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A nonlinear dynamic model of relaxation oscillations in tokamaks
A. Thyagaraja,a) F. A. Haas,b) and D. J. Harvey
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB, United Kingdom

~Received 11 December 1998; accepted 23 February 1999!

Tokamaks exhibit several types of relaxation oscillations such as sawteeth, fishbones and Edge
Localized Modes~ELMs! under appropriate conditions. Several authors have introduced model
nonlinear dynamic systems with a small number of degrees of freedom which can illustrate the
generic characteristics of such oscillations. In these models, one focuses on physically ‘‘relevant’’
degrees of freedom, without attempting to simulate all the myriad details of the fundamentally
nonlinear tokamak phenomena. Such degrees of freedom often involve the plasma macroscopic
quantities such as pressure or density and also some measure of the plasma turbulence, which is
thought to control transport. In addition, ‘‘coherent’’ modes may be involved in the dynamics of
relaxation, as well as radial electric fields, sheared flows, etc. In the present work, an extension of
an earlier sawtooth model~which involved only two degrees of freedom! due to the authors is
presented. The dynamical consequences of a pressure-driven ‘‘coherent’’ mode, which interacts
with the turbulence in a specific manner, are investigated. Varying only the two parameters related
to the coherent mode, the bifurcation properties of the system have been studied. These turn out to
be remarkably rich and varied and qualitatively similar to the behavior found experimentally in
actual tokamaks. The dynamic model presented involves only continuous nonlinearities and is the
simplest known to the authors that can yield features such as sawteeth, ‘‘compound sawteeth’’ with
partial crashes, ‘‘monster’’ sawteeth, metastability, intermittency, chaos, periodic and ‘‘grassy’’
ELMing in appropriate regions of parameter space. The results suggest that linear stability analysis
of systems, while useful in elucidating instability drives, can be misleading in understanding the
dynamics of nonlinear systems over time scales much longer than linear growth times and states far
from stable equilibria.@S1070-664X~99!00506-6#
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I. INTRODUCTION

The purpose of the present paper is to consider qua
tively, by means of a physically motivated extension of
previously developed nonlinear model, some of thegeneric
features of two basic relaxation phenomena found in to
maks: namely sawteeth and Edge Localized Modes~ELMs!.
In earlier papers1–4 we developed a version of the mod
which effectively had only two degrees of freedom a
which we then applied to experimental situations. Our aim
the present work is rather different: first, we seek to consi
more explicitly the possible influence of a ‘‘coherent mod
on the system dynamics. Such a mode is known to exis
the sawtooth case, but is not always seen as a ‘‘precursor
the crash. The crash generally involves athermal energy
redistribution within the core, but not necessarily amagnetic
one~i.e., most modern tokamaks exhibit partial reconnecti
whenever an attempt is made to measure theq-profile within
the core!. It is one of the outstanding problems of sawtoo
dynamics to understand in detail how partial reconnection
the magnetic flux can be compatible with a temperature ob
crash.

Our second aim is to study the bifurcation properties
the model and consider such questions as: is dynamic s
lization of relaxation phenomena possible? Can simple m

a!Electronic mail: a.thyagaraja@ukaea.org.uk
b!Oxford Research Unit, The Open University, Boars Hill, Oxford.
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els exhibit ‘‘subcritical’’ bifurcations or ‘‘metastable’’ be-
havior? As we demonstrate by means of numerical soluti
to the present model, answers to both questions is a qual
‘‘yes.’’ It was an unexpected outcome of the model th
some solutions exhibit ‘‘bursty’’ chaos and ‘‘long tim
memory’’ related to ‘‘monster sawteeth.’’ The model als
demonstrates that it may be possible to dynamically stabi
~as suggested by us5 in the case of them51 resistive internal
kink! at least some of the large-scale relaxation oscillatio
The chaotic solutions tend to become periodic under the
fluence of external perturbations of a simple form and re
tively small amplitude. Another key conclusion one can dr
from the examples presented is that a linear ‘‘trigger’’ is n
necessarily involved in crashes. The system, in effect,
memory and this is sufficient for periodic, ‘‘double per
odic,’’ quasi-periodic and chaotic behavior. On the oth
hand, linear theory does appear to provide valuable guida
on the kinds of drive necessary for relaxation oscillations
occur and in determining regions of parameter space wh
transitions are likely to occur between steady and perio
states of the system.

Apart from the papers by us on the sawteeth cited abo
several authors have proposed semi-quantitative dynam
models of relaxation phenomena@fishbones,6 low to high
confinement~L–H! transitions,7,8 ELMs9,10# in tokamaks.
Typically, these low dimensional models are based on
small number of dynamical variables~i.e., functions of time!
which satisfy coupled nonlinear equations of motion. T

latter are sometimes derived from the full set of plasma equa-

0 © 1999 American Institute of Physics
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tions ~fluid or kinetic! after the introduction of certain sim
plifying assumptions. The idea is to capture the essenc
the qualitative properties of the real system in a model wh
is simple enough to understand. The analytical and com
tational tools which are required for this purpose often tu
out to be impractical in the case of the real system due to
very large number of degrees of freedom typical of su
systems. Often, one uses physical arguments to derive
equations governing these ‘‘reduced’’ model systems. T
constants~i.e., system parameters! in the relevant equation
are related to discharge and machine properties through
medium of standard equilibrium and stability theories. T
models, although grossly simplified, are supposed to prov
physically understandable paradigms which enable one
reach qualitative understanding of the rather complica
but hopefully generic aspects of the dynamics involved
actual experiments. The models also provide markers
more complete numerical simulations involving the full s
of plasma fluid/kinetic equations. Although, in principle, th
latter remain the mostgeneralmethod of theoretical investi
gation of relaxation phenomena, they are subject to m
limitations and resource constraints which are unlikely to
overcome in the near future. It has been noted by sev
authors~e.g., Diamond and co-workers8 and by us! active in
this field that, in analogy with condensed matter physics
ecology, reduced models such as ‘‘Ginzburg–Land
theory’’ or ‘‘predator–prey’’ population dynamics are ver
useful in bridging the rather large gap between strictly p
nomenological descriptions of experiments and ‘‘micr
scopic’’ theories based on complete equations of motion

In earlier investigations1–3 we attempted to construct
picture of sawtooth dynamics based on a two degree
freedom model, taking account of both turbulence and tra
port. Although them51 mode was present in the bac
ground turbulence, it did not play the central role required
it in the more conventional approach of Aydemiret al.,11 for
example. In the present paper we further develop our mo
to include the interaction between a ‘‘pressure-driven’’ c
herent mode and the turbulence. This more general s
results in a three degree-of-freedom system and is relev
with suitable interpretation of the dynamical variables a
control parameters, to both sawteeth and ELMs. It is, nev
theless, considerably simpler than the full-scale numer
simulation of the complete tokamak plasma dynamics. I
generally accepted that microinstabilities can enhance
damp coherent modes, depending upon the conditi
Equally, single, coherent modes can easily give rise to ‘‘s
ondary microinstabilities’’ which can alter the transpo
properties of the system drastically. It is also well-known12

that three or more degrees of freedom can lead to quite
qualitative effects such as ‘‘chaotic’’ behavior, as opposed
periodic solutions characteristic of two degree-of-freed
systems. The model presented below is not intended to
systematic approximation to the full set of equations, and
such, we do not attempt a rigorous derivation. Howev
physical arguments will be advanced to motivate the form
lation of the mathematical model.

The material presented is laid out as follows: in Sec.
we take our sawtooth model of the earlier papers and dev
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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it further as described above to include the dynamics o
coherent mode. This mathematical formulation is supp
mented by the physical ideas on which it is based. In Sec.
the analytical results relating to steady states and linear
bility of such stationary solutions are given. Section IV d
scribes the rather diverse ‘‘zoology’’ of the solutions of th
system of three nonlinear differential equations as cer
system parameters are varied. In particular, we discuss
bifurcation properties of the system as the coherent m
growth rate and nonlinear saturation characteristic are var
The concept of ‘‘coexistence’’ or metastability of the syste
is introduced and the regions where chaos, quasiperiod
and intermittency with ‘‘monster’’ sawtoothing occurs a
discussed. In Sec. V, we abstract the generic properties o
system and suggest that the dynamical equations, with s
able reinterpretation, may be applicable to ELM physics. E
perimentally, ELM characteristics often present a remarka
formal similarity to sawteeth wave forms, and theoretica
this may be a reflection of similar dynamical mechanisms
both sets of phenomena. We also present a brief discus
of the relation between our approach and two rec
works8,10 which are based on rather different physics b
share a philosophy similar to the present work. Our conc
sions are presented in Sec. VI.

II. DESCRIPTION OF THE MODEL

The model involves the dynamical interaction of thr
functions of time. These relate to suitable integrals o
space of appropriate variables~e.g., plasma pressure!. Of the
first two, Z(t) is a nondimensional measure of the pressu
andW(t) is taken to be a dimensionless measure of the
bulence intensity. In the present model we do not distingu
between electrostatic and electromagnetic turbulence,
though this could always be done by introducing separ
electrostatic and magnetic turbulence levels.8 However, this
would increase the number of degrees of freedom by at l
one. In principle,W stands for both effects, although in th
‘‘sawtooth’’ interpretation and possibly also the ELM inte
pretation, it more nearly represents magnetic fluctuation l
els. The third function of time,X(t) is a nondimensiona
measure of ‘‘coherent mode’’ activity. For example,X could
represent them51 island width. We first consider the saw
tooth model in the following discussion.

In the equations which follow, all variables and param
eters, except the time,t, andts will be dimensionless; as in
our earlier papers,2,3 ts is a typical energy confinement tim
appropriate to the problem.

Guided by our earlier work2,3 we consider the following
equations of motion:

ts

dZ

dt
512GZ~W!Z, ~1!

ts

dW

dt
5GW~Z,W,X!W, ~2!

ts

dX

dt
5GX~Z,W,X!X. ~3!
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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The nonlinear rate functions,GZ,W,X are assumed to take th
forms,

GZ~W!5~W1k!, ~4!

GW~Z,W,X!5@F~W!L~Z21!12~X2Xc!~GZ~W!Z21!#,

~5!

F~W!5
2W

11W
1k, ~6!

GX~Z,W,X!5g@~Z2Zc!2aXGZ~W!#. ~7!

The system is autonomous and the right hand sides are
tinuous functions of their arguments. Indeed, apart from
F(W) function, they are polynomials of at most third d
gree. In particular, they do not contain Heaviside functio
as ‘‘triggers.’’ These properties are qualitatively similar
the structure of the evolution equations of a tokamak plas
with constant sources and boundary conditions. From
earlier papers it is clear that this modelassumespartial re-
connection at the sawtooth crash and takes from experim
the fact that theq51 radius is hardly affected by the cras
Thus it describes thermal redistribution within theq,1 zone
in terms of anomalous transport triggered by the crash,
the current redistribution~in principle describable by the in
duction equation! is never complete~i.e., theq profile is only
slightly affected by the sawtooth!.

From the structure of these equations, it is clear that E
~1!–~3! imply that Z, W, andX can always be chosen to b
positive, and cannot change their sign. Equation~1! has an
inhomogeneous ‘‘source term,’’ which is normalized
unity. This implies thatk is a measure of nonturbulent loss
relative to the ‘‘drive,’’ or source. As it stands, the mod
involves six nondimensional control parameters,k, L, Xc ,
Zc , g anda. We have already noted thatts is a characteristic
time involved in the problem, which can of course be elim
nated by an appropriate re-scaling.

The physical interpretation and the provenance of th
equations will now be given. The equation forZ, i.e., Eq.
~1!, has already been derived in this form in our earl
papers.2,3 In these papers, it was assumed that the chang
pressure~represented byZ21) due to the dynamics wa
small compared to its time-average value~normalized to
unity!, and the turbulent loss was assumed to be linea
proportional to the normalized turbulence level,W. In the
present paper, we allow for large changes in the pressur~to
describe ‘‘monster sawteeth,’’ ‘‘giant ELMs,’’ etc.! by mak-
ing the turbulent loss term,2WZ, rather than2W. All other
‘‘nonturbulent losses’’ such as neoclassical and radiative
modeled by2kZ, wherek is a suitable constant. We not
that the present model reduces to the previous one in
limit, uZ21u,k!1.

Equation~1! then represents the change in the plas
stored energy due to heating~represented by the normalize
source term!, taking into account the turbulence-depende
losses~theWZ term! and any residual losses~due to neoclas-
sical and/or radiation effects! represented by thekZ term.
The model is highly simplified in that the residual~i.e.,
‘‘non turbulent’’! losses are crudely represented by a sim
‘‘relaxation time’’ approximation. The parameterk is ex-
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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pected to be a number lying between zero and unity in pr
lems of interest, although larger values may be appropriat
certain conditions. This change in form of the turbule
losses~relative to our original model! has an important quali-
tative effect: Even in the absence of thek term and the terms
in theW equation coupling all three dynamical variables, t
present model does not have a constant of the motion, un
our earlier one, and is fundamentally irreversible. In th
sense, the present model is more ‘‘generic’’ of driven dis
pative systems than the previous model which, in a limit,
to exactly integrable, periodic solutions.

We note that the coherent mode amplitude~e.g., island
width!, X, does not enter this energy ‘‘balance’’ equatio
directly. The transport due to the coherent mode is indirec
our model. Thus any losses are mediated directly by the
bulenceW, which will, itself, generally be affected by th
presence or otherwise of the coherent mode.

We next turn to Eq.~3!, which governs the tempora
evolution of the coherent mode. We have chosen
‘‘Landau–Stuart’’ type model equation of virtually definitiv
simplicity to represent the physics. In the absence of tur
lence~i.e., whenW[0) and in the linear limit (X!1), ob-
serve thatGX.g(Z2Zc). This says in effect that ifg.0,
andZ exceeds a certain ‘‘threshold value,’’Zc , the mode is
driven unstable by pressure~for example, a mechanism o
this kind was proposed by Bussacet al.13!. This fact suggests
that this is a generic feature of all temperature gradient~e.g.,
ion/electron temperature gradient modes! or pressure-driven
modes~e.g., interchange, neoclassical tearing or balloon
modes!. It is, in principle, possible to extract suitable expre
sions for g,Zc from analytic ~linear or nonlinear! stability
theory. It is clear that the actual ‘‘linear’’ growth rate i
g(Z2Zc)/ts . The interpretation of the second term ofGX is
now straightforward: It is a nonlinear saturation effect, fr
quently encountered in tearing mode theory and elsewh
The constanta measures the strength of this saturation ter
The smaller the value ofa, the larger the saturation ampl
tude of the mode. Note that ifa,0, we have a case o
nonlinear amplification of the linear instability~as might
happen with major disruptions!. In such cases the whol
model breaks down and recourse must be had to the
equations of motion. We note that the form of the saturat
term embodies the following intuitive idea: It is envisag
that strong turbulence would have adampingeffect on the
coherent mode, since nonlinear coupling of a linearly u
stable mode to a ‘‘sea’’ of stable modes of the plasma wo
tend to reduce its growth by a form of nonlinear radiati
damping. We note that it is also possible to interpret t
term as representing turbulence-drivenE3B flow shear
damping.14 In this interpretation, the flow is assumed to b
self-consistently generated byW ~via the sum of Reynolds
stresses and neoclassical effects, and is hence assumed
portional toW1k). This completes the motivation for th
choice ofGX . At no point do we introduce explicit ‘‘trigger’’
effects involving Heaviside functions which discontinuous
affect the dynamical evolution, as done by certain author9

Finally we discuss Eq.~2!, which governs the time evo
lution of W. First, we note the close resemblance ofGW to
the corresponding function in our earlier works.2,3 We envis-
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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ageL to be a large number, say>100, representing the fas
growth rate of the microscopic modes which constituteW,
relative to the ‘‘slow’’ time scale represented byts . How-
ever, the growth and decay of the turbulence are relate
the turbulence level itself, as explained in earlier wor
Thus, we have here anonlinear instabilityof the turbulence
driven by the pressure excess above threshold~i.e., Z.1)
which achieves the full linear growth rate,L/ts , only for
large turbulence levels. This means that small levels of
bulence tend to reduce growth rates to below the levels
dicted by linear theories. This again is an instance of non
ear effects tending to ‘‘ameliorate’’ linear instabilities, in th
instance, at small turbulence levels.

In the sawtooth interpretation of the equations,L is re-
lated to the ratio of the sawtooth period to the crash tim
The first term is exactly what we had used earlier. The pr
enance of the second term, proportional to2ts(X2Xc)
3(dZ/dt) is more subtle. Qualitatively, this term describ
the fact that as the coherent mode rises above a ce
threshold amplitudeXc , it can drive ‘‘secondary instabili-
ties’’ which grow from it. This is analogous to the generati
of modulational or parametric instability familiar in plasm
theory and elsewhere. The form we have chosen is poss
the simplest, given the basic requirement that the mode
semble our earlier model as much as possible. A key fea
of this second, coupling term is that, forX.Xc , the factor
multiplying it is directly proportional to the heat fluxout of
the system~i.e., to2 dZ/dt). The significance of this in the
ELM interpretation of the model is that it is actually a mat
ematical embodiment of a ‘‘heat-flux-driven’’ instability
When the pressure is falling, the heat-flux to the plasma e
can cause extra recycling which drives certain linear mo
unstable. Thus when the coherent mode amplitude is ab
threshold, rising pressures~at constant heating rate, th
means that the heat-flux to the boundary is reducing! have a
stabilizing effect on the turbulence through this term, wh
falling pressure adds to the growth ofW. In effect this term
describes the transformation of internal energy~or pressure
gradient! to turbulence and vice versa. Note also that unl
Z.1, this term is always small compared with the first ter
except at ‘‘crashes’’ when the time rate of change ofZ can
be high, orX is particularly large.

We had shown3 that the second term can be formal
derived, at least in part, from the equations of motion
making certain moment closure approximations. In fact,
though we shall not give the argument here, following
detailed extension of our earlier model, it is possible to
rive the2ts (dZ/dt) form of the second term without mak
ing moment closure approximations. It turns out that Le
law ~i.e., the induction equation! is responsible for the form
taken by this term. However, neither of these derivatio
leads to the (X2Xc) factor which is crucial to describe th
interaction with the coherent mode. The inclusion of th
factor is essentially postulated here rather than derived f
the complete dynamical equations of the plasma. It is
factor which is truly specific to the model, and makes
similar to semi-phenomenological, ‘‘predator–prey’’ o
‘‘Ginzburg–Landau’’ models which are not strictly derive
from microscopic equations of motion.
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
to
.

r-
e-
-

.
-

in

ly
e-
re

ge
s

ve

s
,

y
l-

-

’

s

m
is
t

III. STEADY STATES AND LINEAR STABILITY
PROPERTIES

In this section we give a brief account of the linear s
bility properties of the dynamic model. The equations sh
that there are essentially two sets of steady solutions. T
W50, Z51/k together with X50 or X5XH5Z
2Zc /@a(W1k)# gives one set. The second set hasZ51,
W512k and X50 or X5 (Z2Zc)/a. All of these solu-
tions may not be realized, since we require, on phys
grounds, that the three dynamical variables must be non
gative.

Consider the solutionW5X50; Z51/k. This is a
‘‘neoclassical’’ or ‘‘turbulence-free’’ state in which there i
no coherent mode activity. It may correspond to a sawtoo
free discharge. Suppose thatk,Zc satisfy, Z51/k,Zc,1
for arbitrary, positiveL, g, a, Xc . It is obvious from simple
inspection that the solution is linearly stable. Numerical c
culations also support this conclusion. Whenk,1, it is el-
ementary to show that this solution must necessarily be
early unstable, whatever the value ofX, L, g, XcZc .

Another steady solution is obtained by settingZ51, W
512k. This can only exist~since we requireW.0 on
physical grounds! if k,1. There are two possibilities: eithe
X50 or X5(12Zc)/a. If Zc.1, the second solution is im
permissible, butX50 is allowed. IfZc,1, both solutions are
allowed, but it is easily seen thatX50 is linearly unstable.
Let us therefore consider this case. AssumingL@1, a rela-
tively simple linear analysis of the full set of equations abo
this steady solution is easy to carry out. This shows that
steady state withZ51, W512k, X5(12Zc)/a is stable
provided (12Zc)/a2Xc,1/2(12k). If a is sufficiently
small ~i.e., when, a,(12Zc)/$Xc1 @1/2(12k)#%) this
steady solution then becomes unstable and gives rise to
riodic ‘‘limit cycle’’ oscillations, characteristic of a Hopf
bifurcation. Note that the criterion is independent ofL,g,ts .
This completes the enumeration of the steady solutions of
system and their linear stability properties. It is not hard
show that the dynamical variables must be bounded fu
tions of time~this is called ‘‘Lagrange stability’’!.

IV. NUMERICAL SIMULATIONS AND BIFURCATION
STRUCTURE

It turns out that very little more can be learned about
model using purely analytical methods. For example, to d
cuss even the linear stability of the periodic solutions wh
arise from the steady ones through a standard Hopf bifu
tion, one must have analytical forms of the solution to ap
Floquet theory. Unfortunately, no such forms are known. F
this reason, we consider the solutions of the initial va
problem purely numerically. Taking a sufficiently small tim
step and using a semi-implicit, predictor-correct
scheme,1–3 we time evolve the equations of motion with ch
sen sets of parameters and specified initial conditions.

We begin by considering the analytically predicted Ho
bifurcation. It turns out that the most interesting transitio
occur in thea,g space when all other parameters are k
fixed. For definiteness, the following values were assigne
the ‘‘fixed’’ parameters:ts525 ms, L5100.0, k50.1, Xc
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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50.1, Zc50.25. According to linear theory~cf. Sec. III!, the
transition from steady to periodic solution should take pla
at a51.14. We show solutions in thisa,g plane in a log–log
plot ~Fig. 1!. Essentially, it is a bifurcation diagram of th
system which shows several remarkable features.

The most interesting~and unexpected! fact about this
transition between stationary and periodic behavior is
following: According to linear theory, ata5ac[ (1
2Zc)/$Xc1 @1/2(12k)#%, the steady solution should bifur
cate to a periodic limit cycle. Interestingly, we observe th
the system appears to be ‘‘metastable’’ at this transiti
This is most clearly seen forg510. Thus, when the system
is started off with initial conditions very close to the statio
ary solution, whenevera exceeds the ‘‘critical’’ value,ac ,
we find the solution is ‘‘attracted’’ to the stable stationa
solution. However, for initial conditions which are ‘‘far’
from this state, the system evolves into a finite amplitu
periodic solution! Thus, the system evolution is partly det
mined by the initial conditions and both the stationary a
the periodic solutions ‘‘coexist’’ in some neighborhood
the ‘‘critical’’ value for a ~the reader will recall from the
analysis of Sec. III, the transition is independent ofg!. For
g510, Fig. 1 shows that as long asa does not exceed a
second critical valueof 2.9, there is a ‘‘coexistence region
where we obtain both the periodic solution and the station
one depending on the initial conditions. Figure 2~a! shows
the three-dimensional ‘‘phase portrait’’~in Z21, logW,X
space! of the trajectory of the system, starting with initia
conditions:Z051.05, W050.9, X050.6. In these simula-
tions we have taken the time stepDt51.2531026 s. The
final epoch is 2.4 s.

It is clearly seen that the trajectory spirals into the fix
point. Keeping all the system parameters exactly at th
values but changing the initial conditions toZ055.0, W0

50.1, X050.6, we obtain the periodic solution, as illustrat
in Fig. 2~b!. The three-dimensional ‘‘limit cycle’’ is pictured
in this diagram while the functionZ(t) is given in Fig. 2~c!.

FIG. 1. Bifurcation structure of system forL5100, k50.1, Xc50.1, Zc

50.25.
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It is evident that this finite amplitude ‘‘sawtooth oscillation
is very different from the stationary solution and yet, equa
stable~i.e., numerically computable!. To demonstrate the sta
bility of this periodic solution to small amplitude, external
imposed perturbations, a finite amplitude ‘‘noise’’ or pertu
bation term of the form,W1/2a cos(vt) was added to theW
equation with a51.031022, v53/ts . The solution was
found to be unaffected by this level of externally impos
perturbation. At larger amplitudes, the solution is affect
but its qualitative feature of periodicity is preserved.

This metastability or simultaneous coexistence of a
riodic and steady solution for the same set of system par
eters is of considerable conceptual importance. It dem
strates a fundamental limitation of linearized stabil
analyses of complex nonlinear systems such as toka
plasmas or fluids. For example, although the laminar flow
a pipe may belinearly stableto small amplitude perturba
tions atarbitrary Reynolds numbers, above an experime
tally well-defined ‘‘critical Reynolds number’’ the system
may exhibit turbulence. In the present case, a linearly sta
steady solution and aperiodic solution ~though not a turbu-
lent one as in fluid mechanics! are shown to coexist at th
same parameter values. Such behavior has not previo
been reported~to the best of our knowledge! in low dimen-
sional dynamical model systems such as ours. This type
metastability can, under appropriate circumstances, lea
hysteresis as the parametersa and g are varied on longer
time scales than the typical period of the system~due possi-
bly to the sources imposed on the system varying in time!.

The next type of bifurcation exhibited by the system
found when, for fixedg, one lowersa. At a value of a
,ac (51.14 in our case!, the system acquires ‘‘double pe
riodicity.’’ An example of this is illustrated@for the coherent
mode amplitudeX(t)# by Fig. 3. The solution is periodic bu
has a ‘‘partial crash’’ within a single period and thus repr
sents ‘‘compound sawteeth.’’ Note the initial transient sho
ing several secondary ‘‘crashes.’’ In a rather narrow range
parameters, this periodic solution appears to bifurcate in
‘‘quasi-periodic’’ one with two independent periods. An e
ample is shown in Fig. 4. In fact, this type of solution
difficult to readily distinguish from the ‘‘chaotic’’ solutions
and only a few examples have been found. This suggests
the region in the parameter space where such quasi-per
solutions are found is rather small.

As we noted earlier, the key feature which distinguish
autonomous systems with three or more degrees of free
from those with only two is the possibility of chaotic solu
tions. We have indeed found chaotic solutions~as indicated
in Fig. 1! for a variety of parameter values. For examp
Figs. 5~a!, 5~b!, 5~c! illustrate the solution obtained fora
50.25, g50.5. The sharp ‘‘corners’’ in the three
dimensional phase portrait@Fig. 5~c!# are artifacts of insuffi-
cient graphical resolution of the ‘‘crashes,’’ not actual nu
merical simulation errors. This is because the time step
0.125 ms is easily able to resolve the crash, but the tim
between successive plotted points is of the order of a m
second.

In Figs. 5~d!, 5~e! we plot the frequency power spectru
of X in the chaotic case and a ‘‘periodic’’ casea50.8, g
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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FIG. 2. ~a! Phase portrait of system forZ051.05, W0

50.9, X050.6. ~b! Phase portrait of system forZ0

55.0, W050.1, X050.6. ~c! Z vs t for Z055.0, W0

50.1, X050.6.
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50.5 for comparison. As might be expected, chaotic spe
have a broadband decaying at high frequencies like an
verse power of the frequency in addition to sharp ‘‘line sp
tra’’ indicating coherent components. The purely period
solutions have mainly sharp lines at the harmonics of
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
ra
n-
-

e

fundamental sawtooth frequency. In the chaotic solutions
is interesting to note ‘‘frequency chirping’’ effects in th
neighborhood of crashes.

We have studied the effects of externally imposed pe
odic perturbations on the chaotic solutions. As an illustrat
ense or copyright; see http://pop.aip.org/about/rights_and_permissions



2386 Phys. Plasmas, Vol. 6, No. 6, June 1999 Thyagaraja, Haas, and Harvey
FIG. 2. ~Continued.!
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example, Figs. 6~a!, 6~b! show the ‘‘dynamic stabilization’’
of the chaotic solution presented above when an exte
perturbation of the form,Fext5eW1/2cos(vt); e50.1, v
53/ts was applied. It is seen that the solution is very simi
to the ‘‘double periodic/compound sawtooth’’ case. It is r
markable that this periodic solution which bifurcates into t
chaotic one can be ‘‘reconstructed’’ in this way by applyi
an external perturbation, which itself is not significant exc

FIG. 3. X vs t for a50.4, g50.5 showing ‘‘partial sawteeth’’ or double
periodicity.
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at very small turbulence amplitudes. The latter fact can
seen by comparing the external perturbation withLW, for
example.

Keepingg50.5, if we lowera to 0.2, we find ‘‘bursty
chaos.’’ This type of highly irregular intermittent solution
illustrated in Figs. 7~a!, 7~b!. The rather large coherent mod
excursions are notable in these states.

As g increases, we observe solutions which have qu
tative features of the so-called ‘‘monster’’ sawteeth. Th

FIG. 4. X vs t for a50.5, g51.0 showing ‘‘quasi-periodicity.’’
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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FIG. 5. ~a! Z vs t for a50.25, g50.5 showing ‘‘chaotic’’ sawteeth.~b! X vs t for a50.25, g50.5 showing ‘‘chaotic’’ sawteeth.~c! Three-dimensional
phase portrait (a50.25, g50.5) showing ‘‘strange attractor.’’~d! Frequency power spectrum ofX in the chaotic case (a50.25, g50.5). Note broad
‘‘incoherent’’ component at high frequencies in addition to a few sharp ‘‘line’’ spectra indicating coherent components.~e! Frequency power spectrum ofX
in a periodic case (a50.8, g50.5). Note the sharp coherent lines~essentially harmonics of the fundamental sawtooth frequency! and exponential decay o
power at high frequency, in contrast to the power law decay of the chaotic spectrum in~d!.
e
y
-

tio
e
o

w
ur
Th

n-

so
e

ly
he

.
s
ans
for a50.2, g51, we find solutions plotted in Figs. 8~a!,
8~b!, 8~c!. A curious feature of this type of solution is th
fact that the ‘‘pressure,’’Z, attempts to rise to the stead
state,Z51/k during a period when there is very little turbu
lence, but rather large and rising values ofX exist. As the
linear theory shows, this state is unstable, and the evolu
is always terminated by a crash when a very substantial d
radation of plasma pressure takes place. The coherent m
is virtually totally suppressed for a while. The monster sa
tooth exhibits both precursors and, interestingly, ‘‘postc
sors.’’ The crashes appear to follow a random pattern.
power spectrum ofX shows the ‘‘1/f ’’ type behavior, illus-
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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trative of the concentration of power at the lowest freque
cies.

It is interesting to note that these ‘‘monsters’’ can al
be ‘‘tamed’’ by dynamic stabilization. As before, when w
include a periodic perturbation:Fext5eW1/2cos(vt), e
55.0, v53/ts , we find that the solution becomes near
periodic with relatively short period and low amplitudes. T
results are shown in Figs. 9~a!, 9~b!, 9~c!. The power spec-
trum shows that the power at 3/ts5120 Hz is relatively small
compared with the oscillation amplitudes of the sawtooth

This completes the description of the ‘‘zoology’’ of thi
system. It should be emphasized that we have by no me
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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explored all parts of the parameter space. We have, howe
considered the case whenF[1, corresponding to purely lin
ear growth of turbulence in theW equation. A very similar
bifurcation diagram is obtained with the difference that t
‘‘metastability’’ of the periodic solution appears to be a
sent.

V. APPLICATION TO ELM DYNAMICS

Edge Localized Modes~ELMs! are of great importance
in H-mode tokamak physics since they provide the mean
exhaust impurities and helium ash, and help to keep the e
plasma density stable. A recent survey with references ca
found in the review by Connor.15 It is believed that large
ELMs ~‘‘giant’’ or Type I ! may place unacceptable therm
loads on divertors and other edge components. On the o
hand, continuous small ELMs may be beneficial to a pow
plant. Much effort has gone into understanding the r
causes of L–H transitions, ELMs and phenomena associ
with them. It is probable that ideal magneto hydrodynam
~MHD! pressure-driven ~‘‘ballooning’’ ! and/or current-
driven ~‘‘peeling’’ ! modes are responsible for ELMs. It
also likely that radial electric fields and flow shear associa
with them play a role in stabilizing ELMs.

In the present work, we take a qualitative approach a
consider the ELM phenomenon as a type of relaxation os
lation due to the coupling of pressure~or its radial gradient;
the model does not differentiate between them!, electromag-
netic turbulence, and a large scale, MHD ‘‘coherent’’ mod
In H mode, when the turbulence is low, the pressure pro
at the edge steepens, and drives both the coherent an
turbulent fluctuations of the magnetic field. The latter
creases the transport and serves to bring down the grad
but due to nonlinearity, there is overshoot and one obta
either a limit cycle or chaotic oscillations. The model deli
erately avoids the explicit introduction of radial electric fie
effects and electrostatic fluctuations, not because they
unimportant, but simply to keep the conceptual struct

FIG. 5. ~Continued.!
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simple and the number of free parameters as small as
sible. It shows that given the form of anomalous transp
and any pressure or temperature gradient-driven instab
mechanism, a relatively simple set of equations can qua
tively reproduce a variety of properties of ELMs. Of partic
lar interest are the ‘‘chaotic’’ solutions and the fact that th
may be stabilizable by suitable external perturbations. T
model makes the qualitative prediction that such dynam
perturbations could, in suitable conditions, ameliorate the
fects due to large ELMs and may be employable using v
ous heating and/or momentum sources.

We now relate our work to two previously publishe

FIG. 6. ~a! X vs t for a50.25, g50.5 illustrating ‘‘dynamic stabilization’’
of chaos by a periodic, small amplitude external perturbation.~b! Z vs t for
a50.25, g50.5 illustrating ‘‘dynamic stabilization’’ of chaos by a peri
odic, small amplitude external perturbation.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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papers,10,8 which are closest in spirit to that of our own
Taking them in turn, we compare and contrast their sali
features and results with those of the present investigation
order to study the dynamics of the L to H transition, Suga
and Horton10 set up a model consisting of three coupled
dinary differential equations. The model is obtained for t
resistive pressure-gradient driven turbulence and descr
the evolution of three characteristic variables, namely,
potential energy contained in the pressure gradient, the
bulent kinetic energy and the shear flow energy. The ene
input to the plasma edge is included as a control parame
Thus the provenance of their model is different from ours
the spirit of the two approaches are similar. They find th
equations to have steady solutions~identified as ‘‘L’’ and
‘‘H’’ confinement modes!, and by varying the energy inpu

FIG. 7. ~a! Z vs t for a50.2, g50.5 illustrating ‘‘bursty chaos.’’~b! X vs
t for a50.2, g50.5 illustrating ‘‘bursty chaos.’’
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transitions between these states are obtained. The shear
which we do not include, is responsible for the transiti
being similar to a first or second order phase transition. W
sufficient energy, the H mode becomes unstable and bi
cates to a limit-cycle which shows periodic oscillations ch
acteristic of ELMs. Of the differences between their wo
and ours, there is one which seems to merit comment. T
study makes no use of the inductive electric field. In o
case, such a field is eliminated by the use of Faraday’s eq
tion, thus leading to magnetic turbulence as one of our v
ables. It is instructive to note that recently16 it has been found
experimentally that even in regions where flow shear sta
lization reducesion energyand particle transport to near
neoclassical values, the electron thermal diffusivity can
high. This is suggestive that magnetic turbulence-depend
losses are probably important in determining the course
electron pressure evolution and micro-instabilities driven
it.

A general point worthy of some discussion is the fa
that in the limit when the ‘‘neoclassical losses,’’ the couplin
between the coherent mode and the turbulence, and
losses due to the pressure excursions from the time-aver
pressure are all neglected~i.e., weakly driven, but still anon-
linear, collisionless system!, we obtain an exact conservatio
law2 which leads to periodic solutions expressible in terms
elliptic functions, with arbitrary amplitude. It is a function o
the constant of the motion, which itself is not determin
within the approximated model, but must be specified as
initial condition. This is due to a symmetry property of th
dynamical equations in the above mentioned limit which
tually corresponds to the fact that theZ andW equations are
then transformable into a Hamiltonian system in a tw
dimensional phase space. This ‘‘hidden symmetry’’ isspon-
taneously brokenby both the neglected nonlinear terms~i.e.,
those in the energy equation and the coupling terms rela
to the coherent mode!, and, more obviously, by thek terms.
We speculate that the fact that one observes, in certain
ditions, rather regular, periodic relaxation phenomena i
highly turbulent, driven-dissipative system such as a to
mak may be a reflection of this spontaneously broken hid
symmetry of the equations of plasma physics. It is of inter
to note in this context that in the paper of Sugama a
Horton10 the authors find that their conservation law lea
only to growth.

Turning to the work of Diamondet al.,8 they too have
set up a self-consistent model of the L–H transition. Th
model consists of three coupled equations for the charac
istic variables, density fluctuation level, average poloid
shear flow and the pressure gradient. The equations a
exhibit stationary solutions corresponding to the L and
modes. The transition occurs when the turbulence drive
large enough to overcome the damping of theE3B flow;
this leads to a power threshold for the transition. Unlike o
model, perhaps surprisingly for a three degree-of-freed
system, neither of the above two models reveal chaotic~in-
termittent or otherwise! solutions, ‘‘compound’’ sawteeth
ELMs and solutions which seem to resemble ‘‘monsters
Current thinking on theE3B stabilization14 tends to favor
turbulently generated localized ‘‘zonal flows’’ which serv
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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FIG. 8. ~a! Z vs t for a50.2, g51 illustrating ‘‘intermittent monsters.’’~b!
X vs t for a50.2, g51 illustrating ‘‘intermittent monsters.’’~c! Fourier
power spectrum ofX for a50.2, g51 of the ‘‘monster.’’
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to control the very turbulence that generates them. In sim
low dimensional models, this idea would translate itself in
the inclusion of terms likeF(W) which effectively turn a
linear drive into a nonlinear instability with weaker growth
As has been mentioned earlier, the nonlinear damping t
on thecoherentmode can indeed be thought of as an e
bodiment of this idea. Indeed, it is clear that some su
mechanism is needed to explain why a linear mode wit
relatively fast growth rate like them5n51 resistive internal
kink is not unstable during the ramp.

VI. CONCLUSIONS

In this paper, our purpose has been to extend a pr
ously developed nonlinear dynamic model of sawteeth
tokamaks to include the possible effects of a single cohe
mode. The physical principles which lie at the foundations
the model are rather general and would be expected to a
to a variety of relaxation oscillations found experimentally
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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a tokamak. Taking a particular spatial region, the press
(Z) ~or a measure of pressure or temperature gradien! is
evolved by balancing the applied source~assumed fixed!
against both turbulent and nonturbulent losses. The tur
lence intensity (W, analogous to Kolmogorov’sk in his k
2e model! is driven in the first instance by the pressure a
interacts in a model-dependent manner with the heat-flux
well as the coherent mode amplitude (X). The latter is also
driven by pressure but damped by both turbulent and n
classical effects in a nonlinear sense~as in the Landau–
Stuart theory!. We then show that these ingredients are s
ficient to allow a rich variety of dynamical behavio
including steady~i.e., sawtooth or ELM-free states!, peri-
odic, quasi-periodic, compound periodic, chaotic, ‘‘bursty
chaotic and ‘‘monsterlike’’ solutions.

We have concentrated on the qualitative dynamical
pects and refrained from detailed model comparisons w
experiment, since inevitably this leads to choosing para
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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FIG. 9. ~a! X vs t for a50.2, g51 illustrating dynamic stabilization of
monsters.~b! Z vs t for a50.2, g51 illustrating dynamic stabilization of
monsters.~c! Fourier power spectrum ofX for a50.2, g51 of the dynami-
cally stabilized ‘‘monster.’’ The applied perturbation frequency is 120 H
Compare with~c! for the unstabilized monster.
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eters semi-empirically.8,10 The model shows that the mo
basic tokamak concepts~pressure or temperature-gradie
drive, anomalous losses, nonlinear saturation by microtu
lence generation! are sufficient to qualitatively reproduce th
dynamical characteristics of a range of plasma phenom
This suggests that it should be possible to abstract from m
detailed dynamical descriptions of tokamak plasmas the
sential ingredients of relaxation oscillations, which appea
be fundamentally nonlinear in character.

Finally, we observe that there appear to be some de
seated analogies between sawteeth and ELMing behavi
tokamaks~and possibly also with fishbones and similar fa
particle-driven oscillations involving velocity space effect!.
This may have to do with the fact that the linear drive of t
equilibrium free energy~manifested either through pressu
or current or temperature gradients! is nonlinearly coupled to
turbulent transport, and both are in turn linked to some s
cific, macroscopic coherent mode~i.e., them51 in the case
of sawteeth and edge ballooning/peeling modes for ELM!.
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
u-

a.
re
s-
o

p-
in

-

e-

The present model~along with its predecessors! sets out to
abstract the essential features of this fundamentally nonlin
coupling with a view to isolating the crucial features. It is
interest that, although other models7–10 differ from the
present one in physical basis and specific features
achieve different aims, there is a certain invariant structur
all of them which points toward a model-independent d
scription of relaxation phenomena mediated by turbulenc
tokamak plasmas. In view of the fact that even such gros
oversimplified dynamical systems can exhibit a remarka
rich array of states and bifurcations, the complexity a
range of relaxation oscillations and bifurcation behavior o
served in tokamak experiments should not be too surpris
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