclotron resonance heatiGRH), perpen-  cationsr,, of the resonance layers are determined in accor-
dicular and parallel NB[see Ref. 6 and references thejein dance with Eq(2) by
A more complete linear theory of fishbones emerged that
accounts for the transit resonances of the energetic
finite orbit width corrections of the energetic ion dri¥2. ®?=(1=q(ra)*(Va(r )/Rq(ra))?. 4

The characteristic burstlike structure of the fishbone os-

cillations and the significant decrease of the oscillation fre-

quency of the mode within a single burst indicate that duringR IS the major radius of the magnetic axis. Near the instabil-
their evolution fishbones have a strongly nonlinear'ty threshold of the fishbone, the radial width of each singu-

charactef. Empirical predator-prey type modelsee, e.g., lar layer is smaller by a factoy/ w than the distance between

Appendix C of Ref. 1Das well as a more complete motlel the layers, wherey(<w) is the instability growth ratey
were developed to interpret the repetitive bursts of éhe _EVhot_|7MHD|; Under these conditions, the fluid nonlinear-
~w,  fishbones and the accompanying losses of energetity becomes important when the plasma displacement is
ions as a result of a redistribution of energetic ions due to th€°mparable to the width of each singular layer nearghe
perturbation field of fishbones. The mod&¥ based on the =1 surface, whereas the particle nonlinearity can still be
kinetic wave particle trapping nonlinearity retain the essenfedligible at this level. It is shown in Sec. lIl that the domi-
tial physics of thew=~ w, ,; fishbones, since the kinetic non- nant effects o_f the fluid nonhngarlty in fishbones are caused
linearity appears to be the dominant one when the fishbondy & generation of an=0 poloidal plasma flow, and &
are in the diamagnetio, ,; gap. The gap essentially elimi- =0 poloidal magnetic field. The generation of the=0
nates the fluid resonance,p=0. This regime allows a Mmagnetic fieIdBEJO), can be considered as a flattening of the
perturbative description of the mode, which makes the prob*effective” safety factor profileq(r,t)= rBT/R(Bp+'I§§,O)).
lem technically similar to the bump-on-tail problem, as well The toroidal and poloidal magnetic equilibrium fields are
as to many other wave-particle interaction probletese denoted withB; andB,,, respectively.
Ref. 11 and references thergin It is found that the early stage of the near-threshold fish-
A nonlinear description of the precessional fishbonedone instability, during which the two resonant layers, Eq.
(0>w, ;) presents a more challenging problem: an inter-(4), are well separated, is characterized by an explosive be-
play of kinetic and fluid resonances during the fishbone evohavior of the mode amplitude, accompanied by a fast change
lution. One can see from Ed3) that the linear responses in the mode frequency. The mode evolution when the two
from the kinetic and fluid resonances are almost equal neaesonant layers coalesce and a possible scenario for the mode
the instability threshold. However, their nonlinear responsesaturation(similar to Ref. 3, or a decelerated growth of the
are very different and a special investigation is needed inmode, are discussed.
order to assess the importance of the fluid nonlinearity, in  In order to investigate the nonlinear MHD effects in the
addition to the kinetic nonlinearity similar to that analyzed in fishbone regime beyond the explosive phase a numerical re-
Ref. 11. duced MHD model is used in Sec. IV. The model applies to
In this paper, we concentrate on the role of the fluida cylindrical geometry. The energetic particle drive is added
nonlinearity in the precessional fishbones, regihe In or-  to the model in the form of a prescribed term, which is ob-
der to delineate the effects of the fluid nonlinearity we con-tained in terms of moments of the energetic ion distribution
sider a fishbone evolution, during which the energetic ionfunction in toroidal geometry. This drive remains linear dur-
response remains linear at all times and the effects of thing the fishbone evolution. A direct benchmarking of the nu-
kinetic nonlinearity can be neglected. merical model with the analytically predicted linear and ex-
The nonlinear MHD model for the fishbones is presentedblosive regimes of the fishbone instability is performed. The
in Sec. Il of this paper. Fishbone modes are strongly exeffect of the mode saturation due to MHD nonlinearity is
tended along the equilibrium magnetic fielg<k, , so that investigated for strongly driven fishbones in the regime
the fast magnetosonic degrees of freedaemsk, Vo, are  wherey/w is large. Conclusions are presented in Sec. V.
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Il. REDUCED MHD MODEL where jj=br-j and By,=B—By. We insert thej X B-force
) ) from Eq.(5) in Eq. (12), and apply the reduced MHD repre-
We start from the MHD equation of motion sentations(9), (10) for which B;-B,=0=B-V. Further-
oV _ 1 more, we neglect the weak gradients of the plasma density,
p E+V-VV =—-Vp.—V: Pyt Ej X B, (5)  p=pe=constant, and omit effects g@f.. The final vorticity

equation can be then written as
wherep, V andp. are the mass density, velocity, and pres-

: . . 1
sure of .the' core plflsm;a,andB are the plasma current and A U=—(V-V)A, U+ Z (B-V)A, a
magnetic field, and B=P | — (P, ,— P,)bb is the tensor TPo
of hot ion anisotropic pressure that drives the fishbone insta- 1 P,
bility. Here 1 is the unit tensobh=B/B, andP, , andP|;, are - p—[bTX(bT-V)bT}VB—. (13
0 T

the perpendicular and parallel components of the hot ion

pressure which must be obtained in terms of moments of thepstituting Eqs(9), (10) in Eq. (6) we obtain the flux equa-
energetic ion distribution function. In addition to E&), the  tjon

frozen-in equation for the core plasma is used,

a=(B-V)u. (14)

JB
—=VX[VXB
ot VXl ], © The reduced MHD equationd 3), (14) with an additional

term representing the pressure of trapped hot idhs,,
which drives the fishbone instability, are the basis for the
analysis of nonlinear MHD effects in the fishbone mode.

together with the Maxwell’s equations

7T .
VXB= < b (7) We consider an equilibrium with monotonigr)-profile
andq(0)<1. The energetic ion pressure profile is localized
V-B=0. (8) close to the plasma center, well inside tpe 1 surface, so

] ) o that there are no energetic ions in the vicinity of tpe 1
The fishbone mode is extended along the equilibrium maggrface. We also suppose that no equilibrium flow exists in
netic fieldBy, so that a small parameter relates the longitu-i,q plasma at=0, i.e.,Vo=0

dinal (alongBy) and the perpendiculdwith respect toB) In order to analyze Eq$13), (14), we decompose and
scales of the modeV =V, , wheree=r/R=B,/Br<1is |, into Fourier series
the inverse aspect ratio of the tokamak. Considering plasmas

with typical beta values3=¢2, one can disregard both the

linear and the nonlinear coupling of the shear Aifweave (a,u):exp[ing—iwot]% (a(r,7),u(r,7))
characterizing the fishbone oscillation and the fast magneto-
sonic waves. For the Alfvéc type of perturbations we fol- Xexd —imé]+c.c., (15

low the reduced MHD ansatz** and introduce two stream

functions, il and e, to represent the components of the per_whereg, 6 andr are the toroidal, poloidal and radial coor-

turbed plasma velocity and magnetic field perpendicular tglinates such that- 9x {=1. A two-scale time dependence,
the vacuum magnetic fiel: : which is relevant to nonlinear fishbone evolution near the

threshold, is taken into account he#édr<<wqy, Wherew, is

V=VuxBr, (9)  the fishbone frequency. For further simplicity, we neglect
during the linear stage of fishbone instability, the toroidal
B=Br+VaXBs. (100 coupling between poloidal harmonics, which is important for

the ideally unstable=1 kink mode? The perturbed stream
functions describing the fishbone mode are then only associ-
gted with the mode numbens=m=1, so for the linear stage

of fishbone we take

Here and below the dot denotegdt. Representing the
plasma velocity in terms of the stream function in E§)
implies that we are considering an incompressible plasm
flow,

V.V=0. (11) (U,a)=(up, eyt " 1oot 4 ¢ c. (16)
The vorticity equation is derived from the charge conser-  In the near-threshold case, the difference between large

vation equation for a quasi-neutral plasm¥a,j=0, which ~ drive and large damping is relatively smalno—|ywrol
can be manipulated nonlinearly to explicitly extract the cur-<< Ynot=| Ymro|- This small difference corresponds to the net

vature sy =br- Vby of the vacuummagnetic field linesp;  linear growth ratey of the mode. In order to assess the role
=b;By. Using Egs(7) and(8) gives a differential equation Of nonlinear MHD effects analytically, we consider the limit
in a form similar to the one given in Ref. 15, namely of a weak MHD nonlinearity, in which the nonlinear parts of
Egs. (13), (14) just begin to compete with the small linear
BrB-Vjj=Br- VX(jXB)+2BrX kr- (jXB) “net” term corresponding to the difference between large
. T ; drive and large damping. An iteration procedure can be ap-
=1(Br- VB BrBy-ker) = (jbr-VInBr+2j-ser) By plied in this limit of weak nonlinearity, with the linear rela-
‘Ba+j-V(Br-By), (120  tion
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Bt 1 perturbed pressure of the hot ion$® |, which enters the
a;=lI R 1- a U, 17) equation in the form of an integral over radius:
. . . . - ; 1 (r 1 6P
used as the first |t§rat|on. The reIgnon Ed7) is obtained _j 12l Z[brx (by-V)br]. ¥ thl gy
from Eq. (14) by using the expression r3Jo |po Br |,

Br ¢ Bp 4 B
(B-V)=—T—+—P—=i—T(1——). (18) _PAD) g 26
B, ’

In order to incorporate nonlinear effects we consider where subscript 1 denotes the first component of the Fourier
and « as a sum of the main harmonic E@L6) and two  decomposition. The fishbone mode, excited by the toroidal
satellite harmonics precessional motion of the resonating trapped hot ions, is

U=Ug+ (ugelé 10 Toot 4y g2lic-i0-iogtl Lo oy (19) therf-zfore governgd by a volume integral weighted by the

profiles of the hot ions and the fishbone mode. As long as the
a= g+ agt (ae 107100ty g e2lii=i0-iogll ¢ o) fast particle response is linear, the quantity,r) is a linear
(200 functional of iy (—oe;t).

where ag, a, are the components of the stream functionsIII ANALYSIS OF FISHBONE EQUATIONS NEAR
representing the equilibrium poloidal magnetic field, and theyaRGINAL STABILITY

nonlinearly generated poloidal magnetic field, respectively.

Substituting Eqs(19)—(20) into Eq. (14) we obtain expres- For the weakly nonlinear regime((\)/\)/e m(:i\)ke an expansion
sions for the nonlinearly generated zeroth and second haif)-f(ol)ﬂl_ in the mode amplitude ag, = ;7 + 17+ ..., where
monics of the poloidal field stream function, 1" is a linear solution of Eq(24). As a first step of our

analysis we separate linear and nonlinear plasma responses

- B2y 1 -
ao:R_T 3_[( B —)ulul | (1)  described by Eqs24), (25)

ror q A. Linear phase of the fishbone instability

By 1 B% q’ ) The linear phase of the fishbone evolution is described
a=2i | 175U R (22) by the linear limit of Eqs(24), (25):

. . - 2 2

where prime denotes radial derivative. sone, VAl 1V oy Ziwgt

We substitute Eq(19) in Eq. (13) and use the expres- (417)"+ R2 1 q (417) =p(tr,)e 0. @7

sions foero, a1, and a, from Egs.(17), (21) and (22) in

order to consider Eq(13) in the layer regionsr~r ,, in The first harmonic onlyn=m=1, is involved in the linear

phase of the fishbone instability. Away from the resonance

which layers neam(r*)=1, the radial structure of the=m=1
A ( g m\ 149 9 23 radial displacemeri'tél:iz//(lo), has a top-hat structure, i.e.,
=|l=>—|==-—r—.
SoNerT ) rarar E(r)=6(1=00=£b), r<r,

The resulting equations show that contributions from the sec- ;. ; t)—q, (28)
ond harmonic are small in comparison with the zeroth har-

monic contribution by the ratio of the layer width to the We use Eq.(28) as boundary conditionsg;(,t)=0, &;
minor radius. By neglecting these small second-harmonié—.t)=§&(t), for the resonance layer equati¢®7). The

terms, we obtain the following nonlinear MHD equations for solution of Eq.(27), which corresponds to these boundary
the fishbone dynamics in the |ayer region: conditions has for a SUffiCiently small initial perturbation the

following integral form:

r>r,.

i, VA 1)* fwot Va ’ X sinQr
1, A _ - r_ —lwgt _o_ " _ *° ;
lr//1+ R2 1 q ‘//1 p(t,r)e 2R2 1 q ng): J;cdxlfo dr a p(t_T,r*)e_lwo(t_T), (29)
Xy (Prip_1)" = 2woi ), (24 wherex=r-r, and

) i 2 Q= Va 1
Jo=i wé—;(l—a (= Y1), (25 “r\7g) (30

~ The fast particle response H@6) is averaged over the entire
where ;= —Br(u,/r), ¢o=Br(Uo/r). region within theq=1 magnetic surface. Therefore, Egs.

The second term in the right-hand side of E2¢) arises  (2g) and (30) express the linear solution of the fishbone
from the nonlinearly generated=0 magnetic field, and is iy terms of the on-axis displacemef(t), which determines
of the form ~—2VAR X (1—q ")VaBsm_of 'Br'¥;.  entirely the perturbed hot ion pressure that drives the insta-
The third term is due to thm=0 plasma rotation, and is of bility. In the case of deeply trapped energetic ions,
the form~—2w0§’/0ym=0r‘1zpi. The first term in the right- Pj,<P,},, Eq.(26) can be reduced to a model relation be-
hand side of Eq(24) accounts for the first harmonic of the tweenp(t,r) and w(lo)(—oo;t) (see Appendix A for details
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3
*

CTROn)
r3)—=[T—i(r—1)]?

Qo

p(t,r)exp —iwgt)=— 7K

31
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[

[
0

has a value of the order of lag/y)>1. In the following text

1— eXKZi (,()07'3)

T
3 T3

where T is a characteristic precession period for energetive drop the bar notations. With the use of E2f) we reduce

ions, )" =dQ/dr|,_;, and the dimensionless parameleis
a normalized energetic ion content. The model &4) for

the energetic ion response leads to the linear dispersion rela-

tion for precessional fishbones:
»zexp —2z)

.

Real and imaginary parts of E(32) determine the threshold
value ofK for instability and the eigenfrequenay, of the
precessional fishbone at the threshold:

Ko=0.91,

dz

—oT-i0%% (32

(33
B. Weakly nonlinear phase of the fishbone instability

Close to marginal stabilityk —K,<K,, we substitute
the linear solution Eq(29) into the two nonlinear terms in
the right-hand side of Eq24) and obtain iteratively the next
order solution:

Wy~ [ ar
0
—2wo(#") Y51, (35

where, is determined by Eq25) with Eq. (29) substituted
in the right-hand side.

inQ
2020wt

At the instability threshold the fishbone has an oscilla-

tory solution, ¢(—oo;t)=aexp(—iwgt), where the mode
frequency is determined by Ed34). Near the instability

Eqg. (35) to the following nonlinear form in the dimensionless
variables(see Appendix R

) da_ ||(1)0_7TL1/Q,|
expld) g —a- iwg—mL,/Q

o0 © t—7
XJ drj drlf dry(m+ m)alt—7— 1)
0 0 0

X[a* (1= 7= 11)a(7y)

(41

We see then that E¢41) admits a self-similar solution that
becomes singular during a finite tintg. For example, we
can look for a particular solution of E¢41) of the form:

—a*(r,—7— Tl)é‘(Tz)]-

exdioIn(ty—1)], (42

(to—1)?
whereR and o are constants. By substituting Eg42) in Eq.
(41) one obtains the following governing equation for the

constants which determine the acceleratékplosive

growth:
p(' I (1+x)(1+2)
zexp ioln| ————
) » X 1+x+z
ie'¢=R2J de dz
0 0 (1+x)?%(1+2)%(1+x+2)?
2+ioc z+X z X

X 2—ic 1+z+x 1+x 1+z| (43

threshold, a slow time dependence of the mode amplitud8Y Taylor expanding the dispersion relation E82), as well

has to be accounted faa=a(t), |a/a|]<wq. Following the

procedure developed for weakly nonlinear models in Refs

16-17 we represent(t,r, ) in the following form:
p=L1a+L2da/dt, (36)

whereL; andL, determine the frequency and linear growth
rate as follows:

wo=|mf1+ YL |mf2~|mfl, (37)
_ Refl 39)
T I Rel,

Here,Lj=Q'L;/m (j=1,2) are identified by first Taylor ex-
panding the Fourier transformed E&1) aroundwg, SO it is
cast into the form of Eq(36). We introduce a dimensionless
time variablet, and mode amplitudes:

t=Tt=t(iwg— 7L /Q")-(1+7L,/Q") " e? (39

|Ly|?A
2I3(iwo— 7L, /Q")

‘ 1/2

: (40

wherel'>0, and¢ are real constants, and

asL(K,wg), around the threshold values{,K,), we infer
(iwo— 7L /1Q)|iwg— 7L, /Q'|=—i as used in Eq(43),
and from the definition ofp in Eq. (39) we find $=0.363.
Substituting this value fotp in Eq. (43) and computing the
integral in right-hand side numerically, we find that E43)
is satisfied foro=—6.5 (see Appendix €

Note that while the t,—t) ~2 divergence of solutions of
the Eq.(42) is robust, the particular solution E¢12) is not
unique. Depending on initial conditions, the nonlinear sys-
tem Eq.(41) may asymptote to other divergent solutions of a
more general type than E¢2) (see Ref. 18, for example

It is seen, however, that no saturation due to the MHD
nonlinearity exists for the fishbone in the near-threshold
case. Such a nonlinear saturation similar to what is given in
Ref. 3 should dominate the nonlinear MHD evolution in the
case when the two Alfweresonance layers=r, merge and
form a single broad layer at thg=1 surface. Numerical
analysis is required for studying this stage.

IV. NUMERICAL RESULTS

In this section we present numerical simulations relating
to the linear and nonlinear evolution of precessional fishbone
oscillations. These results will be shown to confirm the ana-
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lytical predictions of an explosive growth for fishbone oscil- Condition Eq.(46) is valid at the inner boundary where we

lations that are close to the instability threshold. Moreoverhave neglected the weak variation of time=n=1 profile in

we have also explored the nonlinear regime of modes that atte core plasma and takaf};(0,7)~V,,(r,7) in the right-

well above the marginal stability limit. hand side of Eq(46). For all other harmonics, which are
For the purpose of these simulations we have cast thiycalized in the inertial region, we imposge=0 at the inner

reduced MHD equation®), (10), (13) and(14) in a dimen-  poundary. The condition at the outer boundary has been

sionless form by normalizing the magnetic fields with thetgken asp=0 form=1, and¢’ =0 for m#1.

vacuum field,BT, all Iength scales with the minor radiues, For S|mp||c|ty we have chosen a case with no equi”b-

and all times with the Alfve time, 7o=R/V,. In order to  rjum current density in the annular region, and all the current

control the numerical dissipative effects we have also addegithin the center of the annulus. From Ampere’s law we

aresistive ) as well as a viscous/) term so that in terms jnfer the current density in the form,=B1(2—8)/ uoqR,

of the variablesp=r,Bru/a® and ¥ =—Ra/a’ the equa- wheres is the magnetic sheas=rq’'/q, which we have

tions are of the form taken as a constant so thgt (r/r,)S, with s=2. The quali-
tative features of the fishbone model are not sensitive to the
ﬂ =—RB-Vo+ ’7_‘14 choice ofs, which has been confirmed in the numerical simu-
gt S, lations withs=1, 2, and 3, respectively. Also, the reduced
MHD representation$9) and (10) of the cylindrical toka-
ﬂ ——V.VU—RB-VJ,+ vaU R X k- VP, 1) mak, where only the two-dimensional perpendicular motion

ot is important, does nét include the drive of the ideai=1

(44 MHD kink mode. Finally, to study the fishbone in its sim-
5 ) - - - plest form we diminish the importance of the cylindrical ef-
whereU=Vi¢, J=ViW¥, V=V¢X{, B={-VUX{R.  fects by choosing a fairly large radius of theq=1 surface,
S, is the magnetic Reynolds number. _ r, /a=0.84. The computational layer is centered around
The dr|_ve of the _engrgetm particles, Wr_uch are assumeqi_e_, Ir—rs+|<A,.
to be.conflnedlwell inside th_qzl magn.etlc surface, has Standard numerical techniques have been employed to
been included in two alternative ways: either as a boundargowe the initial value problem posed by Edd4)—(46) in
_condition on an annular simulation layer, oras a source terr'Eylindrical geometry as in Ref. 21, by Fourier expanding in
in the plasma core. In the IatEer case the dimensionless Prefie poloidal and the toroidal angle with finite differences in
sure perturbation R.n/pVA—P.n) of the energetic ions is  the radial direction. The numerical solutions have been found
taken in the form to be well converged, and it is noted that the width of the
annular layer needs to be chosen wide enough to separate the
Vil (00T feoc (45) nonlinear action in the inertial layer from the linear boundary
(T—i(r—t)2 drive in Eq.(46). Performing the computations in an annular
layer, rather than in an entire cylinder, gives numerical ben-
whereH prescribes the radial drive profile and is normalizedefits since it shrinks the computational domain, and reduces
asf3H(r/rp)r dr=rf/2. Here Nis chosen to match the total the highest frequencg) in the problem, which in turn re-
drive defined by Egs(26) and (31), i.e., N=2sKar;/  duces the largest value of the global mode profile sBgce
7R, V,1(01) is the m=n=1 Fourier coefficient of the ~QV,/w, whereQ> w away from the inertial layer. This is
radial velocity evaluated near the magnetic axis. Linear an@ssential since the achievable amplitude is for a given time
nonlinear numerical results in cylindrical geometry based orstep limited by a numerical instability appearing well away
Egs.(44) and (45 have been presented in Ref. 19. In a full from the inertial region due to the explicit treatment of the
cylindrical geometry, the nonlinear MHD effects in the fast nonlinear MHD terms in this integro-differential problem.
particle region may compete with the nonlinear MHD effects  \e have as an independent consistency check solved the
in the resonant layers, and this makes the interpretation difanalytically reduced equatior(@4), (25), and (31) numeri-
ficult. In the present paper, we will present numerical resultga|ly with a finite difference scheme, which gives results that
that are entirely due to the nonlinear effects in the inertialy e consistent with the more complete model &d). It is,
layer region. Itis then sufficient to consider a narrow annulag,g\ever, noted that the numerical results of the analytically
layer, in which no fast particles are present, arounddhe oquced equations depend rather sensitivelyogn here be-

=1 surface. In this case, the energetic ion drive enters thg,, 5 narameter rather than determined by the simulation
problem through the boundary condition, instead of the enscait A 59 mismatch inw, creates an imbalance between

ergetic term in Eq(44) that vanishes in the layer. An appro- 14 nonlinear terms in Eq$24) and (25), so that the MHD
priate boundary condition that is valid well away from the \\,hjinearities act to stabilize rather than destabilize.

inertial layer so tham%ﬂz, can be obtained from the lin- For benchmark purposes, it is useful to generalize the
ear part of E_q(24), with Eq. (31) inserted, which gives the reduced model equatioiig4) and(25) to arbitrary amplitude
integral relation by keeping the nonlinear terms in a closed form, rather than

truncating its nonlinear expansion. With time=0 and m

E—ith dTL) (46) =1 harmonics included we note that E@d4) can form
T —e (T—i(7—1))®

~ . t
Plh=Ne'5H(r/rh)f dr

sKr?

’ *

Vi =
7302

=1 be written in the dimensional form
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. ~ -~ . -BT . _IlIIlllllllllllllIIIIIIIIIII-I
ay+Vy-Va;=(By+By) - Vu, =i V_QNLulv (47 154 ’
A C
where / e
V,B 1-}0:?; P o
QN|_EQ_—A fm=? (48) id
I’BT o O“
. . . . F o
Inserting Eq.(47) in Eq. (14) gives form=0 the generaliza- 0.5
tion of Eq.(21) to the closed form result as F o"o Vo
RV N R o
w0 E(Q_NL el 49 > I e 3 ;

With Eq. (47) inserted into

FIG. 1. Linear numerical results fop/w and w/wg, as a function of the

normalized fast particle conteit/K,, wherey and » denote the growth
’ (50) rate and frequency, respectively, adg and w, are the analytical threshold

m=0 values in Eqs(33) and(34).

we find with use of Eq(23) the generalized version of the

reduced Eq(25) in the form
) when the layer width was halved, and an increasete,
QN , , =0.98 when the width was doubled. At the same time the
(1+V, m_O/rw)2> (Y= gay). ratio y/ @ was almost unchanged.
’ (51 The precessional dependence of the mode frequency

. . . ~T~1 whereT is the characteristic toroidal precession pe-
Equation(24) can be generalized in an analogous way. Equa- b P

Eons(49) arld(51) simplify to Eqgs.(21) gnd(25) in the limit \r/:gﬂ g]; etgeerve endeLguerﬂgripgrltI;/CEz Sr? o:/T/::ci)r? chISdzm B8, is
Viom=0/t~Bym-o/r V4Tpo<w. Equations(49)—(51) have

been used to benchmark the code i6r0, and a perfect 2. Double layer structure in the linear eigenmode
agreement was obtained for the generation ofntlke0 mag-  profile

netic field. The frequency needed to evaluate EE6) and
(51) is inferred from the local rotation of the mode structure
in the poloidal cross section. Good agreement forrthe0

B,

BTVE o

v&,m—O:<VrBTViU_ d1pg

@o:i(wz_

When the energetic particle pressysg,B2/4, slightly
t

exceeds the threshold val@™~ srw/V,, the top-hat linear
) X o _ X _ eigenmode profile splits up into a two-step structure in the
poloidal velocity profile is obtained when the radial profile of

! " inertial region around thg=1 surface due to the finite fre-
t_he I(_)ca_ll growth.rate, as mfer_red from the numerical SOI”'quencyw of the mode. Steep gradients appear in the radial
tion, is included in the comparison.

eigenmode profile where the magnetic field line bending is
balanced by the inertial term&,= = (). The radial splitting

A. Linear results distance isA ~rRw/sV,, whereas the inner width of each
1. Threshold and mode frequency of the fishbone layer is a factory/ smal!er. The. numerical ;olutpn is in
instability quantitative agreement with the linear analytical eigenmode

. . profile inferred from Eq(27) as illustrated in Fig. 3 where
The numerical results for thinear growth ratey and Yl 0=8%, 5=0= v, T/7p=40,

frequencyw of the fishbone model are summarized in Figs.
1-2. From Fig. 1, where we have us@dr,=40, A, /a

=0.10 andn=0= v, we infer that the fishbone mode is ex- Y 7 T T S S T S S R
cited in the numerical simulation when the normalized fast r ]
particle contenK exceeds the predicted analytical threshold P<0-12-: I
valueK=0.91 given in Eq(33), implying good agreement S o4t i
between numerical and analytical threshold physics for the 2 C ]
fast particle drive as well as the Alfaecontinuum damping. % 0.084 T
The fishbone frequency varies only weakly with the fast g 0.06-: i
particle content as shown in Fig. 1, and agrees fairly well - C ]
with the analytical prediction Eq34) as inferred from the 3 0.044 T
linear dispersion relation E@32). The slight frequency off- g 0.02_: i
set (w/ wpe=0.93) is a consequence of the finite radial width g .
of the computational domain, since tkweak variation in I . A e
the central plasma of the= 1 radial displacement profile is 0 50 100 150 200 250 300 350

. . L h T
ignored numerically, whereas it is accounted for in the ana- Fe

lytlcal _treatr_nent' _TO quan_tlfy the width dependence n theFIG. 2. Linear angular frequenay versus the toroidal precessional tirie
numerical dispersion relation we found for the slowest grow+or k/k ,=1.5 in the numerical simulatiorisircle), and from the analytical

ing case in Fig. 1, a reduction in frequency ddwy=0.86  solution(34), »=1.35 (solid).
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FIG. 3. The real and imaginary part of the=m=1 Fourier component of  FIG. 5. The nonlinear growth rate evolution of the=1 radial velocity
the linear radial velocity profile for a mode near the instability threshold, amplitude, y=d In|[V,|/ét, for a mode near the instability thresholg o
ylw=8%. Analytical profiles are shown as thick dashed curves, and are-89, and its dependence on the numerical spectral resolutiend—8
reproduced in the numerical simulatigthin solid curvey for =0=v, (thick solid, m=0-4 (short dashed m=0-2 (long dashe m=0-1
T/ 7,=40. (solid with markers Here, T/ 7,=40.

B. Nonlinear results

1. Modes near the instability threshold =46.56. The rapid nonlinear acceleration of the fishbone

o i . . instability in Fig. 4 gives an order unity change in the growth
The most striking nonlinear result of the numerical Simu- 4t within a single oscillation as shown in Fig. 5.

lations is the demonstration of a destabilizing or, depending ¢ sensitivity of the numerical results to the spectral
on the parameter regime, a stabilizing influence of the MHDyeqq|ytion is examined in Fig. 5, where the number of poloi-
nonlinearities in the inertial layer, combined with a rapid andya| ang toroidal Fourier harmonics in this single helicity
significant frequency chirping. For modes slightly above theproblem,m/nz 1, is increased from 2 to 9 witim=0, for the
instability threshold, the numerical results confirm the anay,me parameters as in Fig. 4. One of the most robust features
lytical pred_iction in S_ec. _III B of an accelerated nonli_near of the solution is the accelerate=1 growth in the nonlin-
growth as illustrated in Fig. 4 wherg/w~8%. Shown in  gar regime, which is well captured with only two harmonics
Fig. 4, which is the nonlinear evolution of the layer simula-,.juded in the computation, namelp=0 and m=1. At
tion in Fig. 3 whereT/7,=40, n=0=v, andm=0-8, iS g4t the qualitative evolution of the weakly nonlinear evo-
the tlme evolu_tlon. of the re.al and. imaginary pgrts of the|,tion is therefore well described by only tie=n=0 and
velocity potential, in comparison with the analytical explo- {ne m=n=1 Fourier harmonics, a fact that was used in the

sive growth rate prediction as well as with a linear growth. 55 tical analysis in Sec. IllB. However, the quantitative

The mode amplitude exceeds significantly the indicated lingnget of the nonlinear increase in the growth rate is delayed

ear values|¢|~exp(ut), in the later part of the simulation 4 giart at a largem=1 amplitude, when several harmonics
when the nonlinear terms become important. Moreover, theq retained. for the case considered in Fig. 5.

numerical evolution of the amplitude agrees quantitatively
with the analytical explosive prediction equati@t®), where
||~ LI(to—1t)P with the exponentp=2, for wgty/2m

The nonlinear effects are expected to become important
when the kink displacement is of the order of the scale length
of the mode structure, i.e., whé&n~ 8. Sinces= y/Q)’ with

Q' 7a=sl/rq we find for the case considered in Fig. 4, where
yTa=~2.7X10 3, the magnetic shear=2, andq=1 atr/a

0-00041™"7" """ Nonlinear analytical growth A ~0.84, thatdla~1.1x 10~2. From Fig. 4 we infer that the
[~ Numencalsolutlon nonlinear evolution starts when the dimensionless 6

0.0002- Lo X 10" ° atr/a=0.74 which corresponds to the displacement

= | YT & la~ ¢plro~2.6x103, in qualitative agreement with the

g NN\ “/ 1 simple estimate.

2 C B ] The mode profiles evolve nonlinearly, not only by an

o s E - increase in the amplitude as in the linear regime, but by a

=0.0002¢ T change in shape as well. In particular, the steep individual
i ] steps in the two-step structure of the linear eigenmode profile

-0.0004 ...' in Fig. 3 are broadened nonlinearly due to the accelerated
42 43 44 45 growth rate, and the layers start to merge whgm ap-

o t2n proaches unity. Since numerical issues limit the complete
fG. 4 Th L it wtion i th cal solutidsolid exploration of the merging phase, we have instead studied
. 4. em= amplitude evolution In € numerical solutiqeol f . f f f
black, and as predicted by the explosive analytical envelafzshed, in the nonlinear evolution of modes that in the linear regime

contrast to a linear growtisolid gray, for a mode near the instability ~Start with 'Y/‘f’>1-_ Results fpr these linearly fast growing
threshold,y/w~8%, withm=0-8, =0= v, T/7,=40. modes are given in the section below.
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FIG. 6. The real and imaginary partsmf=n=1 Fourier coefficient for the

FIG. 7. The fi i | h =dInE is in-
linear radial velocity profile wheny/w~2. Here, vrp/a?=10"%, T/, G e functional dependence ofw, where 2y=dInE,/dt is in

ferred from them=n=1 energyE, in the layer, on the amplitude of the

=1280. m=n=1 radial velocity|V,,|, for a mode well above the instability thresh-
old, vy, /o ~2, and its convergence with increasing spectral resolution:
. . =n=0-12 (solid thick), 0—8 (thin solid), 0—4 (short dashed 0-2 (long
2. Modes well above the instability threshold dashedi 0—1 (solid with markers

Up to now we have presented results for linearly slowly
growing modes that are near the instability threshold. These
modes aredestabilizedby the MHD nonlinearities. For ex-
ample, the ratioy/w increases nonlinearly in Fig. 5 for the
slightly unstable mode frony/ w~8% to 20%(where a nu-

individual steps is a factory/® smaller, wherey is the

growth rate of the mode. The numerical solutions of the re-

merical instability limited further progressThe situation is duced.MHD. equanpns aren quaqtltat|ve agreemgnt W't.h the
analytical linear eigenmode profile. Also, the simulations

qwte.dlffere_n t for ques. that are fa}st gr0W|ng/(l)>ccrjt . _agree with the analytical predictions for the mode frequency
~1) in the linear regime; a case which is somewhat Slmllarand the growth rate near the instability threshold. Thus, we
to then=1 ideal MHD kink instability characterized by a g y : '

single layer. Nonlinear MHD effects for the idea-1 kink have a good understanding of the linear properties of the

. . . r ional fishbon illations.
were considered in Ref. 3. We might expect to observe grecessional s bone oscillations

L T o . The key finding in the nonlinear regime, for modes near
similar behavior in our case even though the drive is of dif- . - . .
o : : . o " the instability threshold, is that the nonlinear MHD terms
ferent origin. In this case the fluid nonlinearities atabiliz-

produce an explosive growth. The mode structure in the in-

ing and their effect is similar to the one discussed in Ref. 3. . . .
ertial layer changes during the explosive phase, and is ac-

To see this we consider the nonlinear evolution of a fastCom anied by frequency chiroing. We have a qood under-
growing mode withy/ o~ 2. In this case, the two separated P y Ired Y ping. 9

; : I tanding for the explosive growth of the mode amplitude,
layers of the linear eigenmode profile in Fig. 3 coalesce, an . .

. 2T T whereas a more complete understanding of what determines
appear as a single layer, as exemplified in Fig. 6 where wi

usedT/74=1280. =0, andwr,/a?=10"°. If the energetic the changes in the phase, i.e., the chirping rate, requires fur-

X L . . ther work, which is in progress. However, the self-consistent
particle drive is well above the instability threshold value, ] : . :
(K—Kg)/Ko~1, the rapid linear growth of the mode is re changes in the mode structure during the nonlinear evolution

~Ko)/ Ko~ 4, -

) . . . - are already accounted for in the analytical as well as numeri-
duced in the nonlinear regime as illustrated in Fig. 7, where y y

. ; . cal analysis. An interesting feature of the model is the non-
vl w drops from 2 in the linear regime to a value of the order; . - )
. . -_linear generation of an=0 poloidal flow, as well as an
of 0.5, and the growth rate is approximately halved. It is

: . . - =0 poloidal magnetic field. Here, it is noted that it is still an
worth noting that as in the case of slowly growing modes it . . , .
: . : open question whether the drive of these 0 fields remains
suffices to include only they=0 andm=21 Fourier harmon-

ics to capture the nonlinearly stabilizing effect. However theefﬁCient in toroidal tokamak geometry.
P y 9 j ' We have found that fishbone oscillations that grow

onset amplitude for nonlinear behavior is again increased . . ;
. . - Slowly, with respect to the mode frequency, in the linear
when more harmonics are included, as shown in Fig. 7.

regime are thus destabilized nonlinearly. A reduced nonlinear
equation was derived, and its analytical solution was com-
V. SUMMARY AND DISCUSSION pared with the numerical results. The analytically predicted
The role of magnetohydrodynamic nonlinearities in pre-explosive growth|¢|~ 1/(t,—1t)P with the exponenp=2, is

cessionalm=n=1 fishbone oscillations has been analyzedwell reproduced in the numerical simulations. These nonlin-
analytically and numerically. The work is based on the re-ear effects become important when the radial plasma dis-
duced MHD equations in a cylindrical tokamak, including aplacement is of the order of the radial scale length of the
linear energetic particle drive model. When the energetic partwo-step structure. The nonlinear results are quite different
ticle pressure is close to the instability threshold, the top-hafor fishbone oscillations that are excited well above the sta-
linear eigenmode profile of the ideal MHD=1 mode splits  bility threshold. The growth rate of these linearly fast grow-

up into a two-step structure around the=1 flux surface, ing modes decreases nonlinearly, and the MHD nonlineari-
due to the finite frequency of the mode. The width of the ties are stabilizing in this limit; a similar result was found for
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the nonlinear saturation of the internal kink mode. 9 J o Fy,

Thus, we have a good understanding of the linear fea- E5f+ﬂg&—§ of - iVoef'“’oH'gﬁJrC-C- =0, (A7)
tures of the precessional fishbone oscillations, as well as the ¢
nonlinear explosive evolution of the mode amplitude forwhereF,(u;E;P,) is the equilibrium distribution function

modes that are excited near the instability threshold. of the hot ions. Here
_ dHp
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has the following dominant component due to then=1
mode:
APPENDIX A: MODEL FOR LINEAR RESPONSE OF
DEEPLY TRAPPED HOT IONS eBy

Voe 'ty —. (A10)
In order to describe the motion of the energetic ions, we ¢
use the guiding center Lagrangian derived by Littlefdhn The solution of the simplified kinetic equatidA7) has the
and adopted to a large-aspect-ratio tokamak with circulafollowing form:
flux surfaces in Ref. 23
. . . _(QFh i t iQ(r—1) eBO'
L=P;l+Py0+P,y—Ho(P;;Py;P)—V. (A1) 5f_'a_|35e fﬂxe £70r ——ndrtcc, (A11)
Here the angle variables for the unperturbed motion are the . .
toroidal angleZ, the poloidal angled, and the gyro angle. so that the perturbed anisotropic pressure,

The actions conjugate to the corresponding angles are
5Pm=f wBg- 8f-d3V, (A12)
_ eBy(rr'dr’
Pe=== ], q(r’) MR, (A2) eads to the driving term Eq26) in the form
e _ iva _
Py===Bor?, A3 e 'wol~ —f d*x d®vpusfe 't (A13)
[ 2c 0 ( ) P WrgBORS 124
Mc
Pyz?,u, (A4) APPENDIX B: ANALYSIS OF THE WEAKLY

NONLINEAR SOLUTION EQUATION (35)
where e is the charge of the ionM the ion mass,u ] ) ] )
_ MVf/(ZB), u andV, are components of the ion velocity W|t_h the use of Eq(29), the nonlinear terms in the right-
along the equilibrium magnetic field and perpendicular to th'@nd side of Eq(35) take the form

equilibrium magnetic fieldH is the Hamiltonian of the un- o (0 X X P P
perturbed motion, Y )%0(&:[ dxzf dxsfo defO drs

r 1
Ho=uBo| 1— =—cosf |+ =Mu?, A5 sinQ,7, sinQ,7
o= H 0( Ro 2 VY (AS) , SN2z, CLENP
Q, QO3
and i
X p* (t— 71— 73)€w0(2773), (B1)
e Y
V=EBor E—FU(bO'V)w], (A6) and

is the part due to the interaction between the ion and plasma - .. . _. T fx fm 2_02
perturbation associated with time=n=1 mode?* Yo(xit=7) |f0 d7s 0 drz 0 Al wo=07]

In the simplified case of deeply trapped energetic ions
the terms withu; in Eqgs.(A2), (A5), and(A6) are negligibly
small. Also, for these iong— 0. The bounce motion of the
trapped ions is then degenerated and the particle motion can X
be described by the toroidal precession only. In this essen-

X p(74= ) p* (74— 73)€ 07277

dx —

fx _ sinQ) 7, sinQ 75
o Q Q

tially one-dimensional limit the bounce averaged linearized . ind inQ
kinetic equation for the hot ion distribution functiasf is _f qx SNiiTe SINTA T (B2)
simplified to oo ) Q
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The solution of Eq(35) due to the nonlinear driving force in % % o o
the RHS is then represented in the form A= —Zfodeo dTlfO dejO drgp(t—7—71)p(t—7— 7))
xp*(t_ r— 7_?,)efiwo(thf 71— To+ 73)
hy(+90) = ih1(—%)=— iy (- ) =A+B, (B3) += sinQrsinQr 9
X f_x dxQ) Q Q ﬁ

where the nonlinear termg, andB, are obtained from Egs.
(B1) and(B2) as follows:
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We make a substitutiom,< 73 wherever necessary and in- Using the relationsy,(—»)=aexp(—-iwgt) and p=L,a
tegrate overr,. The relation +L,da/dt and making the substitutions Eq89), (40) we
obtain the final nonlinear equatidal).
l ©
(tg,t)= ;J' dQ cosQ(ty—t) (B6)
0

_ o _ _ _ ~ APPENDIX C: NUMERICAL SOLUTION OF EQ. (43)
is used to simplify the integration. The resulting expression

can be integrated overby introducingQ)’ =dQ/dx, so that The governing equatio#3) for the real constant® and
dx=dQ/Q’ to give oin Eq. (42) is in the form
gt —ie'?=R%(0), (C1)
A~— 2 f de dTlf de P(t—T— 1) where $=0.363, and
2w0
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The resulting nonlinear equation then takes the following ) (1+x)2
form: xXexp io In 17 2x (C2
— ()= o _'wotfo drp(t—r)e'eo” wheref(x) andg(x) are polynomial ratios combined with a
logarithmic function. The argument of the functionl (o)
t— T =|l(o)|explx(o)) determinesr implicitly through the rela-
'wotf drf dTlf tion
2&)09,
v
f dry [1 e2007s] p(t— 7— 1) X(0)=¢— 5 +2mk, k=012, (C3
X[b*(m_q._ 1) p(7a—73) andR=|I ()| Y2 From Eq.(C2) we infer thaty(o) is an
_ odd function ino. The argument of (o) has been calculated
—p* (14— 71— 1) p(T4— T3)]. (B9) numerically® based on the single integral, as well as the

Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



166 Phys. Plasmas, Vol. 9, No. 1, January 2002
- 00
0]
o
o]
0 -05
fu]
=]
=
W -1.0
o
i)
g 15
g
220
-40 -30 -20 -10 ’|\ 0
o

FIG. 8. The argumeny of I (o) as a function or based on the numerical
solution of single integral formulation in E4C2).

double integral in Eq(C2), and the results agree. The func-
tional dependence of on o is illustrated in Fig. 8. Forp
=0.363 we find a solution of EC3) for ¢=—6.5, as in-
dicated with the arrow in Fig. 8.
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