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The ideal magnetohydrodynami®IHD) stability of the tokamak edge is analyzed, with particular
emphasis on radially localized instabilities; it is proposed that these are responsible for edge
pressure gradient limits and edge localized mod&dsMS). Data and stability calculations from
DII-D [to appear inProceedings of the 16th International Conference on Fusion Energy
Yokohama(International Atomic Energy Agency, Vienna, 199Baper No. IAEA-F1-CN-69/EX8/

1] tokamak equilibria indicate that two types of instability are important: the ballooning mode
(driven by pressure gradierand the peeling modg@riven by current densijy The characteristics

of these instabilities, and their coupling, are described based on a circular cross-section, large aspect
ratio model of the tokamak equilibrium. In addition, preliminary results are presented from an edge
MHD stability code which is being developed to analyze general geometry tokamak equilibria; an
interpretation of the density threshold to access the high-confinement<{idemiede, observed on
COMPASS-D[Plasma Phys. Controlled Fusi@8, 1091 (1996] is provided by these results.
Experiments on DIII-D and the stability calculations indicate how to control ELMs by plasma
shaping. ©1999 American Institute of Physids$1070-664X99)94405-]

I. INTRODUCTION of toroidal mode numbers of precursors to large Eledge-
éocalized modgevents suggest that instabilities with moder-

a large influence on tokamak performance as a whole, and ﬁtt()al toflargc:] toroidal mode numb%rs, ulpnt|69 are r_ers]pc;]n—
is therefore important to develop our understanding of the'Pl€ for these events on DIlI-B.Calculations with the

o 3 . .
features which characterize this region. For example, a pronHD stability code GaTo,” for low n are consistent with the
ising mode of operation is the high-confinement-maHe higher n modes being more unstable. These facts motivate

mods, which involves an edge transport barrier, with anthis study of MHI? instabilities with such gharacteristi.cs. In
associated steep edge pressure gradient. The temperatteC: /Il we describe the results of numerical calculations of
rises steeply within the transport barrier, up to a so-calledligh n, ideal MHD stability at the edge of a model, large
“pedestal” value, and the overall confinement is sensitive to@SPect ratio, circular cross-section tokamak. We have devel-
this value according to some models of the core heafPed a code specifically for analyzing edge localized insta-
transport Clearly a steep edge pressure gradient allows &ilities with moderate to high in this equilibrium, which
higher temperature pedestal, and improved confinemengrovides a simplified model of MHD instabilities, but never-
however, one is then more vulnerable to pressure-gradientheless retains the essential features required to describe both
driven magnetohydrodynami@MHD) instabilities. The re- ballooning (pressure-driven and peeling (current-driven

sult is that an optimum in tokamak performance is likely tomodes(indeed it has similar characteristics to the familiar
be achieved by a careful balance between good confinemeat- @ modef). In Sec. IV we describe a new code which
properties and MHD stability. In this paper we discuss someperforms stability calculations for arbitrary limiter tokamak
of the issues involved in this optimization. geometry. The so-calledeLITE” code (Edge Localized In-

In the following section we present analyses of DIR-D stabilities in Tokamak Experimentshows the same general
discharges, which suggest that both the pressure gradient anHaracteristics for the coupled peeling—ballooning modes as
current density play a role in determining the MHD stability the s— « code, but allows a more quantitative comparison
of the plasma edge. Indeed, the current density is likely to beith data. On COMPASS-Dit is found that one cannot
large in the edge of low collisionality H-mode discharges,access the H-mode at low density: an interpretation of this
because of the large bootstrap current density associated witBsult is provided by theLITE stability calculations in Sec.
the steep pressure gradient there. In addition, measurements We summarize in Sec. VI, where we also discuss future
work towards a complete model of edge MHD phenomena in

The edge region of a tokamak plasma is thought to hav

*Paper K611.1 Bull. Am. Phys. Sod3, 1808(1998. tokamaks, and describe experiments performed on DIlI-D
"Invited speaker. which show how plasma shaping can provide ELM control.
1070-664X/99/6(5)/1925/10/$15.00 1925 © 1999 American Institute of Physics
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FIG. 1. The profile of the pressure gradient parametei the edge of two
DIII-D discharges: one confined to the first-stable regi@nand one which We have argued above that an edge current density, ex-

has access to segond stability. the that the first-stable case has small pected to arise from the bootstrap current, is necessary to
ELMs, as shown in th®, trace, with a small effect on the electron tem- . .
perature(c), while the second-stable case has large ELMs and there is §Xplam the Iarge pressure gradlents measured at the H-mode
large fluctuation in edge temperature at each E(Y 4 is the poloidal ~ €dge of some DIII-D discharges; what are the effects of this
magnetic flux, normalized to its edge value. current density and the large edge pressure gradient on the
finite n modes? It is well known that at finite there is an
additional drive for MHD modes~Jj/n where J; is the
Il. ELM BEHAVIOR ON DIII-D: INTERPRETATION rad!al 'derlvat.lve Qf the'current densﬂy parallel to the mag-
netic field: this drives kink modes. This term can usually be
The cyclic bursts of edge MHD activity, known as neglected at large, but to assess its effect at low we
ELMs (edge-localized-modgscan be broadly categorized as employ theGATO cod€ to investigate the stability of the
large, infrequent “Type I” ELMs or smaller, more frequent, =1, 2, and 3 ideal MHD modes. Thus, we consider an equi-
“Type lII” ELMs. ®" The Type | ELMs are a concern for the librium typical of a DIII-D very high confinement “VH-
next generation of large tokamaks because of the large tramode” discharge and study the stability to lowmodes as
sient heat loads they can deliver to the divertor target plateshe edge current densitygs, normalized to the plasma cur-
while the smaller Type Ill ELMs are desirable, as they pro-rent divided by the cross-sectional aréay, is varied. The
vide a means to control the plasma density and impurityesult is shown in Fig. 2, where we see that increasing the
content, although they tend to lead to a lower edge temperadge current density destabilizes the highemodes, with
ture. Consequently, it is desirable to control the type ofn=3 being more unstable thar=2 (n=1 is stable for all
ELMs, rather than avoid them. In this section we describeedge current densities considered hengcreasing the edge
characteristics associated with both ELM types on DIII-Dpressure gradient further destabilizes the modes. We learn
and provide a qualitative interpretation of the results, whichtwo things from this study: both pressure gradiantd edge
points to a means for their control. current density are important drive mechanisms for these in-
The large Type | ELMs appear to be associated with astabilities, and the highem modes tend to be less stable;
steep edge pressure gradient, larger than the first stabilitpdeed, toroidal mode numbers of ELM precursors umto
boundary predicted by ideah=o ballooning theonf® =9, with a strong ballooning character, have been measured
which has been shown to be applicable at the plasma edgen DIII-D.2 From our argument above one might expect
as well as in the cor2An explanation for the high pressure highern current-driven modes to bmore stable as the cur-
gradient is that the plasma has access to the second stabilitgnt gradient drive is small for these. However, if the current
region as a result of a finite edge current den¥ltydeed, if ~ density at the plasma edge is finite, then, as it must be zero in
one assumes that the edge current density is dominated ltye vacuum, the current density gradient is large and local-
the bootstrap current, then this is found to be sufficient tdzed at the plasma surface: the result is that the dijve
provide second stability access in the discharges where largemains significant, even at large The resulting instabili-
Type | ELMs are observetl.This is illustrated in Fig. 1, ties are called “peeling” mode$!*?and are localized at
comparing two discharges: one is restricted to the low presthe plasma edge; we postulate that these are at least partially
sure gradient close to the limit predicted by ballooning  responsible for triggering ELMs, and study their properties
theory, while the second has a high pressure gradient arfdrther in this paper.
access to second stability. Note the large ELMs in the In summary, stability analyses and data from DIII-D dis-
second-stable case, and their significant effect on the mea&harges indicate that moderate-to-higinstabilities, driven
sured edge electron temperature, while the small ELMs ashy a combination of pressure and current density, are likely
sociated with the first-stable discharge have relatively littleto control ELM phenomena and pressure gradient limits at
effect on the measured electron temperature. An interpretdhe edge of a tokamak. In the following section we describe
tion of this will be provided in the next section. the essential features of this class of instability using a code
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developed to analyze a large aspect ratio, circular crosexperienced in DIII-D when there is access to second stabil-

section model tokamak equilibrium. ity. The edge ballooning theory predicts that the radial width
of the ballooning mode s
w2\ 13 ¢
Ill. PEELING-BALLOONING MODE PROPERTIES Artxadm(%) L D
n

The conventional ballooning mode formaliStis not
valid for analyzing the stability of the tokamak edge region
because there are inconsistencies in the higher order theo
developed as an expansionnin 2. Thus, to leading order
(the n— limit), the conventional ballooning mode theory
derives the one-dimensiongl-D) “ballooning” equation,
which is an eigenmode equation with a “local” eigenvalue
w?(,k) depending on the radial locatio; and so-called
ballooning phase anglk. Performing a Taylor expansion
about the flux surfacey= i, where ? is a minimum, one
can develop the higher order theory: @n~'?) one finds
that k must be chosen so that® is minimized; atO(n™ %),
one learns that the ballooning mode is centeredjeny,

wherer is the minor radiusg is the dimensionless measure
of the pressure gradient from highballooning theory(de-
"Nhed latey anday=da/dq. The size ofw?/da depends on
whether or not there is second stability access; in particular,
when there is no second stability access so #éfats essen-
tially a linear function ofa, then dw?/ da is of order unity

and the mode width is simply-r/n?3. However, when one

is close to second stability access, so that we are close to a
minimum of »? with respect toa, then Eq.(1) predicts a
much more radially extended mode structiidote, close to
second stability access there are two marginally stable values
of a (i.e., »>=0) close to each other, and thae?/da will

. 12 ' ) be small] It is natural to assume that a more radially ex-
spanning~n"*flux surfaces with a Gaussian envelope and’tended instability would lead to a larger heat loss from the

mSSt 'g“po”a”“y’ _t?e square of_the true mode frwl.J.ermf)la:;ma so that this provides a possible explanation for the
27=w(sho) +O(n 7). The resultis that the whole stability larger ELMs observed on DIII-D when there is access to

and mode structure for the most unstable core balloon'_n%econd stability. We shall return to this when we describe

modes can be deduced from the leading order balloonmﬁumerical calculations later.

equation. The situation at the edge is different for two rea- We now turn to the current-driven peeling mode, which
sons. First, it is usually the case that although the PrESSULE yasonant in the vacuum, with its corresponding ,rational
gradient Is often Iargest. at the edgg of an H-mode diSCharg%urface close to the plasma; surfa@ewhich case the stabi-

I dogs not usyally ac_meve a maximum there; when we ar‘ﬁzing effect associated with magnetic perturbations in the
restricted to first stability this suggests that, althoughis vacuum can be neglectetf The radially localized nature of
lowest there, it too will not be a stationary point in general.the peeling mode allows one to develop an expansion about
Second, the ballooning mode radial eigenfunction cannot bﬁwe plasma surface and derive an accurate expression for a
a Gaussian centered on the plasma edge, as it would th

. . §Hal function. This leads to a necessary criterion for stability,
penetrate the vacuum: the ballooning symmengquiring

. ._@analogous to the Mercier criterion:
that all rational surfaces spanned by the mode are essentlal?y 9

equivalent would then be violated. To take account of these 2 JB
special features associated with the plasma edge, we have V1—4Dy>1+ Py— fﬁ RZB3dI' 2
developed a modified ballooning thedtirhis assumes that q P

the radial variation of equilibrium parameters is essentiallywhereD,, is the Mercier coefficientd, <1/4 corresponds
linear at the edge and that the ballooning mode cannot perte the Mercier criterion for stabilifi), dl is a poloidal arc
etrate the vacuunii.e., the perturbed plasma displacementlength elementRis the major radiusB is the magnetic field,
associated with the instability is assumed to be zero at thB,, is the poloidal magnetic field; is the safety factor and a
plasma boundajy This permits an application of the stan- prime denotes a differential with respect to the poloidal flux,
dard ballooning transformation, followed by an expansion inys. We see that large negatii,, (i.e., a “deep” magnetic
powers ofn~ %3, The leading order result yields the standardwell) is stabilizing: recall thatD,,| increases with increasing
one-dimensiona(l-D) ballooning equation, which is identi- pressure gradient, so that pressure is stabilizing for peeling
cal to that obtained from the conventional ballooning modemodes, while a finite edge current density is destabilizing;
formalism, with the same choice &fforced by theD(n~ %) this is the opposite trend to the ballooning mode.
equation. TheO(n~%?) equation predicts an Airy function The above analyses are simplifications of the real situa-
envelope for the radial mode structure, spanning® ratio-  tion. For example, we assumed that the ballooning mode
nal surfaces. It is in this higher order theory that the modifiedamplitude is zero at the plasma surface, whereas a more gen-
ballooning theory differs from the conventional ballooning eral treatment would allow for the possibility that the insta-
mode theory, and, in particular, one finds that the square dbility could couple to modes associated with the vacuum
the true mode frequency)?, differs from the local eigen- rational surfaces and so tap the free energy associated with
value, w?, by O(n=?3). the peeling mode. Alternatively, the peeling mode could
In summary, we can justify the use of conventional bal-couple to sideband harmonics resonant in the plasma and
looning mode theory to study the plasma edge, described fdrave a ballooning nature. To investigate these effects re-
DIII-D in the previous section. However, we can now use thequires a treatment of the full 2-D stability problem: we can
additional knowledge about the radial structure of ballooningno longer make use of ballooning symmetry for the balloon-
modes to propose an explanation for why large ELMs aréng modes, nor can we make use of the radial localization for
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the peeling modes. In the remainder of this paper we address

a 2-D calculation of coupled peeling—ballooning mode sta- 2l STABLE

blllty ~‘_._~§—'¢~§___§__
K ——
oy
/

The essential features of the coupled peeling—ballooning
modes can be illustrated by considering a large aspect ratio, 1.5 A
circular cross-section model of the tokamak, analogous to the
“s—a”’ model. We merely describe the essentials of the $
system here, and refer the interested reader to Ref. 9. In the .
limit of large n, stability is determined from a 2-D partial P e
differential eigenvalue equation for the radial component of 0.5 |

. - o -——-- li
the perturbed displacemerX. We Fourier expand thisin | E:ﬁ;’;ﬂ,ng
poloidal angleg: 0 —2-D result
0 0.5 1 15 2.
X=e"mof> y (x)em? ) o
m

FIG. 3. A modifieds— « diagram for coupled peeling—ballooning modes.

; ; _ _ _ The dashed curve is the pure peeling mode stability boundary, the dotted
where the radial coordinate= Mo~—Nq (X 0 labels the po curve is the pure ballooning mode stability boundary and the full curve is

sition of the Clpsest vacuum r_ational surface to the plasmge poundary predicted by the 2-D stability code. The parameters are
surface andm is a shifted poloidal mode number. Neglect- =20, d,,= —0.2, A=0.01,q=4.

ing terms ofO(n~!) we derive a set of coupled ordinary

differential equations to be solved for thig,(x):

Ro? dp
¥~ "Moo g

o
. a=ay— —(x-A), ®)

d<u du
S2(X—m)2—— + 282(x—m) d—);n—(x— m)2u,

dx? where subscripa indicates the edge value, ang represents
the strength of the radial variation.
— a[s The system of equation@)—(6) can describe both peel-

ing and ballooning modes. The peeling mode criterion is

1/d

(X_m)2+ E &[uerl_umfl]

d obtained by performing a local expansion around a single

+5(X—m)d—X[Um+1—Um71]+S(X—m) vacuum rational surface, assumed to be very close to the
plasma surfacei.e., A<1); retaining sideband harmonics,
1 the result is
><[um-#l_um—l]_E[um+l+um—l]_dMum]
2(2—5s)
o’ 5 1 a> mpr (7)

_7 [(X_m) +1] um_z[um+2_um—2] M

for stability. Note that we have expressed the edge current
density in terms of the magnetic shea=2(1—J;/(J))].
~(X=M)[Um+2~Um-2]{ =0. 4 The ballooning mode criterion can be obtained by adopting

the ballooning approximationuy,(x)=e'(Mo~™ky(x—m)
Note that we have introduced an artificial magnetic wellwhich yields the modified— o equation:
through the parametedy, (Dy=ad,,/s?). The boundary
conditions on this set of coupled equations aggx) — 0 in d ,, .dy B
the limit x— o, corresponding to the plasma interior, while E, [1+h (”)]ﬁ +al'y=0, (8)

matching to the magnetic perturbations in the vacuum leads

to a set of boundary conditions to be applied at the plasmyhde;e_77 IS Tﬁ 'ball:)gnln_?hangleh(n)lzs(n—dI.(t).— afsm:yh
surface k= A, where 0<A<1): andI’ =cosy+hsiny+dy . The eigenvalue condition for this

equation defines marginal stability contours in the «
plane, withk to be chosen to maximize the unstable region.
The independent variableis the Fourier transform af.

It is convenient that the stability of both the peeling and
ballooning modes can be represented in terms of the mag-
=02, (5) netic shears, and the normalized pressure gradientthe

stability properties of both modes can therefore be summa-

rized on ans— « diagram. The result for a relatively weak
Here Q2 is an eigenvalue such th&12<0 corresponds to magnetic well,dy,=—0.2, is shown in Fig. 3. Also shown
instability (we are interested in marginal stability, for which on this plot is the result of the 2-D calculation for=20 and
02=0). Finally, we represent equilibrium radial profiles a low value ofA=0.01. We see that the 2-D stability curve
through a variation of the pressure gradient parameter,  follows the peeling mode branch at lowand at highera

duy,
(A=m)) =s(A—m) -~ —[2=(A—m)]uy

o
+ E(A_m)[um+l_um—l]
Xx=A
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1.0 6, .
(a) NSTABLE
5
4 05
4
0.0 »3 STABLE
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qedge 2+ - _
FIG. 4. The minimum value ofA considering a range afi, 10<n=<20, 1 UNSTABLE TUe- ol -
plotted as a function of edge safety factpr T~

1 2 3 4 5 6 7

follows the ballooning mode branch. Note that the 2-D result (b)
is more stable than the=c0 ballooning mode result would
predict: this has been shown to be a consequence of the finite
n stabilizing correctior?. For largerA, the stabilizing effect
of the vacuum perturbations on the peeling mode becomes
stronger, so that foA=0.9 stability is essentially determined
solely by the ballooning mode. Indeed, in the limita—0
the marginal stability point is ea&=2(1—A). This sensitiv-
ity to A raises the question of how to choose this parameter.
To study this we suppose that a range of toroidal mode num-
bers, 16sn=20, could, in principle, be unstable and calcu-
late the minimumA as a function ofj; this is shown in Fig.  FIG. 5. () The effect of a deeper magnetic wedl\(=—0.6) on the pure
4. Note that there is not much variationqa_s varied, and the pegling and balloqning modes suggests there is access to thg second stgbility
S L . region. However, irlb) we show the results of the 2-D calculation, where it
a\{erage value ia=0.1; '”Creas'”g the range to $M<40 can be seen that the coupling is still strong éRf=— 0.6 (dashed curve
this average falls to 0.05, suggesting that the results for smaghd no access to second stability exists; increasigg: —0.64 (dotted
A are likely to be applicable. curve reduces the unstable region, which eventually necks off to provide
Let us return to Fig. 3. We notice that in the absence ofecond stab_ility access fdg,= —0.645(a full curve. The other parameters
the peeling mode, there is access to second stability at suffir® 2s for Fig 3, but=0.1.
ciently low magnetic shear. However, this requires a large
edge current density, so that the peeling mode is unstable.
The result is that it is not possible to gain access to thevith the Airy function prediction of the edge ballooning
second stability region for these parameters. Deepening th@ode theory.
magnetic well(i.e., makingd,, more negativeimproves the
second stability access by increasing the gradient of the peel-
ing mode stability line[see Eq.(7)], and pushing the bal- JV. EDGE MHD STABILITY IN GENERAL TOKAMAK
looning mode boundary up into the top right hand corner ofgeoMETRY
the stability diagrant>*®the case fod, = — 0.6 is shown in
Fig. 5@), where it can be seen that the pure peeling and The results of thes— a code are useful to demonstrate
ballooning mode unstable regions are now separated, artle essential features of coupled peeling—ballooning modes,
there exists a window of access to the second-stable regiobut to make more meaningful comparisons with experimen-
Figure 8b) shows the situation for the 2-D coupled modetal data it is necessary to develop a more realistic model.
calculation: we see that faty,= —0.6 the peeling and bal- This work is under way, and here we present some prelimi-
looning modes remain coupled and there is no access to segary results from a new ideal edge MHD stability code,
ond stability even though the pure ballooning and peelingcalled ELITE, which has an improved treatment of the toka-
mode boundaries are well-separated. To regain access to sesak geometry.
ond stability, it is necessary to further deepen the magnetic The ELITE code has the same basic structure as the
well, and fordy,= —0.645 we see that the peeling and bal-s—«a code, employing a largen ordering to reduce the
looning modes do de-couple to provide a stable windowsystem to a single 2-D eigenmode equation for the radial
through to second stability. component of the plasma displacemext, This is Fourier
In Fig. 6 we show the different edge ballooning decomposed in a straight-field line poloidal anglg, and
mode structures for two casedy; = —0.2 when there is no toroidal angleg:
second stability access, artl,=—0.645 where there is

STABLE

second stability access. Note that when there is second sta- o 11! fdl
bility access the mode spans many more rational surfaces, in XZ%: Up(x)e"'"mee"?, o= aJ o 9
p

line with the result of the edge ballooning mode analytic
calculation given in Eq(l). Indeed, we see that in both casesto derive a set of coupled ordinary differential equations of
the envelope of the amplitude of Fourier harmonics agreethe form
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FIG. 6. Radial mode structures f@a) a first-stable ballooning mode case gl a second-stable case. The dashed curves correspond to the Airy function
envelopes predicted by the modified edge ballooning theory. Parameters-afe q=4.

s d2Upy , dUpy , late SW.°", for a given equilibrium, which is a version of
N —+ AP — + ATy, =0 (10 ‘ ifi
3 dx2 2 dx 1 m’ =M a code due to Pletzéf,modified to allow a more accurate

treatment of highn modes. A linear radial variation ok
where the matrix elemeng{“’m' are functions of the radial is assumed, which, for this general geometry case, is defined
coordinatex, the poloidal mode numbem and flux surface as
averages of equilibrium quantitiesee the Appendjx a
summation over repeated indices is implied. These equations PAYA
are to be solved subject to the boundary conditiapéx) ag=— W
—0 asx—», while at the plasma—vacuum interface we
match to the vacuum perturbations to derive the boundary
conditions:

1/2

V , ay
poP',  a@=ap——(x-4),

2’772RO

(12

whereV is the plasma volumeR, is the major radius and a
m’ —n m'a’ prime denotes a derivative with respect to the poloidal flux,
mm’ __: y+mm’ q_ a m,m’
(Tg im'Tg T Ty
ng

(m—HOI)[

For this first version of the code the equilibrium is speci-

g’'(m"—nq) mm’ dup,

fied in terms of the properties of the last closed flux surface,
rm,m’ rm.m’ _ and an expansion about this flux surface is employed to cal-
+1'T5" +fp'Ti3" (Upy A p ploy
q dx culate the equilibrium properties a small distance into the
Jac 5 plasma'®!® As a result the code can only address edge-
—an,m,um,+nQ um,=0. (11

localized modes, and this equilibrium expansion fails for the
) more extended of the ballooning modes. From @gwe see
The matrix element§{™™ are also defined in the Appendix, that we can restrict the radial extent of the ballooning mode
and 5W‘;f‘fn represents the stabilizing contribution of the by choosingay large; this choice also has the effect of in-
energy associated with magnetic perturbations in thereasing the finiten correction to the ballooning mode

vacuum. A separate code has been developed to calcstability.

; 5 }
 STABLE 'STABLE |
; () [ j
4 T T e 4 E T N -
S I SR Y-
2 E_ S 2 i .,
1 1
0 : . ot :
0 2 4 6 0 2 4 6
o o

FIG. 7. (a) The pure peelingdashed and pure ballooningdotted mode marginal stability boundaries compared with k€10 stability results frongLiTe
for A=0.1 (full) and A=0.05 (dashed/dotted This equilibrium has aspect ratio 3.3, elongation 1.6 and triangularity 0.&)Ilwe compare the stability

diagrams fom= 10 (dashed/dottedandn= 20 (full) for A=0.05; we see the higher mode is more unstable, particularly at largethis is expected from
the analytic edge ballooning mode thegRef. 9.
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To benchmark the code, we compare the resuls_ofe Z=r ksin,
with the infinite n ballooning calculation and the peeling
mode criterionfrom Eq.(2)] in Fig. 7. Here we have speci-
fied the flux surface shape to be of the form

whereZ is the vertical height above the mid-planeis the
minor radius on the mid-pland), is the geometrical poloidal
angle, 6 is the triangularity and« is the elongation. The
R=R,+rcog #+[sin™*5]sind}, variation of the poloidal field is then given by

(13
|

RB, kY sir?( 8+ xsin) (1 + xcosh)?+ k’cos ]*2 "
RoBpo  cogxsing) + Rjcosd+[ s, — ssco08+ (1+s,)xcosd]singsin( 6+ xsing)

whereRy is the radial derivative of the Shafranov shift and ELITE code to test this model for a more realistic geometry,
typical of COMPASS-D high field2.1 T) discharges. The
stability diagram is shown in Fig. 8 for COMPASS-D pa-
-2 (15) rameters, choosing a low valde=0.05. There are no mea-
J1-—¢s2 dr surements of the current density on COMPASS-D, so an
estimate of the magnetic shear is problematic. However, if
The plot in Fig. Ta) is for a moderately shaped equilibrium we assume that all the current at the plasma edge is provided
with q,= 3, aspect raticA= 3.3, elongatiork=1.6, and tri- by the bootstrap current, then the shear is linearly related to
angularity §=0.2. If a relatively large value oA=0.1 is the pressure gradient paramegerThis relation is shown by
chosen, this increases the stabilizing effect of the magnetithe dotted curve for a low collisionality discharge,(
perturbations in the vacuum on the peeling mode, as can be 0.67), which would not be expected to achieve a H-mode,
seen from the 2-D results at low in the figure. IfA is  and by the dashed curve for a higher collisionality discharge
reduced, then the stabilizing effect of the vacuum is reduced,v, =1.7), in which one would expect to achieve a H-mode
as it was in the case for the— a curves; Figure {®) also  with sufficient heating power. We have defined the collision-
shows theeLITE result for A=0.05 for comparison. Asx  ality:
increases, the result froeLITE tracks the peeling mode cri-
terion until « approaches the ballooning boundary. It then B _,N19R:0
tracks the ballooning mode boundary, but is significantly v, =1.2¢10 232
more stable than tha=oc ballooning analysis would sug- €
gest; this is a consequence of the relatively low value chosewheren,q is the density measured in fom™3, T, is the
for n=10 and the large value afq. Figure 7b), which  temperature in keV and is the inverse aspect ratio. The
compares the result fan=10 with that forn=20 (for A experimental results, obtained by optical spectroscopy with a
=0.05), supports this; note that the higlmedestabilizes the helium beam, the HELIOS systefh,are shown in Fig. 9:
ballooning mode, placing the marginal stability boundaryl-modes are indicated by the squares; H-modes with no
closer to the pure ballooning stability boundary, but has relaELM observed during data sampling are indicated by the
tively little effect on the peeling modé&he opposite to the triangles, and H-mode with an ELM occurring during data
effect of varyingA). This is expected from the analytic sampling, are shown by the diamonds. We see that the
theory? H-mode is indeed limited to high collisionality, and further-
more there are more ELMs as one approaches low collision-
V. IMPLICATIONS FOR H-MODE ACCESS IN SMALL ality. In terms Qf th.e stablllty.d|agram _shown in F|g..8, this
TOKAMAKS has the following interpretation. At high collisionality the
pressure gradient can rise without any significant increase in
Previously we have postulated that instability to thethe bootstrap currertblong the dashed lingso that the peel-
peeling mode in H-mode discharges prevents small tokamakag mode remains stable. However, at lower collisionality
entering the H-mode at low density?° For example, in low  (along the dotted linethe peeling mode is destabilized when
density, electron cyclotron resonance heated COMPASS-[& exceeds some critical value: as the H-mode is usually as-
discharges the H-mode cannot be achieved, even though tlseciated with highera values, this may explain why the
input power is many times higher than that which is pre-H-mode cannot be accessed in low density COMPASS-D
dicted from the International Thermonuclear Experimentaldischarges. In larger, hotter tokamaks the current would be
Reactor(ITER)?* H-mode power threshold scaling laffs. expected to diffuse more slowly than the pressure, so that
The argument was based upon a large aspect ratio, circulémansiently the edge could remain stable, even at higind
flux surface model of the tokamak, in which the bootstraplow collisionality. Of course, the current would diffuse even-
current destabilizes the peeling mode when the pressure grasally, resulting in the peeling mode being destabilized and a
dient is large, and the collisionality is low. We can use theburst of energy from the plasma edge; one might therefore

e o dx L dé
SINX= o, SK—;E, Ss=

(16)
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FIG. 8. eLiTE marginal stability contour for a COMPASS-D 2.1 T discharge
(full curve). The dashed and dotted curves show how the shear is predicted 0.0
to vary as a function ok, assuming that the edge current density is domi- 0 1 2 3 v*e
nated by bootstrap current: the dashed curve is for high collisionality
(v« =1.7), while the dotted curve is for low collisionality{ =0.67). FIG. 9. The distribution of L- and H-mode discharges from measurements

in COMPASS-D. The experimental measurement af*’=-2u,
X (Ryq?/B?)dp/dr=3a for this class of equilibria, where quantities are

t . in ELM activity in the | llisi lit evaluated at the outboard mid-plane. Squares indicate the L-mode and dia-
EXpect an Increase In activity In the low collisionality monds (triangles indicate the H-mode withwithout) an ELM occurring

discharges of larger tokamaks, rather than an inability tQuring the data sampling.
achieve a H-mode.

VI. DISCUSSION We have argued for the need to understand ELM phe-
nomena in order to optimize the plasma performance, taking
Data on ELMs from DIII-D, supported by stability cal- account of the need in a large tokamak to avoid large ELMs.
culations from the lown MHD stability codeGATO, suggest  Data from DIII-D suggests that large ELMs can be avoided
that a combination of both pressure and current density argy controlling the access to the second stability regfion
responsible for the MHD precursors which are typically ob-pallooning modes and a possible explanation for this has
served prior to an ELM. However, the higher toroidal modebeen proposed in terms of the greater radial extent predicted
numbers observed, up to~9, cannot be analyzed using for ballooning modes when one is close to second-stable
GATO, and this has led to the development of a new edgeiccess. Indeed, experiments have already been performed on
MHD code, ELITE, for the analysis of moderate to high  DIII-D where access to second stability, and therefore the
edge-localized MHD instabilities. The code is designed toELM size, can be controlled by adjusting the plasma bound-
analyze peeling and ballooning modes, and their interactiorary shapé&* Thus, plasmas with both high and low “square-
The H-mode is usually generated in a separatrix geometryiess” have no second stability access, and small ELMs,
and, in particular, all the experimental data we have diswhile intermediate squareness discharges do typically have
cussed in this paper have been from plasmas with a separgecond stability access and large ELMs. The development of
trix. This makes a direct quantitative comparison of the ex-a code likeeLITE will help in optimizing the plasma bound-
isting ELITE stability code with experimental data difficult, ary so that the most dangerous MHD instabilities can be
because the edge localized modes are confined to the sepgaroided, while maintaining a large edge temperature pedestal
ratrix region. At presentzLITE cannot deal with the region and the associated good confinement: this is the eventual
close to the separatrix, because the straight field line anglgoal.
used to generate the Fourier analysis becomes concentrated
around the X-point; it is likely that this region will require a
different treatment. Other physics which is likely to be im-
portant for a full MHD treatment of the plasma edge includes
plasma flow and incorporating the boundary conditions assg?CKNOWLEDGMENTS
ciated with matching to the open field lines of the scrape-off

layer, rather than directly to the vacuum. Nevertheless, this d-l;h'ds V\;Ol’k wgsEsuptported 2yUUSK I[D)epar:menz 0; Erade
work is an important first step, which highlights a number of2NC INAUSIry and turatom, and *J.>. epartment of Energy

features associated with the coupled peeling—balloonin%nder Contract No. DE-AC03-89ER51114 and Grant No.

mode. Indeed, several of these features are in qualitativ E-FGO3-95ER54309.

agreement with experiment: a role for both current and pres-

sure to drive the instability, a role for collisionality and the

bootstrap current, very localizggeeling limi} or relatively

extended (ballooning limi§ eigenmode structures which APPENDIX: ELITE MATRIX ELEMENTS

could account for the different ELM types observed, and the

role of second stability access. These all motivate the further  This appendix lists the matrix elements involved in Egs.
development of our model. (10) and(11). Thus, we have
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, (m"—nq) , (m"—nq) , m'qg’ ,
AP = (m-ngp| e’ - A pm o
q n<q n“q
I~ N2 ! ’ 12 7
m m , . m'(m—nq) , , m ,
S I U £ MM o ) o e
nq nq n’q n’q
m/2(m/_nq)_|_m‘m, _2q_p’ m‘m,+m'qp/ -
2 7 f 9 n 11 ’
n-q
, m’'—n , m'qg’ , m’'(m’—n , )
A = (m-np| 27y T g g MU A | gy,
nq no? nq
amm_ 42 (m=na)(m'—ng)_,,
3 4 )
q
where theT matrices are flux surface averages:
20211
= #; f Selmmieqy, TP = aRByv” el(m=miedg
4 1 2 7
R'B; JB
. [(BWRE . ,o(fBy .
-I—3mm — % e|(m7m )wdw, TTm — f _el(mfm )wdw,
JB? B2
, RZBgv'w' ) , , fBSw' ) ,
-I—5mm — % e|(m7m )wdw, Tg\m — % e|(m7m )wdw,
JB? B2
, fB2w'2 . , , fB2w" ,
T = p —P_gim—meg,, T = ¢ —PL__gim—m)eq,,
7 Bz ’ 8 82 ’
. d B2\R? . , B2 R?B, .
mm' _ |+ —]— i(m—m")w mm’ _ = P ilm—m)e
B w'R?B, . . 1.
’ p _ ;w 1_ _ ’a) /_ _ ’a)
= § G e e, TH = e e, TH= § e ™ o,

In these definitions a prime denotes the differential with respect to poloidali#juedJ is the Jacobian of the orthogona|
¢, x coordinate system, wheneis a poloidal angle such thdtdxy=dl/B,, f=RB, and
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