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Ideal magnetohydrodynamic stability of the tokamak high-confinement-
mode edge region *
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United Kingdom
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The ideal magnetohydrodynamic~MHD! stability of the tokamak edge is analyzed, with particular
emphasis on radially localized instabilities; it is proposed that these are responsible for edge
pressure gradient limits and edge localized modes~ELMS!. Data and stability calculations from
DIII-D @to appear inProceedings of the 16th International Conference on Fusion Energy,
Yokohama~International Atomic Energy Agency, Vienna, 1998!, Paper No. IAEA-F1-CN-69/EX8/
1# tokamak equilibria indicate that two types of instability are important: the ballooning mode
~driven by pressure gradient! and the peeling mode~driven by current density!. The characteristics
of these instabilities, and their coupling, are described based on a circular cross-section, large aspect
ratio model of the tokamak equilibrium. In addition, preliminary results are presented from an edge
MHD stability code which is being developed to analyze general geometry tokamak equilibria; an
interpretation of the density threshold to access the high-confinement-mode~H-mode!, observed on
COMPASS-D @Plasma Phys. Controlled Fusion38, 1091 ~1996!# is provided by these results.
Experiments on DIII-D and the stability calculations indicate how to control ELMs by plasma
shaping. ©1999 American Institute of Physics.@S1070-664X~99!94405-1#
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I. INTRODUCTION

The edge region of a tokamak plasma is thought to h
a large influence on tokamak performance as a whole, an
is therefore important to develop our understanding of
features which characterize this region. For example, a pr
ising mode of operation is the high-confinement-mode~H-
mode!, which involves an edge transport barrier, with
associated steep edge pressure gradient. The temper
rises steeply within the transport barrier, up to a so-ca
‘‘pedestal’’ value, and the overall confinement is sensitive
this value according to some models of the core h
transport.1 Clearly a steep edge pressure gradient allow
higher temperature pedestal, and improved confinem
however, one is then more vulnerable to pressure-gradi
driven magnetohydrodynamic~MHD! instabilities. The re-
sult is that an optimum in tokamak performance is likely
be achieved by a careful balance between good confinem
properties and MHD stability. In this paper we discuss so
of the issues involved in this optimization.

In the following section we present analyses of DIII-D2

discharges, which suggest that both the pressure gradien
current density play a role in determining the MHD stabil
of the plasma edge. Indeed, the current density is likely to
large in the edge of low collisionality H-mode discharge
because of the large bootstrap current density associated
the steep pressure gradient there. In addition, measurem

*Paper K6I1.1 Bull. Am. Phys. Soc.43, 1808~1998!.
†Invited speaker.
1921070-664X/99/6(5)/1925/10/$15.00
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of toroidal mode numbers of precursors to large ELM~edge-
localized mode! events suggest that instabilities with mode
ate to large toroidal mode numbers, up ton;9, are respon-
sible for these events on DIII-D.2 Calculations with the
MHD stability code,GATO,3 for low n are consistent with the
higher n modes being more unstable. These facts motiv
this study of MHD instabilities with such characteristics.
Sec. III we describe the results of numerical calculations
high n, ideal MHD stability at the edge of a model, larg
aspect ratio, circular cross-section tokamak. We have de
oped a code specifically for analyzing edge localized ins
bilities with moderate to highn in this equilibrium, which
provides a simplified model of MHD instabilities, but neve
theless retains the essential features required to describe
ballooning ~pressure-driven! and peeling ~current-driven!
modes~indeed it has similar characteristics to the famili
s2a model4!. In Sec. IV we describe a new code whic
performs stability calculations for arbitrary limiter tokama
geometry. The so-called ‘‘ELITE’’ code ~Edge Localized In-
stabilities in Tokamak Experiments! shows the same genera
characteristics for the coupled peeling–ballooning modes
the s2a code, but allows a more quantitative comparis
with data. On COMPASS-D5 it is found that one canno
access the H-mode at low density: an interpretation of
result is provided by theELITE stability calculations in Sec
V. We summarize in Sec. VI, where we also discuss fut
work towards a complete model of edge MHD phenomena
tokamaks, and describe experiments performed on DII
which show how plasma shaping can provide ELM contr
5 © 1999 American Institute of Physics
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II. ELM BEHAVIOR ON DIII-D: INTERPRETATION

The cyclic bursts of edge MHD activity, known a
ELMs ~edge-localized-modes!, can be broadly categorized a
large, infrequent ‘‘Type I’’ ELMs or smaller, more frequen
‘‘Type III’’ ELMs. 6,7 The Type I ELMs are a concern for th
next generation of large tokamaks because of the large t
sient heat loads they can deliver to the divertor target pla
while the smaller Type III ELMs are desirable, as they p
vide a means to control the plasma density and impu
content, although they tend to lead to a lower edge temp
ture. Consequently, it is desirable to control the type
ELMs, rather than avoid them. In this section we descr
characteristics associated with both ELM types on DIII
and provide a qualitative interpretation of the results, wh
points to a means for their control.

The large Type I ELMs appear to be associated wit
steep edge pressure gradient, larger than the first stab
boundary predicted by idealn5` ballooning theory,2,8

which has been shown to be applicable at the plasma e
as well as in the core.9 An explanation for the high pressur
gradient is that the plasma has access to the second sta
region as a result of a finite edge current density.10 Indeed, if
one assumes that the edge current density is dominate
the bootstrap current, then this is found to be sufficient
provide second stability access in the discharges where l
Type I ELMs are observed.2 This is illustrated in Fig. 1,
comparing two discharges: one is restricted to the low p
sure gradient close to the limit predicted byn5` ballooning
theory, while the second has a high pressure gradient
access to second stability. Note the large ELMs in
second-stable case, and their significant effect on the m
sured edge electron temperature, while the small ELMs
sociated with the first-stable discharge have relatively li
effect on the measured electron temperature. An interpr
tion of this will be provided in the next section.

FIG. 1. The profile of the pressure gradient parametera at the edge of two
DIII-D discharges: one confined to the first-stable region~a! and one which
has access to second stability~b!. Note that the first-stable case has sm
ELMs, as shown in theDa trace, with a small effect on the electron tem
perature~c!, while the second-stable case has large ELMs and there
large fluctuation in edge temperature at each ELM~d!. cN is the poloidal
magnetic flux, normalized to its edge value.
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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We have argued above that an edge current density,
pected to arise from the bootstrap current, is necessar
explain the large pressure gradients measured at the H-m
edge of some DIII-D discharges; what are the effects of t
current density and the large edge pressure gradient on
finite n modes? It is well known that at finiten there is an
additional drive for MHD modes;Ji8/n where Ji8 is the
radial derivative of the current density parallel to the ma
netic field: this drives kink modes. This term can usually
neglected at largen, but to assess its effect at lown we
employ theGATO code3 to investigate the stability of then
51, 2, and 3 ideal MHD modes. Thus, we consider an eq
librium typical of a DIII-D very high confinement ‘‘VH-
mode’’ discharge and study the stability to lown modes as
the edge current density,J95, normalized to the plasma cur
rent divided by the cross-sectional area,^J&, is varied. The
result is shown in Fig. 2, where we see that increasing
edge current density destabilizes the highern modes, with
n53 being more unstable thann52 (n51 is stable for all
edge current densities considered here!; increasing the edge
pressure gradient further destabilizes the modes. We le
two things from this study: both pressure gradientand edge
current density are important drive mechanisms for these
stabilities, and the highern modes tend to be less stabl
indeed, toroidal mode numbers of ELM precursors up ton
59, with a strong ballooning character, have been measu
on DIII-D.2 From our argument above one might expe
highern current-driven modes to bemorestable as the cur-
rent gradient drive is small for these. However, if the curre
density at the plasma edge is finite, then, as it must be zer
the vacuum, the current density gradient is large and lo
ized at the plasma surface: the result is that the driveJi8/n
remains significant, even at largen. The resulting instabili-
ties are called ‘‘peeling’’ modes,9,11,12 and are localized a
the plasma edge; we postulate that these are at least par
responsible for triggering ELMs, and study their propert
further in this paper.

In summary, stability analyses and data from DIII-D di
charges indicate that moderate-to-highn instabilities, driven
by a combination of pressure and current density, are lik
to control ELM phenomena and pressure gradient limits
the edge of a tokamak. In the following section we descr
the essential features of this class of instability using a c

a

FIG. 2. GATO calculations of MHD stability for lown modes in an equilib-
rium typical of DIII-D VH modes; the instabilities are driven by edge cu
rent density, which is a characteristic of peeling modes.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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1927Phys. Plasmas, Vol. 6, No. 5, May 1999 Wilson et al.
developed to analyze a large aspect ratio, circular cro
section model tokamak equilibrium.

III. PEELING–BALLOONING MODE PROPERTIES

The conventional ballooning mode formalism13 is not
valid for analyzing the stability of the tokamak edge regi
because there are inconsistencies in the higher order the
developed as an expansion inn21/2. Thus, to leading orde
~the n→` limit !, the conventional ballooning mode theo
derives the one-dimensional~1-D! ‘‘ballooning’’ equation,
which is an eigenmode equation with a ‘‘local’’ eigenvalu
v2(c,k) depending on the radial location,c and so-called
ballooning phase anglek. Performing a Taylor expansio
about the flux surfacec5c0 wherev2 is a minimum, one
can develop the higher order theory: toO(n21/2) one finds
that k must be chosen so thatv2 is minimized; atO(n21),
one learns that the ballooning mode is centered onc5c0,
spanning;n1/2 flux surfaces with a Gaussian envelope an
most importantly, the square of the true mode freque
V25v2(c0)1O(n21). The result is that the whole stabilit
and mode structure for the most unstable core balloon
modes can be deduced from the leading order balloon
equation. The situation at the edge is different for two r
sons. First, it is usually the case that although the pres
gradient is often largest at the edge of an H-mode discha
it does not usually achieve a maximum there; when we
restricted to first stability this suggests that, althoughv2 is
lowest there, it too will not be a stationary point in gener
Second, the ballooning mode radial eigenfunction canno
a Gaussian centered on the plasma edge, as it would
penetrate the vacuum: the ballooning symmetry~requiring
that all rational surfaces spanned by the mode are essen
equivalent! would then be violated. To take account of the
special features associated with the plasma edge, we
developed a modified ballooning theory.9 This assumes tha
the radial variation of equilibrium parameters is essentia
linear at the edge and that the ballooning mode cannot p
etrate the vacuum~i.e., the perturbed plasma displaceme
associated with the instability is assumed to be zero at
plasma boundary!. This permits an application of the stan
dard ballooning transformation, followed by an expansion
powers ofn21/3. The leading order result yields the standa
one-dimensional~1-D! ballooning equation, which is identi
cal to that obtained from the conventional ballooning mo
formalism, with the same choice ofk forced by theO(n21/3)
equation. TheO(n22/3) equation predicts an Airy function
envelope for the radial mode structure, spanning;n1/3 ratio-
nal surfaces. It is in this higher order theory that the modifi
ballooning theory differs from the conventional balloonin
mode theory, and, in particular, one finds that the squar
the true mode frequency,V2, differs from the local eigen-
value,v2, by O(n22/3).

In summary, we can justify the use of conventional b
looning mode theory to study the plasma edge, described
DIII-D in the previous section. However, we can now use
additional knowledge about the radial structure of balloon
modes to propose an explanation for why large ELMs
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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experienced in DIII-D when there is access to second sta
ity. The edge ballooning theory predicts that the radial wid
of the ballooning mode is9

Dr}ad
21/3S ]v2

]a D 21/3 r

n2/3
, ~1!

wherer is the minor radius,a is the dimensionless measu
of the pressure gradient from highn ballooning theory~de-
fined later! andad5da/dq. The size of]v2/]a depends on
whether or not there is second stability access; in particu
when there is no second stability access so thatv2 is essen-
tially a linear function ofa, then]v2/]a is of order unity
and the mode width is simply;r /n2/3. However, when one
is close to second stability access, so that we are close
minimum of v2 with respect toa, then Eq.~1! predicts a
much more radially extended mode structure.@Note, close to
second stability access there are two marginally stable va
of a ~i.e., v250) close to each other, and thus]v2/]a will
be small.# It is natural to assume that a more radially e
tended instability would lead to a larger heat loss from
plasma so that this provides a possible explanation for
larger ELMs observed on DIII-D when there is access
second stability. We shall return to this when we descr
numerical calculations later.

We now turn to the current-driven peeling mode, whi
is resonant in the vacuum, with its corresponding ratio
surface close to the plasma surface~in which case the stabi
lizing effect associated with magnetic perturbations in
vacuum can be neglected!.11 The radially localized nature o
the peeling mode allows one to develop an expansion ab
the plasma surface and derive an accurate expression
trial function. This leads to a necessary criterion for stabili
analogous to the Mercier criterion:

A124DM.11
2

2pq8
R JiB

R2Bp
3

dl, ~2!

whereDM is the Mercier coefficient (DM,1/4 corresponds
to the Mercier criterion for stability14!, dl is a poloidal arc
length element,R is the major radius,B is the magnetic field,
Bp is the poloidal magnetic field,q is the safety factor and a
prime denotes a differential with respect to the poloidal flu
c. We see that large negativeDM ~i.e., a ‘‘deep’’ magnetic
well! is stabilizing: recall thatuDMu increases with increasing
pressure gradient, so that pressure is stabilizing for pee
modes, while a finite edge current density is destabilizi
this is the opposite trend to the ballooning mode.

The above analyses are simplifications of the real sit
tion. For example, we assumed that the ballooning m
amplitude is zero at the plasma surface, whereas a more
eral treatment would allow for the possibility that the inst
bility could couple to modes associated with the vacu
rational surfaces and so tap the free energy associated
the peeling mode. Alternatively, the peeling mode cou
couple to sideband harmonics resonant in the plasma
have a ballooning nature. To investigate these effects
quires a treatment of the full 2-D stability problem: we c
no longer make use of ballooning symmetry for the balloo
ing modes, nor can we make use of the radial localization
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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the peeling modes. In the remainder of this paper we add
a 2-D calculation of coupled peeling–ballooning mode s
bility.

The essential features of the coupled peeling–balloon
modes can be illustrated by considering a large aspect r
circular cross-section model of the tokamak, analogous to
‘‘ s2a ’ ’ model. We merely describe the essentials of t
system here, and refer the interested reader to Ref. 9. In
limit of large n, stability is determined from a 2-D partia
differential eigenvalue equation for the radial component
the perturbed displacement,X. We Fourier expand this in
poloidal angleu:

X5e2 im0u(
m

um~x!eimu, ~3!

where the radial coordinatex5m02nq (x50 labels the po-
sition of the closest vacuum rational surface to the plas
surface! andm is a shifted poloidal mode number. Neglec
ing terms ofO(n21) we derive a set of coupled ordinar
differential equations to be solved for theum(x):

s2~x2m!2
d2um

dx2
12s2~x2m!

dum

dx
2~x2m!2um

2aH sF ~x2m!21
1

2G d

dx
@um112um21#

1s~x2m!
d

dx
@um112um21#1s~x2m!

3@um112um21#2
1

2
@um111um21#2dMumJ

2
a2

2 H @~x2m!211#S um2
1

2
@um122um22# D

2~x2m!@um122um22#J 50. ~4!

Note that we have introduced an artificial magnetic w
through the parameterdM (DM5adM /s2). The boundary
conditions on this set of coupled equations areum(x)→0 in
the limit x→`, corresponding to the plasma interior, whi
matching to the magnetic perturbations in the vacuum le
to a set of boundary conditions to be applied at the plas
surface (x5D, where 0,D,1):

~D2m!H 2s~D2m!
dum

dx
2@22~D2m!#um

1
a

2
~D2m!@um112um21#J

x5D

5V2um . ~5!

Here V2 is an eigenvalue such thatV2,0 corresponds to
instability ~we are interested in marginal stability, for whic
V250). Finally, we represent equilibrium radial profile
through a variation of the pressure gradient parameter,a:
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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aa522m0

Rq2

B2

dp

dr
, a5aa2

ad

n
~x2D!, ~6!

where subscripta indicates the edge value, andad represents
the strength of the radial variation.

The system of equations~4!–~6! can describe both peel
ing and ballooning modes. The peeling mode criterion
obtained by performing a local expansion around a sin
vacuum rational surface, assumed to be very close to
plasma surface~i.e., D!1); retaining sideband harmonics
the result is

a.
2~22s!

2dM
, ~7!

for stability. Note that we have expressed the edge cur
density in terms of the magnetic shear [s52(12Ji /^J&)#.
The ballooning mode criterion can be obtained by adopt
the ballooning approximationum(x).ei (m02m)ku(x2m)
which yields the modifieds2a equation:

d

dhH @11h2~h!#
dy

dhJ 1aGy50, ~8!

where h is the ballooning angle,h(h)5s(h2k)2asinh
andG5cosh1hsinh1dM . The eigenvalue condition for this
equation defines marginal stability contours in thes2a
plane, withk to be chosen to maximize the unstable regio
The independent variabley is the Fourier transform ofu.

It is convenient that the stability of both the peeling a
ballooning modes can be represented in terms of the m
netic shear,s, and the normalized pressure gradienta: the
stability properties of both modes can therefore be sum
rized on ans2a diagram. The result for a relatively wea
magnetic well,dM520.2, is shown in Fig. 3. Also shown
on this plot is the result of the 2-D calculation forn520 and
a low value ofD50.01. We see that the 2-D stability curv
follows the peeling mode branch at lowa and at highera

FIG. 3. A modifieds2a diagram for coupled peeling–ballooning mode
The dashed curve is the pure peeling mode stability boundary, the do
curve is the pure ballooning mode stability boundary and the full curve
the boundary predicted by the 2-D stability code. The parameters an
520, dM520.2, D50.01, q54.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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1929Phys. Plasmas, Vol. 6, No. 5, May 1999 Wilson et al.
follows the ballooning mode branch. Note that the 2-D res
is more stable than then5` ballooning mode result would
predict: this has been shown to be a consequence of the
n stabilizing correction.9 For largerD, the stabilizing effect
of the vacuum perturbations on the peeling mode beco
stronger, so that forD50.9 stability is essentially determine
solely by the ballooning mode.15 Indeed, in the limita→0
the marginal stability point is ats52(12D). This sensitiv-
ity to D raises the question of how to choose this parame
To study this we suppose that a range of toroidal mode n
bers, 10<n<20, could, in principle, be unstable and calc
late the minimumD as a function ofq; this is shown in Fig.
4. Note that there is not much variation asq is varied, and the
average value isD50.1; increasing the range to 10<n<40
this average falls to 0.05, suggesting that the results for s
D are likely to be applicable.

Let us return to Fig. 3. We notice that in the absence
the peeling mode, there is access to second stability at s
ciently low magnetic shear. However, this requires a la
edge current density, so that the peeling mode is unsta
The result is that it is not possible to gain access to
second stability region for these parameters. Deepening
magnetic well~i.e., makingdM more negative! improves the
second stability access by increasing the gradient of the p
ing mode stability line@see Eq.~7!#, and pushing the bal
looning mode boundary up into the top right hand corner
the stability diagram:15,16 the case fordM520.6 is shown in
Fig. 5~a!, where it can be seen that the pure peeling a
ballooning mode unstable regions are now separated,
there exists a window of access to the second-stable reg
Figure 5~b! shows the situation for the 2-D coupled mo
calculation: we see that fordM520.6 the peeling and bal
looning modes remain coupled and there is no access to
ond stability even though the pure ballooning and peel
mode boundaries are well-separated. To regain access to
ond stability, it is necessary to further deepen the magn
well, and fordM520.645 we see that the peeling and b
looning modes do de-couple to provide a stable wind
through to second stability.

In Fig. 6 we show the different edge balloonin
mode structures for two cases:dM520.2 when there is no
second stability access, anddM520.645 where there is
second stability access. Note that when there is second
bility access the mode spans many more rational surface
line with the result of the edge ballooning mode analy
calculation given in Eq.~1!. Indeed, we see that in both cas
the envelope of the amplitude of Fourier harmonics agr

FIG. 4. The minimum value ofD considering a range ofn, 10<n<20,
plotted as a function of edge safety factorq.
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with the Airy function prediction of the edge balloonin
mode theory.

IV. EDGE MHD STABILITY IN GENERAL TOKAMAK
GEOMETRY

The results of thes2a code are useful to demonstra
the essential features of coupled peeling–ballooning mo
but to make more meaningful comparisons with experim
tal data it is necessary to develop a more realistic mo
This work is under way, and here we present some preli
nary results from a new ideal edge MHD stability cod
called ELITE, which has an improved treatment of the tok
mak geometry.

The ELITE code has the same basic structure as
s2a code, employing a largen ordering to reduce the
system to a single 2-D eigenmode equation for the ra
component of the plasma displacement,X. This is Fourier
decomposed in a straight-field line poloidal angle,v, and
toroidal anglew:

X5(
m

um~x!e2 imveinw, v5
1

qE
l f dl

R2Bp

, ~9!

to derive a set of coupled ordinary differential equations
the form

FIG. 5. ~a! The effect of a deeper magnetic well (dM520.6) on the pure
peeling and ballooning modes suggests there is access to the second st
region. However, in~b! we show the results of the 2-D calculation, where
can be seen that the coupling is still strong fordM520.6 ~dashed curve!
and no access to second stability exists; increasingdM520.64 ~dotted
curve! reduces the unstable region, which eventually necks off to prov
second stability access fordM520.645~a full curve!. The other parameters
are as for Fig 3, butD50.1.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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FIG. 6. Radial mode structures for~a! a first-stable ballooning mode case and~b! a second-stable case. The dashed curves correspond to the Airy fun
envelopes predicted by the modified edge ballooning theory. Parameters aren520, q54.
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A3
m,m8

d2um8

dx2
1A2

m,m8
dum8
dx

1A1
m,m8um850, ~10!

where the matrix elementsAi
m,m8 are functions of the radia

coordinatex, the poloidal mode number,m and flux surface
averages of equilibrium quantities~see the Appendix!; a
summation over repeated indices is implied. These equat
are to be solved subject to the boundary conditionsum(x)
→0 as x→`, while at the plasma–vacuum interface w
match to the vacuum perturbations to derive the bound
conditions:

~m2nq!H F ~T3
m,m82 im8T6

m,m8!
m82nq

nq
2

m8q8

nq2
T4

m,m8

1 f 8T12
m,m81 f p8T13

m,m8Gum82
q8~m82nq!

q
T4

m,m8
dum8
dx J

2ndWm,m8
vac um81nV2um50. ~11!

The matrix elementsTi
m,m8 are also defined in the Appendix

and dWm,m8
vac represents the stabilizing contribution of th

energy associated with magnetic perturbations in
vacuum. A separate code has been developed to ca
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
ns

ry

e
u-

late dWm,m8
vac for a given equilibrium, which is a version o

a code due to Pletzer,17 modified to allow a more accurat
treatment of highn modes. A linear radial variation ofa
is assumed, which, for this general geometry case, is defi
as

aa52
2V8

~2p!2S V

2p2R0
D 1/2

m0p8, a5aa2
ad

n
~x2D!,

~12!

whereV is the plasma volume,R0 is the major radius and a
prime denotes a derivative with respect to the poloidal fl
c.

For this first version of the code the equilibrium is spe
fied in terms of the properties of the last closed flux surfa
and an expansion about this flux surface is employed to
culate the equilibrium properties a small distance into
plasma.18,19 As a result the code can only address ed
localized modes, and this equilibrium expansion fails for t
more extended of the ballooning modes. From Eq.~1! we see
that we can restrict the radial extent of the ballooning mo
by choosingad large; this choice also has the effect of i
creasing the finiten correction to the ballooning mod
stability.
FIG. 7. ~a! The pure peeling~dashed! and pure ballooning~dotted! mode marginal stability boundaries compared with then510 stability results fromELITE

for D50.1 ~full ! and D50.05 ~dashed/dotted!. This equilibrium has aspect ratio 3.3, elongation 1.6 and triangularity 0.2. In~b! we compare the stability
diagrams forn510 ~dashed/dotted! andn520 ~full ! for D50.05; we see the highern mode is more unstable, particularly at largea: this is expected from
the analytic edge ballooning mode theory~Ref. 9!.
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To benchmark the code, we compare the results ofELITE

with the infinite n ballooning calculation and the peelin
mode criterion@from Eq. ~2!# in Fig. 7. Here we have spec
fied the flux surface shape to be of the form

R5R01rcos$u1@sin21d#sinu%,
d

e
n

e

-
en
tl
-
se

ry
la

c

he
a

S-
h
re
ta

u
a
g
he
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Z5rksinu,

whereZ is the vertical height above the mid-plane,r is the
minor radius on the mid-plane,u is the geometrical poloida
angle, d is the triangularity andk is the elongation. The
variation of the poloidal field is then given by19
~13!

RBp

R0Bp0
5

k21@sin2~u1xsinu!~11xcosu!21k2cos2u#1/2

cos~xsinu!1R08cosu1@sk2sdcosu1~11sk!xcosu#sinusin~u1xsinu!
, ~14!
ry,

-
-
an

r, if
ided
d to

de,
rge
de
n-

e
th a

no
the
ta
the
r-
ion-
is
e
e in

ity
n
as-

-D
be

that

n-
d a
ore
whereR08 is the radial derivative of the Shafranov shift an

sinx5d, sk5
r

k

dk

dr
, sd5

r

A12d2

dd

dr
. ~15!

The plot in Fig. 7~a! is for a moderately shaped equilibrium
with qa53, aspect ratioA53.3, elongationk51.6, and tri-
angularity d50.2. If a relatively large value ofD50.1 is
chosen, this increases the stabilizing effect of the magn
perturbations in the vacuum on the peeling mode, as ca
seen from the 2-D results at lowa in the figure. If D is
reduced, then the stabilizing effect of the vacuum is reduc
as it was in the case for thes2a curves; Figure 7~a! also
shows theELITE result for D50.05 for comparison. Asa
increases, the result fromELITE tracks the peeling mode cri
terion until a approaches the ballooning boundary. It th
tracks the ballooning mode boundary, but is significan
more stable than then5` ballooning analysis would sug
gest; this is a consequence of the relatively low value cho
for n510 and the large value ofad . Figure 7~b!, which
compares the result forn510 with that for n520 ~for D
50.05), supports this; note that the highern destabilizes the
ballooning mode, placing the marginal stability bounda
closer to the pure ballooning stability boundary, but has re
tively little effect on the peeling mode~the opposite to the
effect of varying D). This is expected from the analyti
theory.9

V. IMPLICATIONS FOR H-MODE ACCESS IN SMALL
TOKAMAKS

Previously we have postulated that instability to t
peeling mode in H-mode discharges prevents small tokam
entering the H-mode at low density.15,20For example, in low
density, electron cyclotron resonance heated COMPAS
discharges the H-mode cannot be achieved, even thoug
input power is many times higher than that which is p
dicted from the International Thermonuclear Experimen
Reactor~ITER!21 H-mode power threshold scaling laws.22

The argument was based upon a large aspect ratio, circ
flux surface model of the tokamak, in which the bootstr
current destabilizes the peeling mode when the pressure
dient is large, and the collisionality is low. We can use t
tic
be

d,

y

n

-

ks

D
the
-
l

lar
p
ra-

ELITE code to test this model for a more realistic geomet
typical of COMPASS-D high field~2.1 T! discharges. The
stability diagram is shown in Fig. 8 for COMPASS-D pa
rameters, choosing a low valueD50.05. There are no mea
surements of the current density on COMPASS-D, so
estimate of the magnetic shear is problematic. Howeve
we assume that all the current at the plasma edge is prov
by the bootstrap current, then the shear is linearly relate
the pressure gradient parametera. This relation is shown by
the dotted curve for a low collisionality discharge (n*
50.67), which would not be expected to achieve a H-mo
and by the dashed curve for a higher collisionality discha
(n* 51.7), in which one would expect to achieve a H-mo
with sufficient heating power. We have defined the collisio
ality:

n* 51.231023
n19Roq

Te
2e3/2

, ~16!

wheren19 is the density measured in 1019 m23, Te is the
temperature in keV ande is the inverse aspect ratio. Th
experimental results, obtained by optical spectroscopy wi
helium beam, the HELIOS system,23 are shown in Fig. 9:
L-modes are indicated by the squares; H-modes with
ELM observed during data sampling are indicated by
triangles, and H-mode with an ELM occurring during da
sampling, are shown by the diamonds. We see that
H-mode is indeed limited to high collisionality, and furthe
more there are more ELMs as one approaches low collis
ality. In terms of the stability diagram shown in Fig. 8, th
has the following interpretation. At high collisionality th
pressure gradient can rise without any significant increas
the bootstrap current~along the dashed line!, so that the peel-
ing mode remains stable. However, at lower collisional
~along the dotted line! the peeling mode is destabilized whe
a exceeds some critical value: as the H-mode is usually
sociated with highera values, this may explain why the
H-mode cannot be accessed in low density COMPASS
discharges. In larger, hotter tokamaks the current would
expected to diffuse more slowly than the pressure, so
transiently the edge could remain stable, even at higha and
low collisionality. Of course, the current would diffuse eve
tually, resulting in the peeling mode being destabilized an
burst of energy from the plasma edge; one might theref
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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expect an increase in ELM activity in the low collisionali
discharges of larger tokamaks, rather than an inability
achieve a H-mode.

VI. DISCUSSION

Data on ELMs from DIII-D, supported by stability ca
culations from the lown MHD stability codeGATO, suggest
that a combination of both pressure and current density
responsible for the MHD precursors which are typically o
served prior to an ELM. However, the higher toroidal mo
numbers observed, up ton;9, cannot be analyzed usin
GATO, and this has led to the development of a new ed
MHD code, ELITE, for the analysis of moderate to highn
edge-localized MHD instabilities. The code is designed
analyze peeling and ballooning modes, and their interact
The H-mode is usually generated in a separatrix geom
and, in particular, all the experimental data we have d
cussed in this paper have been from plasmas with a sep
trix. This makes a direct quantitative comparison of the
isting ELITE stability code with experimental data difficul
because the edge localized modes are confined to the s
ratrix region. At present,ELITE cannot deal with the region
close to the separatrix, because the straight field line a
used to generate the Fourier analysis becomes concent
around the X-point; it is likely that this region will require
different treatment. Other physics which is likely to be im
portant for a full MHD treatment of the plasma edge includ
plasma flow and incorporating the boundary conditions as
ciated with matching to the open field lines of the scrape-
layer, rather than directly to the vacuum. Nevertheless,
work is an important first step, which highlights a number
features associated with the coupled peeling–balloon
mode. Indeed, several of these features are in qualita
agreement with experiment: a role for both current and p
sure to drive the instability, a role for collisionality and th
bootstrap current, very localized~peeling limit! or relatively
extended ~ballooning limit! eigenmode structures whic
could account for the different ELM types observed, and
role of second stability access. These all motivate the fur
development of our model.

FIG. 8. ELITE marginal stability contour for a COMPASS-D 2.1 T dischar
~full curve!. The dashed and dotted curves show how the shear is pred
to vary as a function ofa, assuming that the edge current density is dom
nated by bootstrap current: the dashed curve is for high collisiona
(n* 51.7), while the dotted curve is for low collisionality (n* 50.67).
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We have argued for the need to understand ELM p
nomena in order to optimize the plasma performance, tak
account of the need in a large tokamak to avoid large ELM
Data from DIII-D suggests that large ELMs can be avoid
by controlling the access to the second stability region~for
ballooning modes!, and a possible explanation for this ha
been proposed in terms of the greater radial extent predi
for ballooning modes when one is close to second-sta
access. Indeed, experiments have already been performe
DIII-D where access to second stability, and therefore
ELM size, can be controlled by adjusting the plasma bou
ary shape.24 Thus, plasmas with both high and low ‘‘squar
ness’’ have no second stability access, and small EL
while intermediate squareness discharges do typically h
second stability access and large ELMs. The developmen
a code likeELITE will help in optimizing the plasma bound
ary so that the most dangerous MHD instabilities can
avoided, while maintaining a large edge temperature pede
and the associated good confinement: this is the even
goal.
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APPENDIX: ELITE MATRIX ELEMENTS

This appendix lists the matrix elements involved in Eq
~10! and ~11!. Thus, we have

ed

y

FIG. 9. The distribution of L- and H-mode discharges from measureme
in COMPASS-D. The experimental measurement ofaexp[22m0

3(R0q2/B2)dp/dr.3a for this class of equilibria, where quantities ar
evaluated at the outboard mid-plane. Squares indicate the L-mode and
monds ~triangles! indicate the H-mode with~without! an ELM occurring
during the data sampling.
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A1
m,m85~m2nq!F ~m82nq!

q
T1

m,m82
~m82nq!

n2q2
T2

m.m812
m8q8

n2q2
T3

m,m8

1S m8q9

n2q2
22

m8q82

n2q3 D T4
m,m81 i

m8~m82nq!

n2q
~2T5

m,m81T8
m,m8!22i

m82 q8

n2q2
T6

m,m8

1
m82 ~m82nq!

n2q
T7

m,m8G22
qp8

f
T9

m,m81
m8qp8

n
T11

m,m8 ,

A2
m,m85q8~m2nq!F2

m82nq

nq
T3

m,m822
m8q8

nq2
T4

m,m822i
m8~m82nq!

nq
T6

m,m8G2 iqq8p8T10
m,m8 ,

A3
m,m852

q82 ~m2nq!~m82nq!

q
T4

m,m8 ,

where theT matrices are flux surface averages:

T1
mm85 R f

R4Bp
2

ei ~m2m8!vdv, T2
mm85 R qR2Bp

2n9

JB2
ei ~m2m8!vdv,

T3
mm85 R Bp

2n8R2

JB2
ei ~m2m8!vdv, T4

mm85 R f Bp
2

B2
ei ~m2m8!vdv,

T5
mm85 R R2Bp

2n8v8

JB2
ei ~m2m8!vdv, T6

mm85 R f Bp
2v8

B2
ei ~m2m8!vdv,

T7
mm85 R f Bp

2v82

B2
ei ~m2m8!vdv, T8

mm85 R f Bp
2v9

B2
ei ~m2m8!vdv,

T9
mm85 R ]

]cS p1
B2

2 DR2

B2
ei ~m2m8!vdv, T10

mm85 R ]B2

] l

R2Bp

B4
ei ~m2m8!vdv,

T11
mm85 R ]B2

] l

v8R2Bp

B4
ei ~m2m8!vdv, T12

mm85 R ei ~m2m8!vdv, T13
mm85 R 1

B2
ei ~m2m8!vdv.

In these definitions a prime denotes the differential with respect to poloidal flux,c, andJ is the Jacobian of the orthogonalc,
f, x coordinate system, wherex is a poloidal angle such thatJ dx5dl/Bp , f 5RBf and

n5
f J

R2
.
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