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The role of magnetohydrodynamic nonlinearities in precessionalm5n51 fishbone oscillations
has been analyzed analytically and numerically. The work is based on the reduced
magnetohydrodynamic~MHD! equations including a linear energetic particle drive model. When
the energetic particle pressure is close to the instability threshold, the top-hat linear eigenmode
profile of the ideal MHDm51 radial displacement splits up into a two-step structure around the
q51 flux surface, due to the finite frequencyv of the mode. The width of the individual steps is
a factorg/v smaller than the distance between them, whereg is the growth rate of the mode. We
find that the MHD nonlinearities modify the mode structure further, and produce explosive
nonlinear growth, accompanied by frequency chirping, for modes that are near the instability
threshold. The results are quite different for fishbone oscillations that are excited well above the
stability threshold. The growth rates of these linearly fast growing modes decreases nonlinearly and
the MHD nonlinearities are stabilizing in this limit. The nonlinear MHD effects are important when
the plasma displacement is comparable to, or larger than, the scale length of the fishbone structure.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1421373#
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I. INTRODUCTION

An oscillatory ‘‘fishbone’’ instability, with toroidal mode
number n51 and poloidal mode numberm51, was first
observed in experiments with perpendicular neutral beam
jection ~NBI! on the Poloidal Divertor Experiment~PDX!
tokamak.1 The instability occurs in repetitive bursts, with th
mode frequency decreasing by about a factor of 2 dur
each burst. Large fishbone bursts are observed to c
losses of NBI-produced energetic ions, thus reducing the
ficiency of plasma heating. Experimentally, the radial plas
displacement in the fishbone mode was found to be simila
the ‘‘top-hat’’ structure of the internaln51 kink mode2,3

associated with the safety factorq51 in tokamak plasmas
The frequency of the fishbone oscillations in PDX was fou
to be close to the magnetic precession frequency of
trapped energetic ions,^vdh&52 i ^Vdh•“&, as well as to the
thermal ion diamagnetic frequency,v* pi . Here Vdh is the
guiding center toroidal precession velocity, and the notat
^...& represents averaging over the bounce time of the e
getic ion orbit. The first theoretical interpretation4 of the fish-
bones established the resonant wave particle interactio
the magnetic precession frequency of energetic ionsv
5^vdh&, as a key drive of this instability.
1551070-664X/2002/9(1)/155/12/$19.00
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Two different regimes have been identified for the line
phase of fishbone instability.4,5 The first regime of so-called
‘‘precessional’’ fishbones4 refers to the case when the mod
frequencyv in the plasma reference frame is much grea
than the thermal ion diamagnetic frequencyv* pi ,

v@v* pi . ~1!

In this case, trapped energetic ions destabilize then51,m
51 mode when the mode frequencyv resonates with the
frequency of their precessional motion^vdh&. The mode fre-
quency emerges from the Alfve´n continuum, so the mode
structure has singularities at the radial locations,r A , where
the conditions of local Alfve´n resonance,

v56kim~r A!VA~r A!, ~2!

are fulfilled for a given fishbone frequencyv; hereVA(r ) is
the Alfvén velocity, andkim the wave vector parallel to the
equilibrium magnetic fieldB0 , kim(r )[( i /B0)(B0•¹). Due
to the continuum damping associated with the fluid re
nances, Eq.~2!, the precessional fishbones, Eq.~1!, are ex-
cited at relatively high values of the energetic~hot! ion beta,
bhot[4pPhot/B0

2.bhot
crit . Here Phot is the pressure of ener

getic ions and the thresholdbhot
crit is determined by the
© 2002 American Institute of Physics
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balance4 between the fishbone kinetic drive due to the en
getic ions,ghot, and the fishbone Alfve´n continuum damp-
ing, gMHD :

ghot~bhot
crit!5gMHD . ~3!

The second linear regime refers to the fishbones w5

v'v* pi . In this case, the structure of the Alfve´n continuum
is strongly affected by the branch ofv5v* pi oscillations,
and a low-frequency ‘‘gap’’ is formed in the Alfve´n con-
tinuum. Thev'v* pi fishbone mode lies within this fre
quency ‘‘gap’’ so that condition~2! is not fulfilled and under
these conditions the Alfve´n continuum damping is negligible
for the v'v* pi fishbone.

Fishbone oscillations were later observed in many ot
tokamaks with significant populations of energetic ions p
duced by ion cyclotron resonance heating~ICRH!, perpen-
dicular and parallel NBI~see Ref. 6 and references therei!.
A more complete linear theory of fishbones emerged t
accounts for the transit resonances of the energetic ions7 and
finite orbit width corrections of the energetic ion drive.8,9

The characteristic burstlike structure of the fishbone
cillations and the significant decrease of the oscillation f
quency of the mode within a single burst indicate that dur
their evolution fishbones have a strongly nonline
character.6 Empirical predator-prey type models~see, e.g.,
Appendix C of Ref. 10! as well as a more complete mode11

were developed to interpret the repetitive bursts of thev
'v* pi fishbones and the accompanying losses of energ
ions as a result of a redistribution of energetic ions due to
perturbation field of fishbones. The models10,11 based on the
kinetic wave particle trapping nonlinearity retain the ess
tial physics of thev'v* pi fishbones, since the kinetic non
linearity appears to be the dominant one when the fishbo
are in the diamagneticv* pi gap. The gap essentially elim
nates the fluid resonance,gMHD50. This regime allows a
perturbative description of the mode, which makes the pr
lem technically similar to the bump-on-tail problem, as w
as to many other wave-particle interaction problems~see
Ref. 11 and references therein!.

A nonlinear description of the precessional fishbon
(v@v* pi) presents a more challenging problem: an int
play of kinetic and fluid resonances during the fishbone e
lution. One can see from Eq.~3! that the linear response
from the kinetic and fluid resonances are almost equal n
the instability threshold. However, their nonlinear respon
are very different and a special investigation is needed
order to assess the importance of the fluid nonlinearity
addition to the kinetic nonlinearity similar to that analyzed
Ref. 11.

In this paper, we concentrate on the role of the flu
nonlinearity in the precessional fishbones, regime~1!. In or-
der to delineate the effects of the fluid nonlinearity we co
sider a fishbone evolution, during which the energetic
response remains linear at all times and the effects of
kinetic nonlinearity can be neglected.

The nonlinear MHD model for the fishbones is presen
in Sec. II of this paper. Fishbone modes are strongly
tended along the equilibrium magnetic field,ki!k' , so that
the fast magnetosonic degrees of freedom,v>k'VA , are
Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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essentially not excited during the instability and the fishbo
oscillations are of the Alfve´nic type. It is important to note
that the fluid nonlinearity, which is known12 to be small for
local Alfvén waves satisfying the dispersion relationv
5kiVA , is not small for the global fishbone mode satisfyin
Eq. ~2! at two radial positions,r 5r A , only. In order to focus
on the fluid nonlinearity, which is relevant for the Alfve´nic
type global mode, and to exclude the magnetosonic osc
tions, we use the nonlinear reduced MHD model13,14 com-
bined with a linear response for the energetic particles.

Analysis of the reduced MHD model for fishbones
performed analytically in Sec. III. It is shown that near t
instability threshold,ghot2ugMHDu!ghot, the radial structure
of the fishbone mode of frequencyv has two singular layers
one inside and one outside theq51 surface. The radial lo-
cations,r A , of the resonance layers are determined in acc
dance with Eq.~2! by

v25~12q~r A!!2~VA~r A!/Rq~r A!!2. ~4!

R is the major radius of the magnetic axis. Near the insta
ity threshold of the fishbone, the radial width of each sing
lar layer is smaller by a factorg/v than the distance betwee
the layers, whereg(!v) is the instability growth rate,g
[ghot2ugMHDu. Under these conditions, the fluid nonlinea
ity becomes important when the plasma displacemen
comparable to the width of each singular layer near theq
51 surface, whereas the particle nonlinearity can still
negligible at this level. It is shown in Sec. III that the dom
nant effects of the fluid nonlinearity in fishbones are cau
by a generation of am50 poloidal plasma flow, and am
50 poloidal magnetic field. The generation of them50
magnetic field,B̃p

(0) , can be considered as a flattening of t
‘‘effective’’ safety factor profileq(r ,t)5rBT /R(Bp1B̃p

(0)).
The toroidal and poloidal magnetic equilibrium fields a
denoted withBT andBp , respectively.

It is found that the early stage of the near-threshold fi
bone instability, during which the two resonant layers, E
~4!, are well separated, is characterized by an explosive
havior of the mode amplitude, accompanied by a fast cha
in the mode frequency. The mode evolution when the t
resonant layers coalesce and a possible scenario for the m
saturation~similar to Ref. 3!, or a decelerated growth of th
mode, are discussed.

In order to investigate the nonlinear MHD effects in th
fishbone regime beyond the explosive phase a numerica
duced MHD model is used in Sec. IV. The model applies
a cylindrical geometry. The energetic particle drive is add
to the model in the form of a prescribed term, which is o
tained in terms of moments of the energetic ion distribut
function in toroidal geometry. This drive remains linear du
ing the fishbone evolution. A direct benchmarking of the n
merical model with the analytically predicted linear and e
plosive regimes of the fishbone instability is performed. T
effect of the mode saturation due to MHD nonlinearity
investigated for strongly driven fishbones in the regim
whereg/v is large. Conclusions are presented in Sec. V.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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II. REDUCED MHD MODEL

We start from the MHD equation of motion

rS ]V

]t
1V•“VD52¹pc2¹•PIhot1

1

c
j3B, ~5!

wherer, V andpc are the mass density, velocity, and pre
sure of the core plasma,j andB are the plasma current an
magnetic field, and PI

hot[P'hI2(P'h2Pih)bb is the tensor
of hot ion anisotropic pressure that drives the fishbone in
bility. Here I is the unit tensor,b5B/B, andP'h andPih are
the perpendicular and parallel components of the hot
pressure which must be obtained in terms of moments of
energetic ion distribution function. In addition to Eq.~5!, the
frozen-in equation for the core plasma is used,

]B

]t
5¹3@V3B#, ~6!

together with the Maxwell’s equations

¹3B5
4p

c
j , ~7!

¹•B50. ~8!

The fishbone mode is extended along the equilibrium m
netic fieldB0 , so that a small parameter relates the longi
dinal ~alongB0) and the perpendicular~with respect toB0)
scales of the mode:¹ i>«¹' , where«5r /R>Bp /BT!1 is
the inverse aspect ratio of the tokamak. Considering plas
with typical beta valuesb>«2, one can disregard both th
linear and the nonlinear coupling of the shear Alfve´n wave
characterizing the fishbone oscillation and the fast magn
sonic waves. For the Alfve´nic type of perturbations we fol
low the reduced MHD ansatz13,14 and introduce two stream
functions,u̇ anda, to represent the components of the p
turbed plasma velocity and magnetic field perpendicula
the vacuum magnetic fieldBT :

V5¹u̇3BT , ~9!

B5BT1¹a3BT . ~10!

Here and below the dot denotes]/]t. Representing the
plasma velocity in terms of the stream function in Eq.~9!
implies that we are considering an incompressible plas
flow,

¹•V50. ~11!

The vorticity equation is derived from the charge cons
vation equation for a quasi-neutral plasma,¹• j50, which
can be manipulated nonlinearly to explicitly extract the c
vaturekT5bT•¹bT of the vacuummagnetic field lines,BT

5bTBT . Using Eqs.~7! and~8! gives a differential equation
in a form similar to the one given in Ref. 15, namely

BTB•¹ j i2BT•¹3~ j3B!12BT3kT•~ j3B!

5 j i~BT•¹BT1BTBD•kT!2~ j ibT•¹ ln BT12j•kT!BT

•BD1 j•¹~BT•BD!, ~12!
Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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where j i5bT• j and BD5B2BT . We insert thej3B-force
from Eq. ~5! in Eq. ~12!, and apply the reduced MHD repre
sentations~9!, ~10! for which BT•BD505BT•V. Further-
more, we neglect the weak gradients of the plasma den
r5r05constant, and omit effects ofpc . The final vorticity
equation can be then written as

D'ü52~V•¹!D'u̇1
1

4pr0
~B•¹!D'a

2
1

r0
@bT3~bT•¹!bT#•¹

P'h

BT
. ~13!

Substituting Eqs.~9!, ~10! in Eq. ~6! we obtain the flux equa-
tion

ȧ5~B•¹!u̇. ~14!

The reduced MHD equations~13!, ~14! with an additional
term representing the pressure of trapped hot ions,P'h ,
which drives the fishbone instability, are the basis for t
analysis of nonlinear MHD effects in the fishbone mode.

We consider an equilibrium with monotonicq(r )-profile
andq(0),1. The energetic ion pressure profile is localiz
close to the plasma center, well inside theq51 surface, so
that there are no energetic ions in the vicinity of theq51
surface. We also suppose that no equilibrium flow exists
the plasma att50, i.e.,V050.

In order to analyze Eqs.~13!, ~14!, we decomposea and
u into Fourier series

~a,u!5exp@ inz2 iv0t#(
m

~a~r ,t!,u~r ,t!!

3exp@2 imu#1c.c., ~15!

wherez, u and r are the toroidal, poloidal and radial coo
dinates such thatr̂ • û3 ẑ51. A two-scale time dependence
which is relevant to nonlinear fishbone evolution near
threshold, is taken into account here,]/]t!v0 , wherev0 is
the fishbone frequency. For further simplicity, we negle
during the linear stage of fishbone instability, the toroid
coupling between poloidal harmonics, which is important
the ideally unstablen51 kink mode.2 The perturbed stream
functions describing the fishbone mode are then only ass
ated with the mode numbersn5m51, so for the linear stage
of fishbone we take

~u,a!5~u1 ,a1!ei z2 iu2 iv0t1c.c. ~16!

In the near-threshold case, the difference between la
drive and large damping is relatively small,ghot2ugMHDu
!ghot'ugMHDu. This small difference corresponds to the n
linear growth rateg of the mode. In order to assess the ro
of nonlinear MHD effects analytically, we consider the lim
of a weak MHD nonlinearity, in which the nonlinear parts
Eqs. ~13!, ~14! just begin to compete with the small linea
‘‘net’’ term corresponding to the difference between lar
drive and large damping. An iteration procedure can be
plied in this limit of weak nonlinearity, with the linear rela
tion
ense or copyright; see http://pop.aip.org/about/rights_and_permissions



r

n
th
el

ha

-

e
a
e
n
or

f

e

rier
idal
, is
the
the

ion

nses

ed

ce

.,

ry
e

e
s.
e

sta-
s,

e-

158 Phys. Plasmas, Vol. 9, No. 1, January 2002 Ödblom et al.
a15 i
BT

R S 12
1

qDu1 , ~17!

used as the first iteration. The relation Eq.~17! is obtained
from Eq. ~14! by using the expression

~B•¹!5
BT

R

]

]z
1

BP

r

]

]u
5 i

BT

R S 12
1

qD . ~18!

In order to incorporate nonlinear effects we consideu
and a as a sum of the main harmonic Eq.~16! and two
satellite harmonics

u5u01~u1ei z2 iu2 iv0t1u2e2[ i z2 iu2 iv0t]1c.c.!, ~19!

a5a01ã01~a1ei z2 iu2 iv0t1a2e2[ i z2 iu2 iv0t]1c.c.!,
~20!

where a0 , ã0 are the components of the stream functio
representing the equilibrium poloidal magnetic field, and
nonlinearly generated poloidal magnetic field, respectiv
Substituting Eqs.~19!–~20! into Eq. ~14! we obtain expres-
sions for the nonlinearly generated zeroth and second
monics of the poloidal field stream function,

ã05
BT

2

Rr

]

]r F S 12
1

qDu1u21G , ~21!

a252i
BT

R S 12
1

qDu22
BT

2

2rR

q8

q2
u1

2, ~22!

where prime denotes radial derivative.
We substitute Eq.~19! in Eq. ~13! and use the expres

sions for ã0 , a1 , and a2 from Eqs.~17!, ~21! and ~22! in
order to consider Eq.~13! in the layer regions,r'r A , in
which

D'5S ]

]r
@

m

r D'
1

r

]

]r
r

]

]r
. ~23!

The resulting equations show that contributions from the s
ond harmonic are small in comparison with the zeroth h
monic contribution by the ratio of the layer width to th
minor radius. By neglecting these small second-harmo
terms, we obtain the following nonlinear MHD equations f
the fishbone dynamics in the layer region:

c̈181
VA

2

R2 S 12
1

qD 2

c185r~ t,r !e2 iv0t22
VA

2

R2 S 12
1

qD 2

3c18~c1c21!922v0c18ċ08 , ~24!

c̈05 i Fv0
22

VA
2

R2 S 12
1

qD 2G•~c1c218 2c21c18!, ~25!

wherec1[2BT(u1 /r ), c0[BT(ũ0 /r ).
The second term in the right-hand side of Eq.~24! arises

from the nonlinearly generatedm50 magnetic field, and is
of the form ;22VAR21(12q21)VAB̃u,m50r 21BT

21c18 .
The third term is due to them50 plasma rotation, and is o
the form;22v0Ṽu,m50r 21c18 . The first term in the right-
hand side of Eq.~24! accounts for the first harmonic of th
Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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perturbed pressure of the hot ions,dP'h , which enters the
equation in the form of an integral over radius:

1

r 3E0

r

r 2H 1

r0
@bT3~bT•¹!bT#•¹

dP'h

BT
J

1

dr

5
r~ t,r !

BT
e2 iv0t, ~26!

where subscript 1 denotes the first component of the Fou
decomposition. The fishbone mode, excited by the toro
precessional motion of the resonating trapped hot ions
therefore governed by a volume integral weighted by
profiles of the hot ions and the fishbone mode. As long as
fast particle response is linear, the quantityr(t,r ) is a linear
functional ofc1(2`;t).

III. ANALYSIS OF FISHBONE EQUATIONS NEAR
MARGINAL STABILITY

For the weakly nonlinear regime we make an expans
of c1 in the mode amplitude asc15c1

(0)1c1
(1)1..., where

c1
(0) is a linear solution of Eq.~24!. As a first step of our

analysis we separate linear and nonlinear plasma respo
described by Eqs.~24!, ~25!.

A. Linear phase of the fishbone instability

The linear phase of the fishbone evolution is describ
by the linear limit of Eqs.~24!, ~25!:

~ c̈1
(0)!81

VA
2

R2 S 12
1

qD 2

~c1
(0)!85r~ t,r * !e2 iv0t. ~27!

The first harmonic only,n5m51, is involved in the linear
phase of the fishbone instability. Away from the resonan
layers nearq(r * )51, the radial structure of then5m51
radial displacement,4 j15 ic1

(0) , has a top-hat structure, i.e

j1~r ,t !5j1~r 50,t !5j~ t !, r ,r *
~28!

j1~r ,t !50, r .r * .

We use Eq.~28! as boundary conditions,j1(`,t)50, j1

(2`,t)5j(t), for the resonance layer equation~27!. The
solution of Eq.~27!, which corresponds to these bounda
conditions has for a sufficiently small initial perturbation th
following integral form:

c1
(0)5 Èx

dx1E
0

`

dt
sinVt

V
r~ t2t,r * !e2 iv0(t2t), ~29!

wherex[r 2r * and

V[
VA

R S 12
1

qD . ~30!

The fast particle response Eq.~26! is averaged over the entir
region within theq51 magnetic surface. Therefore, Eq
~29! and ~30! express the linear solution of the fishbon
in terms of the on-axis displacementj(t), which determines
entirely the perturbed hot ion pressure that drives the in
bility. In the case of deeply trapped energetic ion
Pih!P'h , Eq. ~26! can be reduced to a model relation b
tweenr(t,r ) andc1

(0)(2`;t) ~see Appendix A for details!:
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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r~ t,r !exp~2 iv0t ![2
V8

p
K

r
*
3

r 3E2`

t Tċ1
(0)~2`;t!

@T2 i ~t2t !#2
dt,

~31!

where T is a characteristic precession period for energe
ions,V85dV/druq51 , and the dimensionless parameterK is
a normalized energetic ion content. The model Eq.~31! for
the energetic ion response leads to the linear dispersion
tion for precessional fishbones:

i 5KE
0

` z exp~2z!

z2vT2 i0
dz. ~32!

Real and imaginary parts of Eq.~32! determine the threshold
value of K for instability and the eigenfrequencyv0 of the
precessional fishbone at the threshold:

K0>0.91, ~33!

v0>1.35/T. ~34!

B. Weakly nonlinear phase of the fishbone instability

Close to marginal stability,K2K0!K0 , we substitute
the linear solution Eq.~29! into the two nonlinear terms in
the right-hand side of Eq.~24! and obtain iteratively the nex
order solution:

~c1
(1)!85E

0

`

dt
sinVt

V
@22V2~c1

(0)!8~c1
(0)c21

(0) !9

22v0~c1
(0)!8ċ08#, ~35!

wherec0 is determined by Eq.~25! with Eq. ~29! substituted
in the right-hand side.

At the instability threshold the fishbone has an oscil
tory solution, c1(2`;t)[a exp(2iv0t), where the mode
frequency is determined by Eq.~34!. Near the instability
threshold, a slow time dependence of the mode amplit
has to be accounted for,a5a(t), uȧ/au!v0 . Following the
procedure developed for weakly nonlinear models in Re
16–17 we representr(t,r * ) in the following form:

r5L1a1L2 da/dt, ~36!

whereL1 andL2 determine the frequency and linear grow
rate as follows:

v05Im L̄11gL Im L̄2'Im L̄1 , ~37!

gL52
ReL̄1

11ReL̄2

. ~38!

Here,L j5V8L̄ j /p ( j 51,2) are identified by first Taylor ex
panding the Fourier transformed Eq.~31! aroundv0 , so it is
cast into the form of Eq.~36!. We introduce a dimensionles
time variable,t̄, and mode amplitude,ā:

t̄[Gt5t~ iv02pL1 /V8!•~11pL2 /V8!21eif, ~39!

ā[aU uL1u2L

2G3~ iv02pL1 /V8!
U1/2

, ~40!

whereG.0, andf are real constants, and
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L5E
0

`

dt3

12exp~2iv0t3!

t3

has a value of the order of ln(v0 /g)@1. In the following text
we drop the bar notations. With the use of Eq.~36! we reduce
Eq. ~35! to the following nonlinear form in the dimensionles
variables~see Appendix B!:

exp~ if!
da

dt
5a2

u iv02pL1 /V8u

iv02pL1 /V8

3E
0

`

dtE
0

`

dt1E
0

t2t

dt2~t1t1!a~ t2t2t1!

3@ ȧ* ~t22t2t1!a~t2!

2a* ~t22t2t1!ȧ~t2!#. ~41!

We see then that Eq.~41! admits a self-similar solution tha
becomes singular during a finite timet0 . For example, we
can look for a particular solution of Eq.~41! of the form:

a5
R

~ t02t !2
exp@ is ln~ t02t !#, ~42!

whereR ands are constants. By substituting Eq.~42! in Eq.
~41! one obtains the following governing equation for th
constants which determine the accelerated~explosive!
growth:

ieif5R2E
0

`

dxE
0

x

dz

zexpS is lnS (11x)(11z)

11x1z D D
~11x!2~11z!2~11x1z!2

3H 21 is

22 is

z1x

11z1x
2

z

11x
2

x

11zJ . ~43!

By Taylor expanding the dispersion relation Eq.~32!, as well
asL j (K,v0), around the threshold values (v0 ,K0), we infer
( iv02pL1 /V8)/u iv02pL1 /V8u52 i as used in Eq.~43!,
and from the definition off in Eq. ~39! we find f>0.363.
Substituting this value forf in Eq. ~43! and computing the
integral in right-hand side numerically, we find that Eq.~43!
is satisfied fors>26.5 ~see Appendix C!.

Note that while the (t02t)22 divergence of solutions o
the Eq.~41! is robust, the particular solution Eq.~42! is not
unique. Depending on initial conditions, the nonlinear s
tem Eq.~41! may asymptote to other divergent solutions o
more general type than Eq.~42! ~see Ref. 18, for example!.

It is seen, however, that no saturation due to the MH
nonlinearity exists for the fishbone in the near-thresh
case. Such a nonlinear saturation similar to what is given
Ref. 3 should dominate the nonlinear MHD evolution in t
case when the two Alfve´n resonance layersr 5r A merge and
form a single broad layer at theq51 surface. Numerical
analysis is required for studying this stage.

IV. NUMERICAL RESULTS

In this section we present numerical simulations relat
to the linear and nonlinear evolution of precessional fishb
oscillations. These results will be shown to confirm the a
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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lytical predictions of an explosive growth for fishbone osc
lations that are close to the instability threshold. Moreov
we have also explored the nonlinear regime of modes tha
well above the marginal stability limit.

For the purpose of these simulations we have cast
reduced MHD equations~9!, ~10!, ~13! and~14! in a dimen-
sionless form by normalizing the magnetic fields with t
vacuum field,BT , all length scales with the minor radius,a,
and all times with the Alfve´n time, tA5R/VA . In order to
control the numerical dissipative effects we have also ad
a resistive (h) as well as a viscous (n) term so that in terms
of the variablesf[tABTu̇/a2 and C[2Ra/a2 the equa-
tions are of the form

]C

]t
52RB•¹f1

hJz

Sh
,

]U

]t
52V•¹U2RB•¹Jz1n¹'

2 U2R2bT3kT•¹ P̃'h ,

~44!

whereU5¹'
2 f, Jz5¹'

2 C, V5¹f3 ẑ, B5 ẑ2¹C3 ẑ/R.
Sh is the magnetic Reynolds number.

The drive of the energetic particles, which are assum
to be confined well inside theq51 magnetic surface, ha
been included in two alternative ways: either as a bound
condition on an annular simulation layer, or as a source t
in the plasma core. In the latter case the dimensionless p
sure perturbation (P̃'h /rVA

2→ P̃'h) of the energetic ions is
taken in the form

P̃'h5Nei zH~r /r h!E
2`

t

dt
Vr1~0,t!T

~T2 i ~t2t !!2
1c.c., ~45!

whereH prescribes the radial drive profile and is normaliz
as*0

aH(r /r h)r dr 5r h
2/2. Here,N is chosen to match the tota

drive defined by Eqs.~26! and ~31!, i.e., N52sKar
*
2 /

pr h
2R. Vr1(0,t) is the m5n51 Fourier coefficient of the

radial velocity evaluated near the magnetic axis. Linear
nonlinear numerical results in cylindrical geometry based
Eqs.~44! and ~45! have been presented in Ref. 19. In a f
cylindrical geometry, the nonlinear MHD effects in the fa
particle region may compete with the nonlinear MHD effe
in the resonant layers, and this makes the interpretation
ficult. In the present paper, we will present numerical res
that are entirely due to the nonlinear effects in the iner
layer region. It is then sufficient to consider a narrow annu
layer, in which no fast particles are present, around thq
51 surface. In this case, the energetic ion drive enters
problem through the boundary condition, instead of the
ergetic term in Eq.~44! that vanishes in the layer. An appro
priate boundary condition that is valid well away from th
inertial layer so thatv2!V2 , can be obtained from the lin
ear part of Eq.~24!, with Eq. ~31! inserted, which gives the
integral relation

Vr18 52
sKr

*
2

pr 3V2 S Vr1

T
2 i2E

2`

t

dt
TVr1

~T2 i ~t2t !!3D . ~46!
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Condition Eq.~46! is valid at the inner boundary where w
have neglected the weak variation of them5n51 profile in
the core plasma and takenVr1(0,t)'Vr1(r ,t) in the right-
hand side of Eq.~46!. For all other harmonics, which ar
localized in the inertial region, we imposef50 at the inner
boundary. The condition at the outer boundary has b
taken asf50 for m51, andf850 for mÞ1.

For simplicity we have chosen a case with no equil
rium current density in the annular region, and all the curr
within the center of the annulus. From Ampere’s law w
infer the current density in the formj z5BT(22s)/m0qR,
where s is the magnetic shear,s[rq8/q, which we have
taken as a constant so thatq5(r /r * )s, with s52. The quali-
tative features of the fishbone model are not sensitive to
choice ofs, which has been confirmed in the numerical sim
lations with s51, 2, and 3, respectively. Also, the reduce
MHD representations~9! and ~10! of the cylindrical toka-
mak, where only the two-dimensional perpendicular mot
is important, does not20 include the drive of the idealn51
MHD kink mode. Finally, to study the fishbone in its sim
plest form we diminish the importance of the cylindrical e
fects by choosing a fairly large radiusr * of theq51 surface,
r * /a50.84. The computational layer is centered aroundr * ,
i.e., ur 2r * u<DL .

Standard numerical techniques have been employe
solve the initial value problem posed by Eqs.~44!–~46! in
cylindrical geometry as in Ref. 21, by Fourier expanding
the poloidal and the toroidal angle with finite differences
the radial direction. The numerical solutions have been fou
to be well converged, and it is noted that the width of t
annular layer needs to be chosen wide enough to separat
nonlinear action in the inertial layer from the linear bounda
drive in Eq.~46!. Performing the computations in an annul
layer, rather than in an entire cylinder, gives numerical b
efits since it shrinks the computational domain, and redu
the highest frequencyV in the problem, which in turn re-
duces the largest value of the global mode profile sinceBr

;VVr /v, whereV@v away from the inertial layer. This is
essential since the achievable amplitude is for a given t
step limited by a numerical instability appearing well aw
from the inertial region due to the explicit treatment of t
nonlinear MHD terms in this integro-differential problem.

We have as an independent consistency check solved
analytically reduced equations~24!, ~25!, and ~31! numeri-
cally with a finite difference scheme, which gives results th
are consistent with the more complete model Eq.~44!. It is,
however, noted that the numerical results of the analytica
reduced equations depend rather sensitively onv0 , here be-
ing a parameter rather than determined by the simula
itself. A 5% mismatch inv0 creates an imbalance betwee
the nonlinear terms in Eqs.~24! and ~25!, so that the MHD
nonlinearities act to stabilize rather than destabilize.

For benchmark purposes, it is useful to generalize
reduced model equations~24! and~25! to arbitrary amplitude
by keeping the nonlinear terms in a closed form, rather th
truncating its nonlinear expansion. With them50 and m
51 harmonics included we note that Eq.~14! can for m
51 be written in the dimensional form
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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ȧ11Ṽ0•¹a15~B01B̃0!•¹u̇1[ i
BT

VA
VNLu̇1 , ~47!

where

VNL[V2
VAB̃u,m50

rBT
. ~48!

Inserting Eq.~47! in Eq. ~14! gives form50 the generaliza-
tion of Eq. ~21! to the closed form result as

a8 05
VA

r

]

]r S 1

VNL

]

]t
~a1a21! D . ~49!

With Eq. ~47! inserted into

V̇u,m505S VrBT¹'
2 u̇2

Br

4pr0
BT¹'

2 a D
m50

, ~50!

we find with use of Eq.~23! the generalized version of th
reduced Eq.~25! in the form

c̈05 i S v22
VNL

2

~11Ṽu,m50 /rv!2D •~c1c218 2c21c18!.

~51!

Equation~24! can be generalized in an analogous way. Eq
tions ~49! and~51! simplify to Eqs.~21! and~25! in the limit
Ṽu,m50 /r;B̃u,m50 /rA4pr0!v. Equations~49!–~51! have
been used to benchmark the code forn50, and a perfect
agreement was obtained for the generation of them50 mag-
netic field. The frequency needed to evaluate Eqs.~50! and
~51! is inferred from the local rotation of the mode structu
in the poloidal cross section. Good agreement for them50
poloidal velocity profile is obtained when the radial profile
the local growth rate, as inferred from the numerical so
tion, is included in the comparison.

A. Linear results

1. Threshold and mode frequency of the fishbone
instability

The numerical results for thelinear growth rateg and
frequencyv of the fishbone model are summarized in Fig
1–2. From Fig. 1, where we have usedT/tA540, DL /a
50.10 andh505n, we infer that the fishbone mode is e
cited in the numerical simulation when the normalized f
particle contentK exceeds the predicted analytical thresho
valueK0>0.91 given in Eq.~33!, implying good agreemen
between numerical and analytical threshold physics for
fast particle drive as well as the Alfve´n continuum damping.

The fishbone frequency varies only weakly with the fa
particle content as shown in Fig. 1, and agrees fairly w
with the analytical prediction Eq.~34! as inferred from the
linear dispersion relation Eq.~32!. The slight frequency off-
set (v/v050.93) is a consequence of the finite radial wid
of the computational domain, since the~weak! variation in
the central plasma of them51 radial displacement profile i
ignored numerically, whereas it is accounted for in the a
lytical treatment. To quantify the width dependence in t
numerical dispersion relation we found for the slowest gro
ing case in Fig. 1, a reduction in frequency tov/v050.86
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when the layer width was halved, and an increase tov/v0

50.98 when the width was doubled. At the same time
ratio g/v was almost unchanged.

The precessional dependence of the mode frequencv
;T21, whereT is the characteristic toroidal precession p
riod of the energetic particles as introduced in Eq.~31!, is
well preserved numerically as shown in Fig. 2.

2. Double layer structure in the linear eigenmode
profile

When the energetic particle pressure,bhotB
2/4p, slightly

exceeds the threshold valuebhot
crit;srv/VA , the top-hat linear

eigenmode profile splits up into a two-step structure in
inertial region around theq51 surface due to the finite fre
quencyv of the mode. Steep gradients appear in the rad
eigenmode profile where the magnetic field line bending
balanced by the inertial terms,v56V. The radial splitting
distance isD;rRv/sVA , whereas the inner widthd of each
layer is a factorg/v smaller. The numerical solution is in
quantitative agreement with the linear analytical eigenmo
profile inferred from Eq.~27! as illustrated in Fig. 3 where
g/v>8%, h505n, T/tA540.

FIG. 1. Linear numerical results forg/v and v/v0 as a function of the
normalized fast particle contentK/K0 , whereg and v denote the growth
rate and frequency, respectively, andK0 andv0 are the analytical threshold
values in Eqs.~33! and ~34!.

FIG. 2. Linear angular frequencyv versus the toroidal precessional timeT
for K/K051.5 in the numerical simulations~circle!, and from the analytical
solution ~34!, v51.35/T ~solid!.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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B. Nonlinear results

1. Modes near the instability threshold

The most striking nonlinear result of the numerical sim
lations is the demonstration of a destabilizing or, depend
on the parameter regime, a stabilizing influence of the MH
nonlinearities in the inertial layer, combined with a rapid a
significant frequency chirping. For modes slightly above
instability threshold, the numerical results confirm the a
lytical prediction in Sec. III B of an accelerated nonline
growth as illustrated in Fig. 4 whereg/v;8%. Shown in
Fig. 4, which is the nonlinear evolution of the layer simu
tion in Fig. 3 whereT/tA540, h505n, and m50 – 8, is
the time evolution of the real and imaginary parts of t
velocity potential, in comparison with the analytical expl
sive growth rate prediction as well as with a linear grow
The mode amplitude exceeds significantly the indicated
ear values,ufu;exp(gLt), in the later part of the simulation
when the nonlinear terms become important. Moreover,
numerical evolution of the amplitude agrees quantitativ
with the analytical explosive prediction equation~42!, where
ufu;1/(t02t)p with the exponent p52, for v0t0/2p

FIG. 3. The real and imaginary part of then5m51 Fourier component of
the linear radial velocity profile for a mode near the instability thresho
g/v>8%. Analytical profiles are shown as thick dashed curves, and
reproduced in the numerical simulation~thin solid curves! for h505n,
T/tA540.

FIG. 4. The m51 amplitude evolution in the numerical solution~solid
black!, and as predicted by the explosive analytical envelope~dashed!, in
contrast to a linear growth~solid gray!, for a mode near the instability
threshold,g/v;8%, with m50 – 8,h505n, T/tA540.
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546.56. The rapid nonlinear acceleration of the fishbo
instability in Fig. 4 gives an order unity change in the grow
rate within a single oscillation as shown in Fig. 5.

The sensitivity of the numerical results to the spect
resolution is examined in Fig. 5, where the number of pol
dal and toroidal Fourier harmonics in this single helic
problem,m/n51, is increased from 2 to 9 withm>0, for the
same parameters as in Fig. 4. One of the most robust fea
of the solution is the acceleratedm51 growth in the nonlin-
ear regime, which is well captured with only two harmoni
included in the computation, namelym50 and m51. At
least the qualitative evolution of the weakly nonlinear ev
lution is therefore well described by only them5n50 and
the m5n51 Fourier harmonics, a fact that was used in t
analytical analysis in Sec. III B. However, the quantitati
onset of the nonlinear increase in the growth rate is dela
to start at a largerm51 amplitude, when several harmonic
are retained, for the case considered in Fig. 5.

The nonlinear effects are expected to become impor
when the kink displacement is of the order of the scale len
of the mode structure, i.e., whenj r;d. Sinced5g/V8 with
V8tA5s/rq we find for the case considered in Fig. 4, whe
gtA'2.731023, the magnetic shears52, andq51 at r /a
50.84, thatd/a;1.131023. From Fig. 4 we infer that the
nonlinear evolution starts when the dimensionlessf;6
31025 at r /a50.74 which corresponds to the displaceme
j r /a;f/rv;2.631023, in qualitative agreement with the
simple estimate.

The mode profiles evolve nonlinearly, not only by a
increase in the amplitude as in the linear regime, but b
change in shape as well. In particular, the steep individ
steps in the two-step structure of the linear eigenmode pro
in Fig. 3 are broadened nonlinearly due to the accelera
growth rate, and the layers start to merge wheng/v ap-
proaches unity. Since numerical issues limit the compl
exploration of the merging phase, we have instead stud
the nonlinear evolution of modes that in the linear regim
start with g/v.1. Results for these linearly fast growin
modes are given in the section below.

,
re

FIG. 5. The nonlinear growth rate evolution of them51 radial velocity
amplitude,g5] lnuVru/]t, for a mode near the instability threshold,g/v
;8%, and its dependence on the numerical spectral resolution:m50 – 8
~thick solid!, m50 – 4 ~short dashed!, m50 – 2 ~long dashed!, m50 – 1
~solid with markers!. Here,T/tA540.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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2. Modes well above the instability threshold

Up to now we have presented results for linearly slow
growing modes that are near the instability threshold. Th
modes aredestabilizedby the MHD nonlinearities. For ex
ample, the ratiog/v increases nonlinearly in Fig. 5 for th
slightly unstable mode fromg/v;8% to 20%~where a nu-
merical instability limited further progress!. The situation is
quite different for modes that are fast growing (g/v@ccrit

;1) in the linear regime; a case which is somewhat sim
to the n51 ideal MHD kink instability characterized by
single layer. Nonlinear MHD effects for the idealn51 kink
were considered in Ref. 3. We might expect to observ
similar behavior in our case even though the drive is of d
ferent origin. In this case the fluid nonlinearities arestabiliz-
ing and their effect is similar to the one discussed in Ref
To see this we consider the nonlinear evolution of a f
growing mode withg/v;2. In this case, the two separate
layers of the linear eigenmode profile in Fig. 3 coalesce,
appear as a single layer, as exemplified in Fig. 6 where
usedT/tA51280,h50, andntA /a251029. If the energetic
particle drive is well above the instability threshold valu
(K2K0)/K0;1, the rapid linear growth of the mode is re
duced in the nonlinear regime as illustrated in Fig. 7, wh
g/v drops from 2 in the linear regime to a value of the ord
of 0.5, and the growth rate is approximately halved. It
worth noting that as in the case of slowly growing modes
suffices to include only them50 andm51 Fourier harmon-
ics to capture the nonlinearly stabilizing effect. However,
onset amplitude for nonlinear behavior is again increa
when more harmonics are included, as shown in Fig. 7.

V. SUMMARY AND DISCUSSION

The role of magnetohydrodynamic nonlinearities in p
cessionalm5n51 fishbone oscillations has been analyz
analytically and numerically. The work is based on the
duced MHD equations in a cylindrical tokamak, including
linear energetic particle drive model. When the energetic p
ticle pressure is close to the instability threshold, the top-
linear eigenmode profile of the ideal MHDm51 mode splits
up into a two-step structure around theq51 flux surface,
due to the finite frequencyv of the mode. The width of the

FIG. 6. The real and imaginary parts ofm5n51 Fourier coefficient for the
linear radial velocity profile wheng/v;2. Here, ntA /a251029, T/tA

51280.
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individual steps is a factorg/v smaller, whereg is the
growth rate of the mode. The numerical solutions of the
duced MHD equations are in quantitative agreement with
analytical linear eigenmode profile. Also, the simulatio
agree with the analytical predictions for the mode frequen
and the growth rate near the instability threshold. Thus,
have a good understanding of the linear properties of
precessional fishbone oscillations.

The key finding in the nonlinear regime, for modes ne
the instability threshold, is that the nonlinear MHD term
produce an explosive growth. The mode structure in the
ertial layer changes during the explosive phase, and is
companied by frequency chirping. We have a good und
standing for the explosive growth of the mode amplitud
whereas a more complete understanding of what determ
the changes in the phase, i.e., the chirping rate, requires
ther work, which is in progress. However, the self-consist
changes in the mode structure during the nonlinear evolu
are already accounted for in the analytical as well as num
cal analysis. An interesting feature of the model is the n
linear generation of am50 poloidal flow, as well as am
50 poloidal magnetic field. Here, it is noted that it is still a
open question whether the drive of thesem50 fields remains
efficient in toroidal tokamak geometry.

We have found that fishbone oscillations that gro
slowly, with respect to the mode frequency, in the line
regime are thus destabilized nonlinearly. A reduced nonlin
equation was derived, and its analytical solution was co
pared with the numerical results. The analytically predic
explosive growth,ufu;1/(t02t)p with the exponentp52, is
well reproduced in the numerical simulations. These non
ear effects become important when the radial plasma
placement is of the order of the radial scale length of
two-step structure. The nonlinear results are quite differ
for fishbone oscillations that are excited well above the s
bility threshold. The growth rate of these linearly fast gro
ing modes decreases nonlinearly, and the MHD nonline
ties are stabilizing in this limit; a similar result was found f

FIG. 7. The functional dependence ofg/v, where 2g5d ln E1 /dt is in-
ferred from them5n51 energyE1 in the layer, on the amplitude of the
m5n51 radial velocity,uVr1u, for a mode well above the instability thresh
old, gL /vL;2, and its convergence with increasing spectral resolutionm
5n50 – 12 ~solid thick!, 0–8 ~thin solid!, 0–4 ~short dashed!, 0–2 ~long
dashed!, 0–1 ~solid with markers!.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions



ea
t

fo

d
d

ie
a
En

w
n
la

th

y
th

sm

n

c
e
e

om-

-

164 Phys. Plasmas, Vol. 9, No. 1, January 2002 Ödblom et al.
the nonlinear saturation of the internal kink mode.3

Thus, we have a good understanding of the linear f
tures of the precessional fishbone oscillations, as well as
nonlinear explosive evolution of the mode amplitude
modes that are excited near the instability threshold.
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APPENDIX A: MODEL FOR LINEAR RESPONSE OF
DEEPLY TRAPPED HOT IONS

In order to describe the motion of the energetic ions,
use the guiding center Lagrangian derived by Littlejoh22

and adopted to a large-aspect-ratio tokamak with circu
flux surfaces in Ref. 23

L5Pzż1Puu̇1Pgġ2H0~Pz ;Pu ;Pg!2V. ~A1!

Here the angle variables for the unperturbed motion are
toroidal anglez, the poloidal angleu, and the gyro angleg.
The actions conjugate to the corresponding angles are

Pz52
eB0

c E
0

r r 8 dr8

q~r 8!
1MR0ui , ~A2!

Pu5
e

2c
B0r 2, ~A3!

Pg5
Mc

e
m, ~A4!

where e is the charge of the ion,M the ion mass,m
5MV'

2 /(2B), ui andV' are components of the ion velocit
along the equilibrium magnetic field and perpendicular to
equilibrium magnetic field.H0 is the Hamiltonian of the un-
perturbed motion,

H05mB0S 12
r

R0
cosu D1

1

2
Mui

2, ~A5!

and

V5
e

c
B0r H ]c

]t
1ui~b0•¹!cJ , ~A6!

is the part due to the interaction between the ion and pla
perturbation associated with them5n51 mode.24

In the simplified case of deeply trapped energetic io
the terms withui in Eqs.~A2!, ~A5!, and~A6! are negligibly
small. Also, for these ionsu→0. The bounce motion of the
trapped ions is then degenerated and the particle motion
be described by the toroidal precession only. In this ess
tially one-dimensional limit the bounce averaged lineariz
kinetic equation for the hot ion distribution functiond f is
simplified to
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d f 1Vz

]

]z
d f 2H iV0e2 iv0t1 i z

]Fh

]Pz
1c.c.J 50, ~A7!

whereFh(m;E;Pz) is the equilibrium distribution function
of the hot ions. Here

Vz[
]H0

]Pz
~A8!

is the toroidal precession frequency, and the Fourier dec
posed interaction part of the Lagrangian,

V[(
l

~Vle
2 ivt1 i z2 i l u1c.c.!, ~A9!

has the following dominant component due to them5n51
mode:

V0e2 ivt'r ċ1

eB0

c
. ~A10!

The solution of the simplified kinetic equation~A7! has the
following form:

d f 5 i
]Fh

]Pz
ei zE

2`

t

eiVz(t2t)r
eB0

c
ċ1dt1c.c., ~A11!

so that the perturbed anisotropic pressure,

dP'h5E mB0•d f •d3V, ~A12!

leads to the driving term Eq.~26! in the form

re2 iv0t'
iVA

2

pr 3B0R0
2E d3x d3Vmd f e2 i z. ~A13!

APPENDIX B: ANALYSIS OF THE WEAKLY
NONLINEAR SOLUTION EQUATION „35…

With the use of Eq.~29!, the nonlinear terms in the right
hand side of Eq.~35! take the form

c1
(0)c21

(0)5 Èx

dx2 Èx

dx3E
0

`

dt2E
0

`

dt3

3
sinV2t2

V2

sinV3t3

V3
r~ t2t2t2!

3r* ~ t2t2t3!eiv0(t22t3), ~B1!

and

ċ0~x;t2t!5 i E
0

t2t

dt4E
0

`

dt2E
0

`

dt3@v0
22V2#

3r~t42t2!r* ~t42t3!eiv0(t22t3)

3F Èx

dx̃
sinṼt2

Ṽ

sinVt3

V

2 Èx

dx̃
sinṼt3

Ṽ

sinVt2

V G . ~B2!
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The solution of Eq.~35! due to the nonlinear driving force in
the RHS is then represented in the form

c1~1`!2c1~2`!52c1~2`!5A1B, ~B3!

where the nonlinear terms,A andB, are obtained from Eqs
~B1! and ~B2! as follows:
-

io

in
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Ṽ

sinVt3

V
2S v0

21
]2

]t2
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sinṼt3
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a

he
We make a substitutiont2↔t3 wherever necessary and in
tegrate overt2 . The relation

d~ t0 ,t !5
1

pE0

`

dV cosV~ t02t ! ~B6!

is used to simplify the integration. The resulting express
can be integrated overx by introducingV85dV/dx, so that
dx5dV/V8 to give

A'2
pe2 iv0t

2v0
2V8

E
0

`

dtE
0

`

dt1E
0

`

dt3

t1t1
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r~ t2t2t1!
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~B8!

The resulting nonlinear equation then takes the follow
form:

2c1~2`!5
p

V8
e2 iv0tE

0

`

dtr~ t2t!eiv0t

1
p

2v0
2V8

e2 iv0tE
0
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dtE
0
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dt1E
0

t2t

dt4

3E
0

`

dt3

t1t1

t3
@12e2iv0t3#r~ t2t2t1!

3@ ṙ* ~t42t2t1!r~t42t3!

2r* ~t42t2t1!ṙ~t42t3!#. ~B9!
n

g

Using the relationsc1(2`)[a exp(2iv0t) and r5L1a
1L2 da/dt and making the substitutions Eqs.~39!, ~40! we
obtain the final nonlinear equation~41!.

APPENDIX C: NUMERICAL SOLUTION OF EQ. „43…

The governing equation~43! for the real constantsR and
s in Eq. ~42! is in the form

2 ieif5R2I ~s!, ~C1!

wheref>0.363, and

I ~s![2E
0

`

dxE
0

x

dz

zexpS is lnS (11x)(11z)

11x1z D D
~11x!2~11z!2~11x1z!2

3 H 21 is

22 is

z1x

11z1x
2

z

11x
2

x

11zJ
5E

0

`S 2
21 is

22 is
f ~x!1g~x! D

3expS is lnS (11x)2

112x D D dx, ~C2!

where f (x) andg(x) are polynomial ratios combined with
logarithmic function. The argumentx of the functionI (s)
5uI (s)uexp(ix(s)) determiness implicitly through the rela-
tion

x~s!5f2
p

2
12pk, k50,61,62, . . . , ~C3!

andR5uI (s)u21/2. From Eq.~C2! we infer thatx(s) is an
odd function ins. The argument ofI (s) has been calculated
numerically25 based on the single integral, as well as t
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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double integral in Eq.~C2!, and the results agree. The fun
tional dependence ofx on s is illustrated in Fig. 8. Forf
>0.363 we find a solution of Eq.~C3! for s526.5, as in-
dicated with the arrow in Fig. 8.
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