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The MARS-F code [Y. Q. Liu et al., Phys. Plasmas 7, 3681 (2000)] is applied to numerically

investigate the effect of the plasma pressure on the tearing mode stability as well as the tearing

mode-induced electromagnetic torque, in the presence of a resistive wall. The tearing mode with a

complex eigenvalue, resulted from the favorable averaged curvature effect [A. H. Glasser et al.,
Phys. Fluids 18, 875 (1975)], leads to a re-distribution of the electromagnetic torque with multiple

peaking in the immediate vicinity of the resistive layer. The multiple peaking is often caused by the

sound wave resonances. In the presence of a resistive wall surrounding the plasma, a rotating

tearing mode can generate a finite net electromagnetic torque acting on the static plasma column.

Meanwhile, an equal but opposite torque is generated in the resistive wall, thus conserving the total

momentum of the whole plasma-wall system. The direction of the net torque on the plasma is

always opposite to the real frequency of the mode, agreeing with the analytic result by Pustovitov

[Nucl. Fusion 47, 1583 (2007)]. When the wall time is close to the oscillating time of the tearing

mode, the finite net torque reaches its maximum. Without wall or with an ideal wall, no net torque

on the static plasma is generated by the tearing mode. However, re-distribution of the torque

density in the resistive layer still occurs. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4861376]

I. INTRODUCTION

The tearing mode is one of the most important magneto-

hydrodynamics (MHD) instabilities in magnetic confined

plasmas. The tearing mode can lead to the deterioration of

the confinement, mode locking to the external resistive wall,

and plasma disruption.1–3 The onset of the neoclassical tear-

ing mode (NTM) provides a limitation for achievable b (the

ratio of the averaged plasma pressure to the magnetic pres-

sure). It is known that the favorable averaged curvature of

the equilibrium magnetic field has strong stabilization effect

on the tearing mode. The tearing mode is unstable only when

the tearing mode parameter D0ext exceeds a critical positive

value, in the presence of the favorable magnetic curvature

and the finite pressure gradient.4–6

This work numerically investigates the finite equilib-

rium pressure gradient effect (i.e., the GGJ-effect)4 on the

resistive wall tearing mode, as well as the associated net

electromagnetic (EM) torque produced by a rotating tearing

mode that acts back on the (static) plasma. In this work, we

solve the resistive MHD equations in a full toroidal geometry

with no ordering assumptions, using the MARS-F code. It is

confirmed that the plasma pressure has a stabilization effect

on the tearing mode in the lower bN region, which results

from the favorable average curvature of the equilibrium

magnetic field. The curvature affects the growth rate of the

classical tearing mode through the modification of the inner

layer solution.4 In addition, it is found that when b

approaches the no-wall beta-limit, the plasma pressure desta-

bilizes the mode and helps to couple the tearing mode to

global kink structures. The high plasma pressure (but lower

than the no-wall bN limit) induced coupled tearing-kink

structure may be experimentally investigated, through the

measurement of the island structure using, e.g., the electron

cyclotron emission (ECE) diagnostic.

The physics of the EM torque on a rotating plasma has

been investigated in details, e.g., in Refs. 7–12, where the

torque appears as a momentum sink term. Reference 13

experimentally shows that a considerable amount of torque

can be generated by the resistive activity in a tokamak

plasma, based on the momentum exchange between the

plasma and the resistive wall. In this work, the rotation of

the tearing mode in a static plasma is induced by the strong

curvature effect, which further generates a net torque. We

note that certain physics aspects of the EM torque presented

here, such as the dependence of the torque on the mode’s fre-

quency as well as on the wall penetration time, are similar to

that predicted by earlier theories in Refs. 8, 11, and 14. The

EM torque presented in this work may serve as a momentum

source term, in addition to other possible sources, for gener-

ating intrinsic rotation in a tokamak plasma. In the case of an

ideal wall or without wall, a rotating tearing mode cannot

produce a finite net torque on the plasma, but it can still yield

a significant re-distribution of the torque in the immediate

vicinity of rational surfaces, due to the continuum sound

wave resonances. Here, the “re-distribution” refers to the

fact that the sound wave resonance modifies (redistributes)

the torque density compared to cases where the sound wavea)Electronic mail: haogz@swip.ac.cn
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resonance does not occur. One such example is the zero beta

plasma. In another situation, with a finite pressure plasma,

the sound wave resonance may still not occur if the perturba-

tion frequency matches the plasma flow frequency.

This finite net torque regime with a resistive wall may

indeed be of practical importance for the present-day toka-

maks, since almost all present-day devices as well as ITER

have resistive walls surrounding the plasma, and normally

the GGJ-effect is strong in these finite pressure plasmas.

Therefore, the resistive wall solution is actually the most

common, in practice, compared to the no-wall or ideal-wall

solution, where the net torque acting on the plasma vanishes.

Following this Introduction, Sec. II briefly presents the

basic formulation used in the computational model. The lin-

ear, single MHD fluid, toroidal code MARS-F15 is applied to

compute the tearing mode stability and the associated EM

torque. Section III reports numerical results on detailed inves-

tigation of the TM stabilization by a finite plasma pressure,

on generation of the EM torque, and on parametric study of

the net torque amplitude. Conclusion is drawn in Sec. IV.

II. FORMULATION

A. Resistive MHD

The linear, single fluid, toroidal MHD code MARS-F is

applied to calculate the eigenvalue of the TM, as well as the

associated electromagnetic torque in the presence of a resis-

tive wall. No plasma rotation is assumed. The linearized

resistive MHD equations are written as

qp2n ¼ �rP1 þ j� Bþ J�Q; (1)

pQ ¼ pr� ðn� BÞ � r � gj; (2)

P1 ¼ �n � rP� CPr � n; (3)

j ¼ r�Q; (4)

where P1, n, j, and Q represent the perturbed pressure, plasma

displacement, current, and magnetic field, respectively. q, B,

J, and P are the equilibrium plasma density, magnetic field,

current, and pressure, respectively. g is the plasma resistivity,

which is assumed a constant along the plasma minor radius.

C is the ratio of specific heats, with C¼1 corresponding to

the incompressible limit.6 p¼ cþ ixr denotes the eigenvalue

of the tearing mode with c and xr being the mode’s growth

rate and real frequency, respectively. We note that xr can be

a finite value even in a static plasma, due to the stabilization

effect from the plasma pressure gradient.4

B. Calculation of electromagnetic torque

In this work, a straight field line coordinates ðs; v;/Þ are

adopted, where s �
ffiffiffiffiffiffi
wp

p
is the square root of the normalized

poloidal flux wp with s¼ 0 and s¼ 1 indicating the magnetic

axis and the plasma boundary, respectively. v and / repre-

sent the general poloidal angle and geometrical toroidal

angle, respectively. An axis-symmetric coordinate system is

assumed in the present work. The perturbed magnetic field

and current are written as

Q ¼ Q1rv�r/þ Q2r/�rsþ Q3rs�rv; (5)

j ¼ j1rv�r/þ j2r/�rsþ j3rs�rv: (6)

Using the above expressions, the surface averaged toroidal

electromagnetic torque density, which is a function of the

minor radius alone, is obtained

Tj�Q ¼
p
J0

þ
Reðj1Q2� � j2Q1�Þdv; (7)

where J0 ¼
Þ

Jdvd/ with jacobian J ¼ ðrv�r/ � rsÞ�1
.

The symbol “�” denotes complex conjugate. We point out

that the above equation is valid in an axis-symmetric coordi-

nate equilibrium. Note that, by using the volumetric jacobian

here, we define a volume averaging between two neighbor-

ing flux surfaces for the torque density.16 The above equation

shows that the toroidal EM torque is determined by both the

radial and poloidal components of the perturbed quantities

(current and magnetic field), and is not related to the toroidal

component. Equation (7) can be rewritten as a summation of

all the poloidal Fourier harmonics

Tj�Q ¼
2p2

J0

X
m

Reðj1
mÞReðQ2�

m Þ � Imðj1mÞImðQ2�
m Þ

�
� Reðj2mÞReðQ1�

m Þ þ Imðj2
mÞImðQ1�

m Þ�: (8)

Seven harmonics (m¼�1, 0, 1, …, 5) are included for a

large aspect ratio (¼10) equilibrium considered in this work.

The net toroidal EM torque, acting on the whole plasma col-

umn, is computed by (weighted) integration of the torque

density along the plasma minor radius

TORQ1 � Tnet ¼
ð

Tj�QJ0ds: (9)

Alternatively, the net toroidal TM torque can also be calcu-

lated as12

TORQ2 � Tnet ¼ p
þ

R2

J
ReðQ1Q3�Þdv; (10)

where the integral is carried out along any closed surface in

the vacuum region between the plasma surface and the resis-

tive wall.11,12 Since the EM torque generated by MHD activ-

ities is strongly localized near resonant surfaces, it is critical

to ensure numerical accuracy in computing the net torque. In

the results shown in this work, the net torque is always com-

puted using both methods: the plasma volume integration

method (TORQ1) and the vacuum surface integration

method (TORQ2). The agreement between two methods

serves as an indicator of the numerical accuracy for the tor-

que computation.

III. NUMERICAL RESULTS

A. Equilibrium

In order to clearly demonstrate the influence of the

plasma pressure on the tearing mode stability and on the
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generation of the electromagnetic torque, we choose a simple

toroidal equilibrium, with the aspect ratio of 10 and with

a circular plasma cross section, surrounded by a resistive

wall of circular shape. The plasma boundary and the wall

are shown in Fig. 1. The surface averaged equilibrium

current density and the equilibrium pressure are defined

as functions of the poloidal magnetic flux (s ¼
ffiffiffiffiffiffi
wp

p
) as:

hJi ¼ J0ð1� s2Þ and P ¼ P0ð1� s2Þ2, respectively, where

J0 and P0 label the current and pressure amplitudes at the

magnetic axis, respectively. These values are chosen to

obtain the on-axis safety factor q0¼ 1.05, which is fixed

while scanning the normalized plasma pressure, bN, in the

computations to be shown. Here, bN � b½%�a½m�B0½T�=
Ip½MA�, where b ¼ hPi=ðB2

0=2l0Þ is the ratio of the volume

averaged plasma pressure to the magnetic pressure, B0 the

on-axis vacuum toroidal magnetic field, and Ip the total

plasma current.

Examples of the radial profiles of the equilibrium pres-

sure and current are shown in Fig. 2, for various choices of

bN. The corresponding q-profiles, with fixed q0, are plotted

in Fig. 3. We notice that the plasma pressure profile signifi-

cantly changes with varying bN, whilst the current and the

q-profiles almost do not change with bN. The radial position

of the q¼ 2 rational surface slightly shifts inward with

higher bN. There is only one rational surface inside the

plasma associated with the n¼ 1 TM, for the equilibria

considered here. With varying bN, all equilibria are

self-consistently obtained by running the toroidal equilib-

rium code CHEASE.17 The magnetic Lundquist number

S � sR=sA ¼ 6:3� 107 is assumed in the computations,

where sA ¼ R0
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
=B0, and sR ¼ l0a2=g. Here, R0 is the

major radius of the plasma. q0 is the plasma density at the

magnetic axis. The plasma resistivity g is assumed to be uni-

form along the minor radius. The above Lundquist number

corresponds to a plasma resistivity of g¼ 1.3� 10�8, which

is in the order of the Spitzer resistivity in typical present day

tokamak plasmas.18 On the other hand, the torque physics

revealed in this work does not depend on the choice of the

value of the Lundquist number.

B. Effect of finite equilibrium pressure on the tearing
mode stability

The TM dispersion relation for a large aspect ratio circu-

lar plasma, including the finite plasma pressure, is given

as4,6,19

D0int ¼ 2:12ð1þ gÞAðpsAÞ5=4
1� DRB

1þ g
ðpsAÞ�3=2

� �
; (11)

where p is the TM eigenvalue, which is determined by

matching D0int (the solution in the resistive layer) and the

tearing index D0ext (the solution in the ideal region outside

the resistive layer). The factors A and B are defined in Ref.

19. The factor g ¼ ð1� p
4
ÞjDRjG is normally positive, with

the G-factor being inversely proportional to the ratio of spe-

cific heats C. Thus, g¼ 0 corresponds to the incompressible

limit, whilst g¼1 implies that the sound wave vanishes

inside the plasma. The analytic expression for the resistive

interchange index DR was derived in Ref. 5 for a large aspect

ratio equilibrium. This index is roughly proportional to the

pressure gradient at the rational surface and is normally a

negative number for tokamak equilibria. A negative DR

implies that the resistive interchange mode is stable and the

plasma pressure in this case has a strong stabilizing effect on

FIG. 1. The plasma boundary with a circular cross section (inner circle) and

the conformal wall shape (outer circle).

FIG. 2. Examples of radial profiles of (a) equilibrium pressure and (b) toroi-

dal current density, with different values of the normalized plasma pressure

bN. The plasma pressure and the current are normalized by B2
0=l0 and

B0=l0R0, respectively.

FIG. 3. Examples of radial profiles of the safety factor q with different bN,

for a large aspect ratio circular plasma. The on-axis q value is fixed at

q0¼ 1.05.
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the TM. However, for reversed field pinches, DR> 0 can

occur, and hence the resistive interchange mode can be

destabilized by the plasma pressure.6

The above analytic results were obtained with specific

ordering (e.g., DR is assumed to be small). On the other

hand, our numerical results shown below are obtained with-

out assumptions of specific ordering scheme. In particular,

we scan the plasma pressure up to the beta limit for the ideal

kink mode. Figure 4(a) shows the MARS-F computed eigen-

values (both real and imaginary parts) of the tearing mode

versus bN, at the magnetic Lundquist number S¼ 6.3� 107

and in the presence of a resistive wall located at b¼ 1.4a.

There are three distinct regions: in both the low beta (I) and

high beta (III) regions, the TM is a purely growing instabil-

ity, whilst in the intermediate beta values (region II), the TM

is an oscillating instability (no plasma rotation is assumed in

these computations). This can be explained as follows.

With real p, D0int achieves a minimum value D0min at cer-

tain p. As D0ext > D0min, the matching condition gives two

real solutions, implying two purely growing resistive insta-

bilities. As D0ext < D0min, the matching condition results in a

pair of complex conjugate eigenvalues, implying that the

tearing mode has a natural finite rotation frequency even in a

static plasma.4 The value of D0min is straightforwardly calcu-

lated in analytic theory (cf. Eq. (98) from Ref. 4)

D0min ¼ 2:12ð1þ gÞA 6

55=6

�DRB

1þ g

� �5=6

; (12)

showing that D0min is roughly proportional to the plasma

pressure (due to the fact that jDRj is roughly proportional to

bN). At bN¼ 0, D0min vanishes. On the other hand, D0ext

remains finite at bN¼ 0, and approaches infinity near the

no-wall beta limit for the ideal kink mode. Figure 4(b)

sketches a qualitative dependence of D0ext and D0min on bN,

showing the possibility of the existence of three regions in

the TM solution, as the plasma pressure varies.

Since D0ext, obtained from the ideal region without the

plasma rotation, is real, D0int from the resistive layer solution,

matching the outer region, must also be real. In the region

near the critical point bc
N , where D0ext ¼ D0min, and the TM

dispersion relation has one real solution p¼ c, we perform

standard perturbative analysis by setting p¼ cþ ixr, with

xr � c. The requirement of D0int being real in the region

near bc
N yields

xrsA ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDRjB

5ð1þ gÞ

� �4=3

� ðcsAÞ2
s

; (13)

where xr is the TM’s real frequency (near bc
N). The pair of

roots shown in Eq. (13) shares the same growth rate c, when

the following condition is satisfied:
jDRjB

5ð1þgÞ

h i4=3

> ðcsAÞ2.

Near the critical beta, the growth rate c of the mode is also

related to DR (the gradient of the pressure at the rational sur-

face), which is normally a negative number for tokamak

equilibria. As the plasma approaches the incompressible

limit C!1 (g! 0), the 1
1þg factor increases, which in turn

results in the increase of the real frequency of the TM. On

the other hand, as the plasma approaches the C¼ 0 limit

(i.e., g !1), 1
1þg decreases, resulting in the decrease of xr.

At sufficiently small C,
jDRjB

5ð1þgÞ

h i4=3

< ðcsAÞ2, and the TM

becomes a purely growing mode. Hence, the presence of the

sound wave (the plasma compressibility) is essential for the

occurrence of a rotating TM in a static plasma (at least

according to the single fluid theory) as well as for the strong

stabilization of the mode by the plasma pressure.

The same results as shown in Fig. 4(a) are plotted in

Fig. 5, but in the complex plane for the mode’s eigen-

value. As bN varies in the range 0:42 	 bN 	 1:47, two

eigenvalues appear in the form of complex conjugates.

We mention that similar results have been obtained in

Refs. 6 and 19, while scanning the Lundquist number S
instead of bN.

When bN is further increased beyond the no-wall limit

bno�wall
N (¼1.69 for our case) but still below the ideal-wall

limit bideal�wall
N for the ideal kink mode, the TM can couple

with the resistive wall mode instability. Beyond the

ideal-wall limit, the computed growth rate (of the ideal kink

instability) is of the order csA 
 10�2. The dependence of

the resistive instability on the plasma pressure (essentially

without the GGJ-effect) in the presence of a resistive wall,

including the plasma rotation, is comprehensively investi-

gated in the analytic work, Ref. 20. A further study of the

FIG. 4. (a) Normalized growth rate

(csA) and normalized real frequency

(xrsA) of the tearing mode versus bN

with a resistive wall located at

b¼ 1.4a. The magnetic Lundquist

number S is 6.3� 107. No plasma rota-

tion is assumed. And, the beta limit

without a wall bno�wall
N equals to 1.69;

(b) Sketching qualitative dependence

of the D0ext and D0min on bN.
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resistive wall mode instability taking into account the

GGJ-effect from the resistive layer is presented in Ref. 21.

In MARS-F computations, the wall effect on the exter-

nal tearing index is automatically taken into account, when

we solve the TM stability problem together with the outer-

inner plasma equations as well as the wall equation, where a

thin wall approximation is assumed. The above approxima-

tion implies that the skin depth for the considered mode is

larger than the wall thickness. Here, we also present an ana-

lytic discussion on the dependence of D0ext on the wall. With

a resistive wall, D0ext is expressed as21

D0ext ¼
d0 þ cs�wd1
w0 þ cs�ww1

; (14)

where w0 and w1 denote the perturbed magnetic flux at the

rational surface without a wall and with an ideal wall,

respectively. While d0 and d1 are the jumps of w0 and w1 at

the rational surface, respectively. The definition of the wall

time is s�w ¼ bdrl0, with b, d, r, and l0 being the plasma

minor radius, the wall thickness, the wall conductivity, and

the permeability of free space, respectively. The derivative

of D0ext to the wall time s�w is

dD0ext

ds�w
¼ c

d1w0 � w1d0

ðw0 þ cs�ww1Þ
2
: (15)

Hence, the sign of the above derivative is determined by the

mode’s growth/damping rate and the sign of d1w0 � w1d0.

In this work, the tearing mode is unstable in the whole bN

region without a wall, which implies w0> 0 and d0> 0. In

addition, the kink mode is stable, which implies w1> 0.

Furthermore, due to the slight stabilization of the ideal wall

on the unstable tearing mode, we expect the condition
d0

w0
> d1

w1
) d1w0 � d0w1 < 0. Hence, for the case with

unstable tearing mode (i.e., c> 0) the parameter D0ext

decreases with increasing the wall time s�w, as expected.

The eigenfunctions of the TM are quite different in the

three regions I, II, and III of bN shown in Fig. 4. Figures 6–8

plot three representative eigenfunctions for three chosen bN

values: bN¼ 0, bN¼ 1.13, and bN¼ 1.6, from the regions I,

II, and III, respectively. The radial profiles of the poloidal

Fourier harmonics of the plasma radial displacement are com-

pared. We make the following observations: (1) For the

pressure-less case bN¼ 0, the (unstable) TM is driven by the

gradient of the equilibrium current density. The eigenfunction

of this conventional type of TM is plotted in Fig. 6, showing

a dominate poloidal harmonic (m¼ 2) for the radial displace-

ment, localized near the q¼ 2 rational surface. (2) For the

oscillating TM in the intermediate pressure range, the m¼ 3

sideband is enhanced. The coupling of the TM to the kink

components begins to appear. (3) With further increase of the

plasma pressure (bN¼ 1.60), the kink components come sig-

nificant in the plasma displacement, although at the rational

surface, the resistive component is still dominant. The m¼ 3

sideband is further (slightly) enhanced at the rational surface.

Because of the sensitive dependence of the TM behavior

on the plasma compressibility as discussed above (as well as

in Ref. 4), we also compute the TM eigenvalue, while

FIG. 6. The eigenfunction of the TM

for bN¼ 0 with a resistive wall located

at b¼ 1.4a, in the absence of the

plasma flow. The magnetic Lundquist

number S is 6.3� 107. Here, the

MARS-F computed TM’s growth rate

csA is 7.61� 105. The vertical dashed

line denotes the location of the q¼ 2

rational surface. Here, the normalized

wall time sw (sw ¼ s�w=sA) equals to

2� 104.

FIG. 5. The same results shown in Fig. 4 are plotted in the complex plane.

The arrow in the figure labels the increasing direction of bN.
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varying the ratio of specific heats C. The results are shown in

Fig. 9. When C is smaller than a critical value Cc, the com-

puted TM is purely growing, with two real eigenvalues as

predicted by theory. Above the critical value, the computed

eigenvalues again become complex numbers, with the real

frequency of the mode increasing with C. At sufficiently

large C, the eigenvalue saturates to the incompressibility

limit. It is interesting to notice that the finite mode frequency

remains at this limit.

The above numerical observation can be qualitatively

understood as follows. Since D0ext is almost independent of

C, it can be considered as a constant with varying C. On the

other hand, D0int sensitively depends on C via the G factor as

shown in Eq. (12). Consequently, the region C<Cc (C>Cc)

corresponds to D0ext > D0min ðD0ext < D0minÞ.

C. Electromagnetic torque generated by tearing mode

A rotating TM in a static plasma can generate electro-

magnetic torque acting on the plasma. In the presence of an

FIG. 7. (a) The imaginary part and (b) real part of the eigenfunction of the modified TM for bN¼ 1.13 for the static toroidal plasma surrounded by a resistive

wall located at b¼ 1.4a. The MARS-F computed normalized TM’s eigenvalue is 5:76� 10�6 þ i3:14� 10�5. The magnetic Lundquist number S is 6.3� 107.

The vertical dashed line denotes the location of the q¼ 2 rational surface.

FIG. 8. The eigenfunction of the TM

for bN¼ 1.60. The TM’s normalized

growth rate is 1.16� 10–4. The vertical

dashed line denotes the location of the

q¼ 2 rational surface.

FIG. 9. The eigenvalues of the TM versus the ratio of specific heats C.

C¼1 corresponds to the incompressibility limit. The vertical dashed line

labels the position of C¼ 5/3. The vertical solid line denotes the position of

the critical point Cc. The solid curves denote the mode’s growth rate, and

the dashed curves label the mode’s real frequency.
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ideal wall, or in the absence of any wall, the net torque acting

on the plasma column should vanish due to the momentum

conservation constraint. However, in the presence of a resis-

tive wall surrounding the plasma, a net torque can be gener-

ated on the plasma, which is compensated by the finite

torque acting on the wall due to the presence of the eddy

current flowing in the wall. This is numerically verified here.

Figure 10 shows the MARS-F computed net toroidal electro-

magnetic torque (over the whole plasma column) as a func-

tion of bN, using the eigenfunctions computed in Fig. 4. The

torque is evaluated using the solution of an eigenvalue prob-

lem. Here, in order to ensure a relative comparison of the

torque strength as we scan certain parameters (e.g., bN in

Fig. 10 or sw in Fig. 14), we need to define a proper normal-

ization for the net torque amplitude. A natural choice is

the perturbed kinetic energy (i.e., the plasma inertia

E ¼
Ð

q0jnj2Jdsdvd/), which scales as the square of the

amplitude of the linear perturbation, the same as the torque

itself. Hence, the proper normalization of the net torque (i.e.,

Tnet/E) does not depend on the arbitrary amplitude of the

linear perturbation, which is related to the phase difference

between Q1 and Q3 and to the equilibrium parameters. We

point out that the net torques shown in the figures below are

the normalized values. It is evident that only in region II,

where the eigenvalue of the TM is a complex number, there

is a finite net EM torque acting on the static plasma in the

toroidal direction. Also note very good agreement between

the two different methods computing the net torque, namely

the volumetric integration method (TORQ1) and the surface

integration method (TORQ2) as described in early discus-

sion. This verifies the numerical accuracy of the net torque

computations, which is computationally challenging due to

the presence of a very narrow resistive layer. We also veri-

fied that the value of TORQ2 does not depend on the choice

of the integration surface in the vacuum region (between the

plasma and the resistive wall), as expected.

The net torque reaches its peak value at bN¼ 1.13. The

direction of the net torque is always opposite to that of TM

rotation. We emphasize that the eventual physics associated

with the electromagnetic torque, which we study in this

work, is different from that presented in Refs. 7–10, where a

so called constant-psi approximation is assumed, which is

strictly valid only for equilibria with vanishing pressure gra-

dient near the mode’s rational surface. This theory always

predicts zero net torque due to the TM in a static plasma.

The theory from Ref. 11, on the other hand, simply assumes

that the mode’s frequency is known, without elaboration on

the physics that leads to the assumed mode’s frequency.

However, the rotation of the tearing mode in this work is

induced by the GGJ-effect, and the associated finite net tor-

que can potentially drive flow in the plasma, which we

assume to be initially in a static equilibrium state.

The conservation of the total momentum requires that

an equal amount of toroidal torque to be generated inside

the resistive wall.11 To verify this, we choose a vacuum sur-

face enclosing both the plasma and the resistive wall for per-

forming the surface integration, Eq. (10), for the case of

bN¼ 1.13. The computed toroidal torque indeed vanishes.

Furthermore, from Fig. 9, one can deduce that a finite net

EM torque inside the plasma remains in the incompressible

limit, but vanishes in the limit of C¼ 0.

Next, we investigate the radial distribution of the toroidal

EM torque, generated by the rotating TM mode in a static

plasma. Since the torque is mainly localized within the resis-

tive layer, we shall show the torque density profile in the

vicinity of rational surface. Figure 11(a) compares the torque

density for two cases, with bN¼ 0.54 and bN¼ 1.13. We

observe that the torque density has detailed radial structures,

with several local peaks and sharp variations within the resis-

tive layer. This also implies a significant cancelation along the

radial integration of the torque density, although a finite (volu-

metric) net torque remains in the presence of a resistive wall.

Detailed radial structures of the EM torque can also be

generated by an externally applied static resonant magnetic

perturbation (RMP) field on a rotating plasma. For instance,

Ref. 12 finds odd and even parity profiles associated with the

sound wave and shear Alfv�en wave resonances, respectively.

In the present study, the plasma is static but the TM is rotat-

ing, which also creates the possibility of continuum resonan-

ces. However, since the mode rotating frequency is rather

small (xrsA¼ 3.14� 10�5 for the case of bN¼ 1.13)

FIG. 10. The normalized net toroidal electromagnetic torque versus bN.

TORQ1 (dashed symbol curve) and TORQ2 (solid symbol curve) denote the

results obtained by the volume integration method (Eq. (9)) and surface inte-

gration method (Eq. (10)), using the eigenfunctions computed in Fig. 4.

FIG. 11. (a) The electromagnetic torque density versus the safety factor q for

two chosen cases bN¼ 1.13 and bN¼ 0.54. The MARS-F computed TM’s

eigenvalue are 5:76� 10�6 þ i3:14� 10�5 and 1:08� 10�5 þ i6:31� 10�6,

respectively. (b) The sound wave frequency jxssAj versus the safety factor q

and the mode frequency xrsA ¼ 3:14� 10�5 for bN¼ 1.13.
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compared to the usual plasma rotation frequency, the Alfv�en

resonant splitting effect, observed in Ref. 12 for a rotating

plasma, is almost negligible here. The sound wave resonant

splitting is still possible as shown by Fig. 11(b). In either

case, the resonance is “smoothed” by the presence of the

finite mode growth rate of the TM. This probably explains

the less clear parity trend shown in Fig. 11(a).

The sound resonance splitting, shown in Fig. 11(b),

occurs at the radial positions where the real frequency xrsA

of the mode equals to the sound frequency xssA, defined

here as (using a straight cylinder model)

x2
s ¼

ðm=q� nÞ2V2
s

s2
Aq̂ðV2

s FPS þ V2
AÞ
; (16)

where VA � B0=
ffiffiffiffiffiffiffiffi
l0q
p

is the Alfv�en velocity, and

Vs �
ffiffiffiffiffiffiffiffiffiffiffiffi
CP=q

p
is the sound velocity. q̂ � q=q0 is the normal-

ized plasma density. Fps ¼ 1þ q2=ðm� 1� nqÞ2
þq2=ðmþ 1� nqÞ2 is Pfirsch-Schluter factor representing

the inertial enhance effect, where m is the resonant poloidal

harmonic.22 The resonant condition jxrj ¼ jxsj roughly pre-

dicts two resonant locations at q¼ 1.996 and 2.005, respec-

tively, for the case of bN¼ 1.13 as shown in Fig. 11(b).

For the other case of bN¼ 0.54, the real frequency of the

TM is even smaller (xrsA¼ 6.31� 10�6), and the sound

wave resonant locations (q¼ 1.999 and 2.001) are even

closer to the rational surface. The two odd parity shapes

roughly merge to form an even parity profile. Figure 11

shows that the torque density profile strongly depends on the

frequency of the TM, which determines the resonant

locations.

The torque density with sharply varying radial profiles

can, in principle, result in strong flow shear in the immediate

vicinity of the resistive layer. The torque localized near the

rational surface can eventually be transported to the other

plasma region through the momentum transport mecha-

nisms,23 or through the viscous torque balance.9,24

The detailed radial structures of the torque density near

the rational surface are related to the local profiles of the per-

turbed current density and the magnetic field. Figure 12

shows the radial profiles of the perturbed current compo-

nents, including both the real and imaginary parts (in the

complex representation of the perturbed quantities), for the

bN¼ 1.13 case. All the components are subject to a global

normalization, allowing a relative comparison of the ampli-

tude of various components. The amplitude of the radial

component (j1) of the perturbed current is much smaller than

that of the other components as expected, and is determined

by the perturbed current conservation. The amplitude of the

poloidal component (j2) is about six times larger than the

toroidal component (j3). For either j1 or j2, the dominant

contribution comes from the resonance harmonic m¼ 2.

However, for the toroidal component, the main contribution

is the side-band harmonics m¼ 1 and 3, which are almost the

same in both the amplitude and the sign. This indicates that

the sound wave resonance mainly enhances the toroidal cou-

pling of the side-band harmonics for the toroidal component

of the perturbed current.

Figure 13 shows the radial profiles of the perturbed mag-

netic fields, for the same case as Fig. 12. The amplitude of

toroidal component is much smaller than the other two com-

ponents, as it should be for this type of large aspect ratio

FIG. 12. The radial profiles of the poloidal Fourier harmonics of the perturbed current in the resistive layer, for the real part of (a) radial, (b) poloidal, and (c)

toroidal components, respectively, and for the imaginary part of (d) radial, (e) poloidal, and (f) toroidal components, respectively. Here, bN¼ 1.13. The vertical

line labels the location of the q¼ 2 rational surface. It is noted that the relative amplitudes between different field components, shown in this figure, are fixed

by the eigenmode structure.
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equilibrium (the toroidal perturbation vanishes in a straight

cylinder). We notice that the radial field perturbation is

global, whilst the poloidal and toroidal components are

largely localized in the resistive layer, without violating the

divergence-free condition This is mainly because the radial

field component has a strong radial variation inside the resis-

tive layer, which “gives rise to” a large amplitude of the tan-

gential components inside the layer. This is different from a

conventional case of the constant-w approximation for the

radial field inside the resistive layer—the radial field is far

from constant inside the layer when this is a finite equilib-

rium pressure gradient across the rational surface.

For the poloidal component, the amplitude of the side-

band harmonics m¼ 1, 3 is in the same order as that of the

resonant harmonic m¼ 2. Combining the radial profiles

shown in Figs. 12 and 13 and expression (8), we find that the

electromagnetic torque density, as shown in Fig. 11(a) for

the bN¼ 1.13 case, mainly comes from the resonant harmon-

ics m¼ 2 of j2 and Q2. Indeed, the torque profile in the vicin-

ity of the resonant surface resembles that of the m¼ 2

harmonic of the perturbed poloidal current density j2.

D. Effect of wall on the TM generated net torque

The momentum balance between the plasma and the

resistive wall is crucial for determining the amplitude of the

normalized net EM torque acting on the plasma. In this sub-

section, we investigate the dependence of the normalized net

torque on the wall parameters, including the wall position

and the wall time. Figure 14 plots the TM’s eigenvalue and

the net torque as functions of the normalized wall time

(sw � s�w=sA). In Fig. 14, the wall time varying by 7 orders

of magnitude physically corresponds to the variation of the

wall conductivity, while the wall thickness is fixed at about

FIG. 13. The radial profiles of the poloidal Fourier harmonics of the perturbed magnetic field, for the real part of (a) radial, (b) poloidal, and (c) toroidal com-

ponents, respectively, and for the imaginary part of (d) radial, (e) poloidal, and (f) toroidal components, respectively. Here, bN¼ 1.13. It is noted that the rela-

tive amplitudes between different field components, shown in this figure, are fixed by the eigenmode structure.

FIG. 14. (a) The eigenvalue of the

tearing mode and (b) normalized net

toroidal electromagnetic torque versus

the wall time sw for S¼ 6.3� 107,

bN¼ 1.13, and b¼ 1.4a.
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0.001 of the plasma minor radius. This ensures that the thin

wall approximation is valid for all the chosen wall times in

this study. The limit of sw ! 0 corresponds to the no wall

case, whilst sw !1 corresponds to the ideal wall limit. At

small wall time sw< 104, no considerable net electromag-

netic torque is generated by the resistive instability. In this

case, the induced eddy current in the resistive wall is negligi-

ble, yielding also negligible EM torque on the wall and

hence the net torque on the plasma. A wall with low conduc-

tivity hardly contributes considerable stabilization effect on

the TM. In the other limit, when the conductivity of the wall

is too large (close to an ideal wall), the induced eddy current

in the wall tends to generate a perturbed radial magnetic

field, which exactly cancels the perturbed radial magnetic

field generated by the rotating tearing mode, resulting in a

vanishing radial magnetic in the wall (also see Fig. 16).

Hence, at the ideal wall limit, the electromagnetic torque in

the wall also vanishes. The momentum conservation con-

straints imply a zero net torque on the plasma in this case.

As the wall time (from 
2� 104 to 
2� 106) is in the

same order as the time scale of the TM’s oscillation

(ðsmode � 2p
xrsA
’ 2� 105Þ), the wall significantly stabilizes

the tearing mode. When sw ’ smode, the net torque generated

by the TM reaches its maximum, implying also the maximal

momentum exchange between the plasma and the wall. In

fact, in a circular cylinder, Eq. (42) from Ref. 14 indicates

that the EM force on the plasma is proportional to

jxrjs�w=½1þ ðjxrjs�wÞ
2�, showing that indeed the maximal tor-

que is achieved when the wall time normalized perturbation

frequency reaches an order one value. Furthermore, Fig. 14

shows that when sw � 2� 105, the TM is fully stabilized,

and the real frequency of the mode slightly increases. At

sw¼1, the TM reaches its ideal wall stability limit, which

is stable in our case.

In the no-wall and the ideal wall limit, there is no mo-

mentum exchange between the wall and the plasma, and

there is no net electromagnetic torque on the plasma. On the

other hand, due to the presence of a rotating TM, the sound

wave resonance still results in a re-distribution of the EM

torque within the plasma as shown in Fig. 15. This local

re-distribution may still generate rotation shear in the vicin-

ity of the rational surface, without external momentum input.

Figure 16 shows the radial profiles of the perturbed

radial magnetic field Q1 for three cases of sw¼ 50, 2� 105,

and 108, respectively. At sw¼ 50 (small wall time), the per-

turbed magnetic field easily penetrates through the wall. At

sw¼ 2� 105, the presence of the resistive wall significantly

reduces the penetration of the field. At sw¼ 108 (large wall

time), the wall appears as nearly an ideal wall, and the radial

field does not penetrate through.

The dependence of the TM eigenvalue and the net elec-

tromagnetic torque on the wall position is plotted in Fig. 17.

Both growth rate and real frequency of the mode monotoni-

cally increase with the wall position b. The amplitude of the

net torque monotonically decreases with b. As the wall

moves closer to the plasma surface, the TM can be stabi-

lized, and the resulting net torque substantially increases. As

the resistive wall moves farther away from the plasma, we

recover the no-wall results, with a vanishing net torque on

the plasma. We point out that the presence of a resistive wall

(i.e., neither an ideal wall nor the absence of a wall) is most

common in present tokamak devices. Therefore, the resistive

wall case, where the TM can generate a finite net torque, rep-

resents the most applicable situation in practice.

IV. CONCLUSION AND DISCUSSION

In this work, we have numerically investigated the

effect of the plasma pressure on the tearing mode stability

and on the generation of the toroidal electromagnetic tor-

que acting on a static toroidal plasma. It is demonstrated

that three different linear TM stability regimes can be

achieved, before reaching the beta limit for ideal instabil-

ity. In an intermediate pressure regime, the linear tearing

mode, in a static plasma, has a real frequency due to the

GGJ-effect. The presence of the sound wave is necessary

for stabilizing the tearing mode through the plasma pres-

sure term. With further increase of the plasma pressure, it

has a strong destabilization effect on the mode, which is

largely due to the modification of the (linear) tearing index

associated with the outer solution. Generally, increasing

the plasma pressure helps to couple the TM to global kink

structures.

FIG. 15. The radial profiles of the electromagnetic torque for the wall time

sw¼ 50 and sw¼ 1.0� 108 with the corresponding eigenvalues 7:37�
10�6 þ i3:24� 10�5 and �1:27� 10�6 þ i3:78� 10�05, respectively.

Here, S¼ 6.3� 107, bN¼ 1.13, and b¼ 1.4a.

FIG. 16. Radial profiles of the poloidal Fourier harmonics of the radial com-

ponent of the perturbed magnetic field for (a) sw¼ 50, (b) sw¼ 2� 105, and

(c) sw¼ 108. Here, in the plasma, the s labels the normalized poloidal flux,

and in the region outside the plasma, the s labels the minor radial position

normalized to the plasma minor radius. The vertical dashed line denotes the

q¼ 2 resonant surface. The vertical solid line labels the location of the resis-

tive wall.
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A rotating tearing mode further results in a re-

distribution of the toroidal electromagnetic torque, with mul-

tiple local peaks in the immediate vicinity of the resistive

layer. The sound wave resonances play a role in this torque

re-distribution. In the presence of a resistive wall surround-

ing the plasma, a rotating TM generates a finite net electro-

magnetic torque on the plasma column, which compensates

the eddy current induced torque in the resistive wall. When

the wall time matches the oscillating time scale of the tearing

mode, the net torque reaches maximum. At the no-wall or

ideal wall limit, no net torque is generated, yet a significant

re-distribution of the toroidal torque still occurs in the resis-

tive layer.

Since the linear TMs in present day tokamaks are often

in the GGJ-regime, and almost all the devices have a resis-

tive wall surrounding the plasma, the presence of the TM

generated finite net EM torque should represent a generic

situation. The remaining questions are how fast such a net

torque can drive the plasma flow, and how the generated

plasma flow can act back to affect the TM stability. These

aspects will be investigated in the near future, using the

quasi-linear code MARS-Q.25
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