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A nonlinear dynamic model of relaxation oscillations in tokamaks
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Tokamaks exhibit several types of relaxation oscillations such as sawteeth, fishbones and Edge
Localized Modes(ELMs) under appropriate conditions. Several authors have introduced model
nonlinear dynamic systems with a small number of degrees of freedom which can illustrate the
generic characteristics of such oscillations. In these models, one focuses on physically “relevant”
degrees of freedom, without attempting to simulate all the myriad details of the fundamentally
nonlinear tokamak phenomena. Such degrees of freedom often involve the plasma macroscopic
quantities such as pressure or density and also some measure of the plasma turbulence, which is
thought to control transport. In addition, “coherent” modes may be involved in the dynamics of
relaxation, as well as radial electric fields, sheared flows, etc. In the present work, an extension of
an earlier sawtooth modéivhich involved only two degrees of freeddrdue to the authors is
presented. The dynamical consequences of a pressure-driven “coherent” mode, which interacts
with the turbulence in a specific manner, are investigated. Varying only the two parameters related
to the coherent mode, the bifurcation properties of the system have been studied. These turn out to
be remarkably rich and varied and qualitatively similar to the behavior found experimentally in
actual tokamaks. The dynamic model presented involves only continuous nonlinearities and is the
simplest known to the authors that can yield features such as sawteeth, “compound sawteeth” with
partial crashes, “monster” sawteeth, metastability, intermittency, chaos, periodic and “grassy”
ELMing in appropriate regions of parameter space. The results suggest that linear stability analysis
of systems, while useful in elucidating instability drives, can be misleading in understanding the
dynamics of nonlinear systems over time scales much longer than linear growth times and states far
from stable equilibriaf S1070-664X99)00506-4

I. INTRODUCTION els exhibit “subcritical” bifurcations or “metastable” be-
havior? As we demonstrate by means of numerical solutions
The purpose of the present paper is to consider qualitao the present model, answers to both questions is a qualified
tively, by means of a physically motivated extension of a“yes.” It was an unexpected outcome of the model that
previously developed nonlinear model, some of gfemeric  some solutions exhibit “bursty” chaos and “long time
features of two basic relaxation phenomena found in tokamemory” related to “monster sawteeth.” The model also
maks: namely sawteeth and Edge Localized Ma@#sMs).  demonstrates that it may be possible to dynamically stabilize
In earlier papers* we developed a version of the model (as suggested by Ui the case of then=1 resistive internal
which effectively had only two degrees of freedom andkink) at least some of the large-scale relaxation oscillations.
which we then applied to experimental situations. Our aim inThe chaotic solutions tend to become periodic under the in-
the present work is rather different: first, we seek to considefluence of external perturbations of a simple form and rela-
more explicitly the possible influence of a “coherent mode” tively small amplitude. Another key conclusion one can draw
on the system dynamics. Such a mode is known to exist ifrom the examples presented is that a linear “trigger” is not
the sawtooth case, but is not always seen as a “precursor” t@ecessarily involved in crashes. The system, in effect, has
the crash. The crash generally involvesh@rmal energy memory and this is sufficient for periodic, “double peri-
redistribution within the core, but not necessariljnagnetic  odic,” quasi-periodic and chaotic behavior. On the other
one(i.e., most modern tokamaks exhibit partial reconnectionhand, linear theory does appear to provide valuable guidance
whenever an attempt is made to measuregtpeofile within - on the kinds of drive necessary for relaxation oscillations to
the core. It is one of the outstanding problems of sawtoothoccur and in determining regions of parameter space where
dynamics to understand in detail how partial reconnection ofransitions are likely to occur between steady and periodic
the magnetic flux can be compatible with a temperaturg or states of the system.
crash. Apart from the papers by us on the sawteeth cited above,
Our second aim is to study the bifurcation properties ofseveral authors have proposed semi-quantitative dynamical
the model and consider such questions as: is dynamic stalthodels of relaxation phenomeréishbone$ low to high
lization of relaxation phenomena possible? Can simple modeonfinement(L—H) transitions’® ELMs>19 in tokamaks.
Typically, these low dimensional models are based on a

3Electronic mail: a.thyagaraja@ukaea.org.uk small number of dynamical variablése., functions of timg

POxford Research Unit, The Open University, Boars Hill, Oxford. which satisfy coupled nonlinear equations of motion. The
latter are sometimes derived from the full set of plasma equa-
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tions (fluid or kinetic after the introduction of certain sim- it further as described above to include the dynamics of a
plifying assumptions. The idea is to capture the essence afoherent mode. This mathematical formulation is supple-
the qualitative properties of the real system in a model whichmented by the physical ideas on which it is based. In Sec. lll,
is simple enough to understand. The analytical and computhe analytical results relating to steady states and linear sta-
tational tools which are required for this purpose often turnbility of such stationary solutions are given. Section IV de-
out to be impractical in the case of the real system due to thecribes the rather diverse “zoology” of the solutions of the
very large number of degrees of freedom typical of suchsystem of three nonlinear differential equations as certain
systems. Often, one uses physical arguments to derive tlsystem parameters are varied. In particular, we discuss the
equations governing these “reduced” model systems. Théifurcation properties of the system as the coherent mode
constantd(i.e., system parametgri the relevant equations growth rate and nonlinear saturation characteristic are varied.
are related to discharge and machine properties through the concept of “coexistence” or metastability of the system
medium of standard equilibrium and stability theories. Theis introduced and the regions where chaos, quasiperiodicity
models, although grossly simplified, are supposed to providend intermittency with “monster” sawtoothing occurs are
physically understandable paradigms which enable one tdiscussed. In Sec. V, we abstract the generic properties of the
reach qualitative understanding of the rather complicatedsystem and suggest that the dynamical equations, with suit-
but hopefully generic aspects of the dynamics involved in able reinterpretation, may be applicable to ELM physics. Ex-
actual experiments. The models also provide markers foperimentally, ELM characteristics often present a remarkable
more complete numerical simulations involving the full setformal similarity to sawteeth wave forms, and theoretically
of plasma fluid/kinetic equations. Although, in principle, the this may be a reflection of similar dynamical mechanisms in
latter remain the mosieneralmethod of theoretical investi- both sets of phenomena. We also present a brief discussion
gation of relaxation phenomena, they are subject to mangf the relation between our approach and two recent
limitations and resource constraints which are unlikely to bevorks”*® which are based on rather different physics but
overcome in the near future. It has been noted by severahare a philosophy similar to the present work. Our conclu-
authors(e.g., Diamond and co-workérand by ug active in  sions are presented in Sec. VI.
this field that, in analogy with condensed matter physics and
ecology, reduced models such as “Ginzburg—Landau
theory” or “predator—prey” population dynamics are very II. DESCRIPTION OF THE MODEL
useful in bridging the rather large gap between strictly phe- ) o )
nomenological descriptions of experiments and “micro- 1€ model involves the dynamical interaction of three
scopic” theories based on complete equations of motion. functions of time. The;e relate to suitable integrals over
In earlier investigation's® we attempted to construct a SPace of appropriate variablésg., plasma pressyréf the
picture of sawtooth dynamics based on a two degree-oft'rSt two,;(t) is a nondmensmnql measure of the pressure,
freedom model, taking account of both turbulence and trans@"dW(t) is taken to be a dimensionless measure of the tur-
port. Although them=1 mode was present in the back- bulence intensity. In.the present model we plo not distinguish
ground turbulence, it did not play the central role required of?&tween electrostatic and electromagnetic turbulence, al-
it in the more conventional approach of Ayderatral, ! for though th|_s could aIway; be done by introducing separate
example. In the present paper we further develop our modeqlectro_statlc and magnetic turbulence leeldowever, this
to include the interaction between a “pressure-driven” co-Would increase the number of degrees of freedom by at least
herent mode and the turbulence. This more general stud§€- In principle,W stands for both effects, although in the
results in a three degree-of-freedom system and is relevantS@Wwtooth™ interpretation and possibly also the ELM inter-
with suitable interpretation of the dynamical variables andPretation, it more nearly represents magnetic fluctuation lev-
control parameters, to both sawteeth and ELMs. It is, never€!S- The third function of timex(t) is a nondimensional
theless, considerably simpler than the full-scale numericall®asure of “coherent mode” activity. For examplecould
simulation of the complete tokamak plasma dynamics. It igePresent then=1 island width. We first consider the saw-
generally accepted that microinstabilities can enhance df0th modelin the following discussion.
damp coherent modes, depending upon the conditions. N the equations which follow, all variables and param-
Equally, single, coherent modes can easily give rise to “sec€t€rs. except the time, and 7 will be dimensionless; as in
ondary microinstabilities” which can alter the transport Our earlier paperS? = is a typical energy confinement time
properties of the system drastically. It is also well-kndfvn @Ppropriate to the problem. _ .
that three or more degrees of freedom can lead to quite new Guided by our earlier wofc we consider the following
qualitative effects such as “chaotic” behavior, as opposed tauations of motion:
periodic solutions characteristic of two degree-of-freedom

systems. The model presented below is not intended to be a 7557 =1~ T'z2(W)Z, 1)
systematic approximation to the full set of equations, and as

such, we do not attempt a rigorous derivation. However, dw

physical arguments will be advanced to motivate the formu- TSE:FW(Z'W’X)W’ @

lation of the mathematical model.
The material presented is laid out as follows: in Sec. I,

we take our sawtooth model of the earlier papers and develop Tsdt Ix(2,W.X)X. ®
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The nonlinear rate function$); \y x are assumed to take the pected to be a number lying between zero and unity in prob-
forms, lems of interest, although larger values may be appropriate in
certain conditions. This change in form of the turbulent
T2(W)=(W+x), @) losseqrelative to our original modghas an important quali-
TW(Z,W,X)=[D(W)A(Z—1)+2(X—X)(T2(W)Z—1)], tative effect: Even in the absence of théerm and the terms
(5) in the W equation coupling all three dynamical variables, the
present model does not have a constant of the motion, unlike

d(W)= 2W + i (6) our earlier one, and is fundamentally irreversible. In this

1+w sense, the present model is more “generic” of driven dissi-

T (Z,W,X) = Y[(Z—Z) — aXT 5(W)] @) pative systems than the previous model which, in a limit, led
X ’ ’ - C Z .

to exactly integrable, periodic solutions.
The system is autonomous and the right hand sides are con- We note that the coherent mode amplituéeg., island
tinuous functions of their arguments. Indeed, apart from thevidth), X, does not enter this energy “balance” equation
® (W) function, they are polynomials of at most third de- directly. The transport due to the coherent mode is indirect in
gree. In particular, they do not contain Heaviside functionsour model. Thus any losses are mediated directly by the tur-
as “triggers.” These properties are qualitatively similar to bulenceW, which will, itself, generally be affected by the
the structure of the evolution equations of a tokamak plasmaresence or otherwise of the coherent mode.
with constant sources and boundary conditions. From our We next turn to Eq.3), which governs the temporal
earlier papers it is clear that this modedsumespartial re-  evolution of the coherent mode. We have chosen a
connection at the sawtooth crash and takes from experimetitandau—Stuart” type model equation of virtually definitive
the fact that thegy=1 radius is hardly affected by the crash. simplicity to represent the physics. In the absence of turbu-
Thus it describes thermal redistribution within the 1 zone lence(i.e., whenW=0) and in the linear limit X<1), ob-
in terms of anomalous transport triggered by the crash, buerve thatl'y=y(Z—Z.). This says in effect that ify>0,
the current redistributioin principle describable by the in- andZ exceeds a certain “threshold valueZ;, the mode is
duction equatiohis never completé.e., theq profile isonly  driven unstable by pressuffor example, a mechanism of
slightly affected by the sawtooth this kind was proposed by Busseral®). This fact suggests
From the structure of these equations, it is clear that Eqghat this is a generic feature of all temperature gradienty.,
(1)—(3) imply thatZ, W, andX can always be chosen to be ion/electron temperature gradient modes pressure-driven
positive, and cannot change their sign. Equaiibnhas an modes(e.g., interchange, neoclassical tearing or ballooning
inhomogeneous “source term,” which is normalized to modes$. Itis, in principle, possible to extract suitable expres-
unity. This implies that is a measure of nonturbulent losses sions for y,Z. from analytic (linear or nonlinear stability
relative to the “drive,” or source. As it stands, the model theory. It is clear that the actual “linear” growth rate is
involves six nondimensional control parametetsA, X, v(Z—2Z.)! 7. The interpretation of the second termlof is
Z., yanda. We have already noted thatis a characteristic now straightforward: It is a nonlinear saturation effect, fre-
time involved in the problem, which can of course be elimi- quently encountered in tearing mode theory and elsewhere.
nated by an appropriate re-scaling. The constantr measures the strength of this saturation term.
The physical interpretation and the provenance of thes&@he smaller the value of, the larger the saturation ampli-
equations will now be given. The equation fér i.e., Eq. tude of the mode. Note that i&#<0, we have a case of
(1), has already been derived in this form in our earliernonlinear amplification of the linear instabilittes might
papers>? In these papers, it was assumed that the change inappen with major disruptioinsIn such cases the whole
pressure(represented bZ—1) due to the dynamics was model breaks down and recourse must be had to the full
small compared to its time-average valG®ormalized to equations of motion. We note that the form of the saturation
unity), and the turbulent loss was assumed to be linearlyerm embodies the following intuitive idea: It is envisaged
proportional to the normalized turbulence levél, In the that strong turbulence would havedampingeffect on the
present paper, we allow for large changes in the pressore coherent mode, since nonlinear coupling of a linearly un-
describe “monster sawteeth,” “giant ELMs,” efcby mak-  stable mode to a “sea” of stable modes of the plasma would
ing the turbulent loss term; WZ, rather than—-W. All other  tend to reduce its growth by a form of nonlinear radiation
“nonturbulent losses” such as neoclassical and radiative ardamping. We note that it is also possible to interpret this
modeled by— «Z, wherex is a suitable constant. We note term as representing turbulence-driv&x B flow shear
that the present model reduces to the previous one in théamping!* In this interpretation, the flow is assumed to be
limit, |Z—1|,k<1. self-consistently generated W (via the sum of Reynolds
Equation(1) then represents the change in the plasmastresses and neoclassical effects, and is hence assumed pro-
stored energy due to heatifigepresented by the normalized portional toW+ k). This completes the motivation for the
source terry taking into account the turbulence-dependentchoice ofl'y . At no point do we introduce explicit “trigger”
lossegtheWZ term) and any residual lossédue to neoclas- effects involving Heaviside functions which discontinuously
sical and/or radiation effedtgepresented by theZ term.  affect the dynamical evolution, as done by certain autfors.
The model is highly simplified in that the residuéle., Finally we discuss Eq2), which governs the time evo-
“non turbulent”) losses are crudely represented by a simpldution of W. First, we note the close resemblancelgj to
“relaxation time” approximation. The parameter is ex-  the corresponding function in our earlier work$We envis-
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ageA to be a large number, say 100, representing the fast 1ll. STEADY STATES AND LINEAR STABILITY
growth rate of the microscopic modes which constittle =~ PROPERTIES

relative to the "slow” time scale represented by. How- In this section we give a brief account of the linear sta-

ever, the growth and decay of the turbulence are related tBility properties of the dynamic model. The equations show

the turbulence level itself, as explained in earlier works.ia; there are essentially two sets of steady solutions. Thus,
Thus, we have here monlinear instabilityof the turbulence \w—_o 7=1/« together with X=0 or X=X4=Z

driven by the pressure excess above thresfiiodd, Z>1) —Z. /[ «(W+«)] gives one set. The second set s 1,
which achieves the full linear growth ratd,/7s, only for  \v—1_  andX=0 or X= (Z—2J)la. All of these solu-
large turbulence levels. This means that small levels of turgiong may not be realized sincce we require, on physical

bulence tend to reduce growth rates to below the levels prégrqynds; that the three dynamical variables must be nonne-
dicted by linear theories. This again is an instance of nonlingative.

ear effects tending to “ameliorate” linear instabilities, in this Consider the solutiolW=X=0: Z=1/x. This is a

instance, at small turbulence levels. o “neoclassical” or “turbulence-free” state in which there is
In the sawtooth interpretation of the equationsis re- 4 coherent mode activity. It may correspond to a sawtooth-

lated to the ratio of the sawtooth period to the crash timegqq discharge. Suppose thatZ. satisfy, Z=1/k<Z.<1

The first term is exactly what we had u.sed earlier. The provsy, arbitrary, positiveA, v, @, X.. It is obvious from simple

enance of the second term, proportional tory(X—Xc)  jnspection that the solution is linearly stable. Numerical cal-

X(dz/dt) is more subtle. Qualitatively, .th|s term describes culations also support this conclusion. Whest 1, it is el-

the fact that as the coherent mode rises above a certaiiinentary to show that this solution must necessarily be lin-

threshold amplitudeX., it can drive “secondary instabili- early unstable, whatever the valueXif A, y, X.Ze.

ties” which grow from it. This is analogous to the generation  ‘Apgther steady solution is obtained by settiig 1, W

of modulational or parametric instability familiar in plasma —1_ . This can only exist(since we requirdV/>0 on

theory and elsewhere. The form we have chosen is possiblyysical groundsif x<1. There are two possibilities: either

the simplest, given the basic requirement that the model reg — g or X=(1-Z.)/a. If Z;>1, the second solution is im-

semble our earlier model as much as possible. A key featur§ermissible, bux =0 is allowed. 1fZ,< 1, both solutions are

of this second, coupling term is that, fé>X, the factor  gjiowed, but it is easily seen that=0 is linearly unstable.

multiplying it is directly proportional to the heat floutof | ot ys therefore consider this case. Assuming 1, a rela-

the systenti.e., to— dZ/dt). The significance of this in the jyely simple linear analysis of the full set of equations about

ELM interpretation of the model is that it is actually a math- 45 steady solution is easy to carry out. This shows that the

ematical embodiment of a “heat-flux-driven” instability. steady state witZ=1, W=1—«, X=(1—2Z.)/ is stable

When the pressure is falling, the heat-flux to the plasma edgﬁrovided (1-Z) a—X.<1/2(1- k). If a is sufficiently

can cause extra recycling which drives certain linear modegy, | (i.e., when, a<(1—Z)/{X.+[1/2(1-«)]}) this

unstable. Thus when the coherent mode amplitude is abovgeady solution then becomes unstable and gives rise to pe-

threshold, rising pressure@t constant heating rate, this (ogic “|imit cycle” oscillations, characteristic of a Hopf

means that the heat-flux to the boundary is reducii@ye @ pfyrcation. Note that the criterion is independent\afy, 7.

stabilizing effect on the turbulence through this term, whileTps completes the enumeration of the steady solutions of the

falling pressure adds to the growth /. In effect this term  gystem and their linear stability properties. It is not hard to

describes the transformation of internal enefgy pressure  ghow that the dynamical variables must be bounded func-
gradienj to turbulence and vice versa. Note also that unlessgions of time(this is called “Lagrange stability).

Z=1, this term is always small compared with the first term,
except at “crashes” when the time rate of changezofan
be high, orX is particularly large.

We had showhthat the second term can be formally
derived, at least in part, from the equations of motion by It turns out that very little more can be learned about the
making certain moment closure approximations. In fact, alimodel using purely analytical methods. For example, to dis-
though we shall not give the argument here, following acuss even the linear stability of the periodic solutions which
detailed extension of our earlier model, it is possible to dearise from the steady ones through a standard Hopf bifurca-
rive the — 7, (dz/dt) form of the second term without mak- tion, one must have analytical forms of the solution to apply
ing moment closure approximations. It turns out that Lenz'Floquet theory. Unfortunately, no such forms are known. For
law (i.e., the induction equatigrs responsible for the form this reason, we consider the solutions of the initial value
taken by this term. However, neither of these derivationgroblem purely numerically. Taking a sufficiently small time
leads to the X—X,) factor which is crucial to describe the step and using a semi-implicit, predictor-corrector
interaction with the coherent mode. The inclusion of thisschemé3we time evolve the equations of motion with cho-
factor is essentially postulated here rather than derived frorsen sets of parameters and specified initial conditions.
the complete dynamical equations of the plasma. It is this We begin by considering the analytically predicted Hopf
factor which is truly specific to the model, and makes itbifurcation. It turns out that the most interesting transitions
similar to semi-phenomenological, “predator—prey” or occur in thea,y space when all other parameters are kept
“Ginzburg—Landau” models which are not strictly derived fixed. For definiteness, the following values were assigned to
from microscopic equations of motion. the “fixed” parameters:ts=25ms, A=100.0, k=0.1, X,

IV. NUMERICAL SIMULATIONS AND BIFURCATION
STRUCTURE
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Bifurcation Structure in the Gamma-Alpha Plane It is evident that this finite amplitude “sawtooth oscillation”
100.0 ' T4 Dlealy Sidte’ 7T is very different from the stationary solution and yet, equally
X Qoooke. crode ] stable(i.e., numerically computableTo demonstrate the sta-

X Quasi—Periodic

bility of this periodic solution to small amplitude, externally
imposed perturbations, a finite amplitude “noise” or pertur-
bation term of the formW?a cost) was added to th&V

g oo o 0n oopmE oo E equation witha=1.0x10 2, w=3/r;. The solution was
f‘g ul o o XX 0 ] found to be unaffected by this level of externally imposed
3 ] perturbation. At larger amplitudes, the solution is affected
e + + o+ ++¥0 O 1 but its qualitative feature of periodicity is preserved.
£ This metastability or simultaneous coexistence of a pe-
3 10 + + + + Xx0 AR = H H 1
3 riodic and steady solution for the same set of system param-
+ + 4+ XD O A 1 eters is of considerable conceptual importance. It demon-
i ] strates a fundamental limitation of linearized stability
H o+ + X X O o om 1 analyses of complex nonlinear systems such as tokamak
o L o L plasmas or fluids. For example, although the laminar flow in
0.01 010 1.00 10.00 a pipe may bdinearly stableto small amplitude perturba-
Apha (logarithmic) tions atarbitrary Reynolds numbers, above an experimen-
FIG. 1. Bifurcation structure of system fox=100, k=0.1, X.=0.1, Z tally WeII'-Qeflned “critical Reynolds number” t.he system
—0.25. may exhibit turbulence. In the present case, a linearly stable

steady solution and periodic solution (though not a turbu-

lent one as in fluid mechanicsre shown to coexist at the
=0.1,Z,=0.25. According to linear theorfcf. Sec. ll)), the  same parameter values. Such behavior has not previously
transition from steady to periodic solution should take placébeen reportedto the best of our knowledgen low dimen-
ata=1.14. We show solutions in thig,y plane in alog—log sional dynamical model systems such as ours. This type of
plot (Fig. 1). Essentially, it is a bifurcation diagram of the metastability can, under appropriate circumstances, lead to
system which shows several remarkable features. hysteresis as the parametersand y are varied on longer

The most interestindand unexpectedfact about this time scales than the typical period of the syst@me possi-
transition between stationary and periodic behavior is thédly to the sources imposed on the system varying in Xime
following: According to linear theory, ata=a.=(1 The next type of bifurcation exhibited by the system is
—Z){X.+ [1/2(1- k) ]}, the steady solution should bifur- found when, for fixedy, one lowersa. At a value of
cate to a periodic limit cycle. Interestingly, we observe that<a. (=1.14 in our casg the system acquires “double pe-
the system appears to be “metastable” at this transitionriodicity.” An example of this is illustratedfor the coherent
This is most clearly seen foy=10. Thus, when the system mode amplitudeX(t)] by Fig. 3. The solution is periodic but
is started off with initial conditions very close to the station- has a “partial crash” within a single period and thus repre-
ary solution, whenevew exceeds the “critical” valueg,, sents “compound sawteeth.” Note the initial transient show-
we find the solution is “attracted” to the stable stationary ing several secondary “crashes.” In a rather narrow range of
solution. However, for initial conditions which are “far” parameters, this periodic solution appears to bifurcate into a
from this state, the system evolves into a finite amplitude,‘quasi-periodic’” one with two independent periods. An ex-
periodic solution! Thus, the system evolution is partly deter-ample is shown in Fig. 4. In fact, this type of solution is
mined by the initial conditions and both the stationary anddifficult to readily distinguish from the “chaotic” solutions,
the periodic solutions “coexist” in some neighborhood of and only a few examples have been found. This suggests that
the “critical” value for « (the reader will recall from the the region in the parameter space where such quasi-periodic
analysis of Sec. lll, the transition is independentyof For  solutions are found is rather small.
vy=10, Fig. 1 shows that as long asdoes not exceed a As we noted earlier, the key feature which distinguishes
second critical valuef 2.9, there is a “coexistence region” autonomous systems with three or more degrees of freedom
where we obtain both the periodic solution and the stationaryrom those with only two is the possibility of chaotic solu-
one depending on the initial conditions. Figure@)2shows tions. We have indeed found chaotic solutidas indicated
the three-dimensional “phase portraitlin Z—1, logW,X in Fig. 1) for a variety of parameter values. For example,
spacg of the trajectory of the system, starting with initial Figs. 5a), 5(b), 5(c) illustrate the solution obtained fo
conditions: Zy=1.05, Wp=0.9, X,=0.6. In these simula- =0.25, y=0.5. The sharp ‘“corners” in the three-
tions we have taken the time steéyt=1.25x10 ®s. The dimensional phase portrdiFig. 5(c)] are artifacts of insuffi-
final epoch is 2.4 s. cient graphical resolution of the “crashes,” not actual nu-

It is clearly seen that the trajectory spirals into the fixedmerical simulation errors. This is because the time step of
point. Keeping all the system parameters exactly at thes@.125 us is easily able to resolve the crash, but the time
values but changing the initial conditions #y=5.0, W,  between successive plotted points is of the order of a milli-
=0.1, X,=0.6, we obtain the periodic solution, as illustrated second.
in Fig. 2(b). The three-dimensional “limit cycle™ is pictured In Figs. 5d), 5(e) we plot the frequency power spectrum
in this diagram while the functioi(t) is given in Fig. Zc). of X in the chaotic case and a “periodic” case=0.8, vy
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(a) R Y FIG. 2. (a) Phase portrait of system fa,=1.05, W,
=0.9, Xy=0.6. (b) Phase portrait of system faZ,
=5.0, Wp=0.1, X;=0.6. (c) Z vst for Z,=5.0, W,
=0.1, X,=0.6.
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=0.5 for comparison. As might be expected, chaotic spectréundamental sawtooth frequency. In the chaotic solutions, it
have a broadband decaying at high frequencies like an iris interesting to note “frequency chirping” effects in the
verse power of the frequency in addition to sharp “line spec-neighborhood of crashes.

tra” indicating coherent components. The purely periodic  We have studied the effects of externally imposed peri-
solutions have mainly sharp lines at the harmonics of thedic perturbations on the chaotic solutions. As an illustrative
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at very small turbulence amplitudes. The latter fact can be

example, Figs. @), 6(b) show the “dynamic stabilization”
of the chaotic solution presented above when an externaleen by comparing the external perturbation witt/, for

example.

perturbation of the formfF .= eW ?cos@t); €=0.1,
Keeping y=0.5, if we lowera to 0.2, we find “bursty

=3/75 was applied. It is seen that the solution is very similar
to the “double periodic/compound sawtooth” case. It is re-chaos.” This type of highly irregular intermittent solution is

markable that this periodic solution which bifurcates into theillustrated in Figs. {), 7(b). The rather large coherent mode

chaotic one can be “reconstructed” in this way by applying excursions are notable in these states.

an external perturbation, which itself is not significant except  As y increases, we observe solutions which have quali-
tative features of the so-called “monster” sawteeth. Thus,

Piot of x against Time(s)
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FIG. 3. X vst for «=0.4, y=0.5 showing “partial sawteeth” or double
periodicity. FIG. 4. X vst for =0.5, y=1.0 showing “quasi-periodicity.”
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FIG. 5. (& Z vst for «=0.25, y=0.5 showing “chaotic” sawteeth(b) X vst for «=0.25, y=0.5 showing “chaotic” sawteeth(c) Three-dimensional
phase portrait ¢=0.25, y=0.5) showing “strange attractor.(d) Frequency power spectrum of in the chaotic cased=0.25, y=0.5). Note broad
“incoherent” component at high frequencies in addition to a few sharp “line” spectra indicating coherent compdéeeRtequency power spectrum Xf
in a periodic case¢=0.8, y=0.5). Note the sharp coherent linesssentially harmonics of the fundamental sawtooth frequeaiegt exponential decay of
power at high frequency, in contrast to the power law decay of the chaotic spectrahn in

for «a=0.2, y=1, we find solutions plotted in Figs.(&, trative of the concentration of power at the lowest frequen-
8(b), 8(c). A curious feature of this type of solution is the cies.

fact that the “pressure,’Z, attempts to rise to the steady It is interesting to note that these “monsters” can also
state,Z=1/k during a period when there is very little turbu- be “tamed” by dynamic stabilization. As before, when we
lence, but rather large and rising valuesjofexist. As the include a periodic perturbationf .= eW*?cos@t), €
linear theory shows, this state is unstable, and the evolutior 5.0, w=3/75, we find that the solution becomes nearly
is always terminated by a crash when a very substantial degperiodic with relatively short period and low amplitudes. The
radation of plasma pressure takes place. The coherent modesults are shown in Figs(#, 9(b), 9(c). The power spec-

is virtually totally suppressed for a while. The monster saw-trum shows that the power at:3F~ 120 Hz is relatively small
tooth exhibits both precursors and, interestingly, “postcur-compared with the oscillation amplitudes of the sawtooth.
sors.” The crashes appear to follow a random pattern. The This completes the description of the “zoology” of this
power spectrum oK shows the “1f” type behavior, illus-  system. It should be emphasized that we have by no means
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explored all parts of the parameter space. We have, however ;5
considered the case whén=1, corresponding to purely lin-
ear growth of turbulence in the/ equation. A very similar
bifurcation diagram is obtained with the difference that the Sol
“metastability” of the periodic solution appears to be ab- e
sent.

V. APPLICATION TO ELM DYNAMICS

Edge Localized ModetELMs) are of great importance
in H-mode tokamak physics since they provide the means to
exhaust impurities and helium ash, and help to keep the edgt
plasma density stable. A recent survey with references can bt
found in the review by Connd?. It is believed that large
ELMs (“giant” or Type |) may place unacceptable thermal
loads on divertors and other edge components. On the othe
hand, continuous small ELMs may be beneficial to a power
plant. Much effort has gone into understanding the root 0L v bl o s bl it bl il
causes of L-H transitions, ELMs and phenomena associater 0.0 ‘ R 20
with them. It is probable that ideal magneto hydrodynamic -
(MHD) pressure-driven(“ballooning”) and/or current- FiG. 6. () X vst for a=0.25, y=0.5 illustrating “dynamic stabilization”
driven (“peeling”) modes are responsible for ELMs. It is of chaos by a periodic, small amplitude external perturbationZ vst for
also likely that radial electric fields and flow shear associated=0-25. ¥=0.5 illustrating “dynamic stabilization™ of chaos by a peri-
with them play a role in stabilizing ELMs. odic, small amplitude external perturbation.

In the present work, we take a qualitative approach and
consider the ELM phenomenon as a type of relaxation oscil-
lation due to the coupling of pressufer its radial gradient; simple and the number of free parameters as small as pos-
the model does not differentiate between theatectromag- sible. It shows that given the form of anomalous transport
netic turbulence, and a large scale, MHD “coherent” mode.and any pressure or temperature gradient-driven instability
In H mode, when the turbulence is low, the pressure profilenechanism, a relatively simple set of equations can qualita-
at the edge steepens, and drives both the coherent and ttieely reproduce a variety of properties of ELMs. Of particu-
turbulent fluctuations of the magnetic field. The latter in-lar interest are the “chaotic” solutions and the fact that they
creases the transport and serves to bring down the gradiemhay be stabilizable by suitable external perturbations. The
but due to nonlinearity, there is overshoot and one obtainsnodel makes the qualitative prediction that such dynamic
either a limit cycle or chaotic oscillations. The model delib- perturbations could, in suitable conditions, ameliorate the ef-
erately avoids the explicit introduction of radial electric field fects due to large ELMs and may be employable using vari-
effects and electrostatic fluctuations, not because they amus heating and/or momentum sources.
unimportant, but simply to keep the conceptual structure We now relate our work to two previously published
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Fiot of 7 against Time(s) transitions between these states are obtained. The shear flow,
R T ] which we do not include, is responsible for the transition
being similar to a first or second order phase transition. With
L 1 sufficient energy, the H mode becomes unstable and bifur-
20 B cates to a limit-cycle which shows periodic oscillations char-

: acteristic of ELMs. Of the differences between their work
and ours, there is one which seems to merit comment. Their
study makes no use of the inductive electric field. In our
case, such a field is eliminated by the use of Faraday’'s equa-
tion, thus leading to magnetic turbulence as one of our vari-
ables. It is instructive to note that recerfijt has been found
experimentally that even in regions where flow shear stabi-
lization reduceson energyand particle transport to near-
neoclassical values, the electron thermal diffusivity can be
high. This is suggestive that magnetic turbulence-dependent
losses are probably important in determining the course of
electron pressure evolution and micro-instabilities driven by

a2
tn

0 P I T T N I P N

0.0 65 0 15 20 25 It. _ _ o
(@) Time/s A general point worthy of some discussion is the fact
o e that in the limit when the “neoclassical losses,” the coupling

Plot of x against Timels) between the coherent mode and the turbulence, and the

R AL F—

' : ] losses due to the pressure excursions from the time-averaged
g pressure are all neglectéice., weakly driven, but still on-
5t linear, collisionless systeinwe obtain an exact conservation
E ] law? which leads to periodic solutions expressible in terms of
g elliptic functions, with arbitrary amplitude. It is a function of
i 1 the constant of the motion, which itself is not determined
: ] within the approximated model, but must be specified as an
E initial condition. This is due to a symmetry property of the
1 dynamical equations in the above mentioned limit which ac-
: tually corresponds to the fact that tAeandW equations are
| then transformable into a Hamiltonian system in a two-
| dimensional phase space. This “hidden symmetry'Sp®on-
| ,-’ ; taneously brokeby both the neglected nonlinear terig.,
/ ,-"“' / those in the energy equation and the coupling terms relating
/ ; / / // ] to the coherent modeand, more obviously, by the terms.
g a 3 We speculate that the fact that one observes, in certain con-
a ditions, rather regular, periodic relaxation phenomena in a
(b) Time/s highly turbulent, driven-dissipative system such as a toka-
mak may be a reflection of this spontaneously broken hidden
symmetry of the equations of plasma physics. It is of interest
to note in this context that in the paper of Sugama and
Horton'® the authors find that their conservation law leads

only to growth.
papers:>® which are closest in spirit to that of our own. Turning to the work of Diamonct al.® they too have
Taking them in turn, we compare and contrast their salienset up a self-consistent model of the L—H transition. Their
features and results with those of the present investigation. Imodel consists of three coupled equations for the character-
order to study the dynamics of the L to H transition, Sugamadstic variables, density fluctuation level, average poloidal
and Hortorl® set up a model consisting of three coupled or-shear flow and the pressure gradient. The equations again
dinary differential equations. The model is obtained for theexhibit stationary solutions corresponding to the L and H
resistive pressure-gradient driven turbulence and describesodes. The transition occurs when the turbulence drive is
the evolution of three characteristic variables, namely, théarge enough to overcome the damping of B flow;
potential energy contained in the pressure gradient, the tuthis leads to a power threshold for the transition. Unlike our
bulent kinetic energy and the shear flow energy. The energgnodel, perhaps surprisingly for a three degree-of-freedom
input to the plasma edge is included as a control parametesystem, neither of the above two models reveal chaatic
Thus the provenance of their model is different from ours butermittent or otherwisesolutions, “compound” sawteeth/
the spirit of the two approaches are similar. They find theirELMs and solutions which seem to resemble “monsters.”
equations to have steady solutiofidentified as “L” and  Current thinking on théEX B stabilizatiort* tends to favor
“H” confinement mode$, and by varying the energy input, turbulently generated localized “zonal flows” which serve
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FIG. 7. (a) Z vst for «=0.2, y=0.5 illustrating “bursty chaos.’{b) X vs
t for «=0.2, y=0.5 illustrating “bursty chaos.”
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Power spectrum of X(t)
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to control the very turbulence that generates them. In simpla tokamak. Taking a particular spatial region, the pressure
low dimensional models, this idea would translate itself into(Z) (or a measure of pressure or temperature gradient
the inclusion of terms likeb(W) which effectively turn a evolved by balancing the applied sourcassumed fixed
linear drive into a nonlinear instability with weaker growth. against both turbulent and nonturbulent losses. The turbu-
As has been mentioned ear”er, the nonlinear damplng ter%nce intensity W’ ana|ogous to K0|mogorov’k in his k

on the coherentmode can indeed be thought of as an em-_ ¢ mode) is driven in the first instance by the pressure and
bodiment of this idea. Indeed, it is clear that some suchnteracts in a model-dependent manner with the heat-flux as

mechanism is needed to explain why a linear mode with §,q| a5 the coherent mode amplitud¥)( The latter is also
relatively fast growth rate like then=n=1 resistive internal driven by pressure but damped by both turbulent and neo-
classical effects in a nonlinear sen&es in the Landau-—

kink is not unstable during the ramp.
Stuart theory. We then show that these ingredients are suf-
ficient to allow a rich variety of dynamical behavior,

VI. CONCLUSIONS
In this paper, our purpose has been to extend a previncluding steady(i.e., sawtooth or ELM-free statgsperi-

ously developed nonlinear dynamic model of sawteeth irpdic, quasi-periodic, compound periodic, chaotic, “bursty”
tokamaks to include the possible effects of a single cohererithaotic and “monsterlike” solutions.
We have concentrated on the qualitative dynamical as-

mode. The physical principles which lie at the foundations of
the model are rather general and would be expected to appfgects and refrained from detailed model comparisons with

to a variety of relaxation oscillations found experimentally in experiment, since inevitably this leads to choosing param-
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Power spectrum of X(t)
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eters semi-empiricall§1° The model shows that the most The present modelalong with its predecessorsets out to
basic tokamak concept@pressure or temperature-gradient abstract the essential features of this fundamentally nonlinear
drive, anomalous losses, nonlinear saturation by microturbusoupling with a view to isolating the crucial features. It is of
lence generatiorare sufficient to qualitatively reproduce the interest that, although other model¥ differ from the
dynamical characteristics of a range of plasma phenomenaresent one in physical basis and specific features and
This suggests that it should be possible to abstract from morachieve different aims, there is a certain invariant structure to
detailed dynamical descriptions of tokamak plasmas the esll of them which points toward a model-independent de-
sential ingredients of relaxation oscillations, which appear tcescription of relaxation phenomena mediated by turbulence in
be fundamentally nonlinear in character. tokamak plasmas. In view of the fact that even such grossly
Finally, we observe that there appear to be some deemversimplified dynamical systems can exhibit a remarkably
seated analogies between sawteeth and ELMing behavior iich array of states and bifurcations, the complexity and
tokamaks(and possibly also with fishbones and similar fast-range of relaxation oscillations and bifurcation behavior ob-
particle-driven oscillations involving velocity space effects served in tokamak experiments should not be too surprising.
This may have to do with the fact that the linear drive of the
equilibrium free energymanifested either through pressure
or current or temperature gradienis nonlinearly coupled to  AckNOWLEDGMENTS

turbulent transport, and both are in turn linked to some spe-
cific, macroscopic coherent modiee., them=1 in the case The authors thank Dr. J. W. Connor for many useful

of sawteeth and edge ballooning/peeling modes for ELMs suggestions. A referee is thanked for making several useful

Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



2392 Phys. Plasmas, Vol. 6, No. 6, June 1999 Thyagaraja, Haas, and Harvey

suggestions leading to an improvement of the paper. Thi$pP. H. Diamond, Y-M. Liang, B. A. Carreras, and P. W. Terry, Phys. Rev.
work was funded jointly by the U.K. Dept. of Trade and et 72 2565(1994.

S-I. Itoh, K. Itoh, A. Fukuyama, Y. Miura, and the JFT-2M Group, Phys.
Industry and Euratom. Rev. Lett.67, 2485(1991.

10H. Sugama and W. Horton, Plasma Phys. Controlled Fu&ian345
IF. A. Haas and A. Thyagaraja, Phys. Fluids3B3388(1991). (1995.

2F. A. Haas and A. Thyagaraja, Europhys. L&8, 285(1992. HA. Y. Aydemir, J. C. Wiley, and D. W. Ross, Phys. Fluids B 774
3F. A. Haas and A. Thyagaraja, Plasma Phys. Controlled FUgfo@15 (1989.

(1995. 2E_N. Lorenz, J. Atmos. ScR0, 130(1963.
4F. A. Haas and A. Thyagaraja, Fusion Techr&dl, 1 (1997. 13M. N. Bussac, R. Pellat, D. Edery, and J. L. Soule, Phys. Rev. RBtt.
SA. Thyagaraja and F. A. Haas, Phys. Fluid$B3252(1993. 1635(1975.

SL. Chen, R. B. White, and M. N. Rosenbluth, Phys. Rev. L&%.1122  #K. H. Burrell, Science281, 1816(1998.

(1984. 153, W. Connor, Plasma Phys. Controlled Fusi) 531 (1998.
’B. A. Carreras, P. H. Diamond, Y-M. Liang, V. Lebedev, and D. Newman, M. C. Zarnstorff, Bull. Am. Phys. So€APS), 40th Annual Meeting of the

Plasma Phys. Controlled Fusi@8, A93 (1994. Division of Plasma Physicé€New Orleang 43, No. 8, 1635(1998.

Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



