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Absorption of waves propagating across an inhomogenous magnetic field is of crucial importance 
for cyclotron resonance heating. When the Larmor radius of the resonant particles is small compared 
to the wavelength then the propagation is described by differential equations, a comparatively 
simple method for obtaining which has recently been given by Cairns et al. [Phys. Fluids B 3, 2953 
(1991)]. In a fusion plasma there may, however, be a significant population of ions whose Larmor 
radius is not small compared to the wavelength. In this case the system is described by 
integro-differential equations, reflecting the fact that the plasma response at a given position is 
determined by the wave field over a region of width of the order of the Larmor radius. The 
simplified method referred to above is adapted to this case and used to obtain various forms of the 
equations. Methods of simplifying the equations while still retaining information from the non-local 
response, are discussed and some illustrated numerical results presented. 

I. INTRODUCTION 

Cyclotron heating of either ions or electrons is of vital 
importance in various schemes for heating magnetically con­
fined plasmas. The theory of cyclotron absorption requires. 
as its starting point, the derivation of equations to describe 
the propagation of waves through a region of cyclotron reso­
nance treating. in the simplest case. a slab geometry in which 
the gradient of the magnetic field strength is perpendicular to 
the field. A considerable number of authors have studied this 
problem for the case when the Larmor radius of a thermal 
particle is much less than the wavelength, in which case 
there is a local response of the plasma to the waves, in the 
sense that the current at a point depends only on the fields 
and their derivatives at that point, and the system is de­
scribed by differential equations. 1-5 Some recent work by the 
present authors6 has shown how these equations may be ob­
tained in a comparatively simple way. Earlier work using a 
somewhat similar approach was carried out by Antonsen and 
Manheimer,7 though they worked in Fourier transform space 
and could only obtain a tractable approximation by making 
an expansion which is equivalent to taking the asymptotic 
expansion of the plasma dispersion function. We work in real 
space, where it is possible to obtain much more general re­
sults. Our approach begins with the uniform plasma dielec­
tric tensor and then recognises that, in the presence of a 
magnetic field gradient (with the gradient perpendicular to 
the direction of the field), the non-uniform response is ob­
tained by evaluating the cyclotron frequency in the resonant 
denominators at the position of the particle guiding centre. 
This condition arises automatically in gyrokinetic theory 
where its importance for cyclotron resonance has been em­
phasised in Ref. 8. The technique has also been applied to 
the weakly relativistic problem, which is relevant to electron 
cyclotron heating.9 

In the case of ion cyclotron heating, particularly when 
minority heating is being used or when hot fusion products 
are present, the assumption of small Larmor radius may not 
be valid. In this case the response of the plasma to the waves 
is non-local and the system is described by integro­
differential equations. These have been derived by Sauter 
and Vaclavik 10, II and by Brambilla. 12 Our purpose here is to 
show how the simple method referred to above can be used 
to obtain the governing equations for the large Larmor radius 
case more easily .. The method also provides a convenient 
way of generating different forms of the equations. The re­
sults obtained are completely equivalent to those obtained 
rigorously by taking a Fourier transform of the wave prob­
lem in an inhomogeneous medium. 

We then develop Wentzel-Kramers-Brillouin (WKB) 
and fast wave l3

•
14 approximations to these equations, which 

include the full finite Larmor radius effects in a non-uniform 
magnetic field, but which are computationally much simpler 
than the full integro-differential equations. In particular, the 
fast wave approximation, which reduces the problem to a 
second order ordinary differential equation, should be valu­
able in allowing simple and rapid numerical modelling of 
experiments in which fusion plasmas are heated by waves in 
the ion cyclotron range of frequencies. Some illustrative ex­
amples are given of the use of the fast wave approximation 
for the case of minority ion cyclotron heating. 

II. DERIVATION OF THE EQUATIONS FOR A LINEAR 
FIELD GRADIENT 

Initially we shall treat the case of a linear field gradient 
with B = B o( I - xl L), since this relates to our previous work 
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on the small Larmor radius case and gives rather simpler 
equations than the more general case in which we allow ar­
bitrary variations. in the direction perpendicular to the field. 
of the field strength, density and temperature. In the next 
section we shall discuss this general case, allowing for an 
arbitrary density, temperature in addition to magnetic field 
variation. For simplicity we shall discuss only the z-z ele­
ment of the conductivity tensor. since it serves to illustrate 
the method. All other elements can be obtained in a similar 
way. We use the usual coordinate system in which the mag­
netic field is along the z-direction. Also. we shall consider 
resonance at the fundamental of the ion cyclotron frequency. 
Again, the basic method is easily adaptable to any harmonic. 

We begin with a standard integration along orbits, for a 
uniform plasma,.which gives 

. W;J dio ·(b· (J OJ CF .=z€ - uv dudv dO - J (b)e 1 sm-
z~ 0 W 1. 1. iJu I 

(1) 

where the usual cylindrical coordinates in velocity space are 
being used, with u the parallel velocity, and b=k1.v1.lwc' 
Now. we recognise that the part of Eq. (1) where the spatial 
dependence of Wc is important is in the final resonant inte­
gral, and that we can take this into account by putting 

W-W =(u (::.+ 2-.SinO) 
C c L Lwc . (2) 

Elsewhere we can simply put w= We' The second term 
in the bracket in Eq. (2) arises because, as pointed out above, 
we must evaluate the field at the guiding centre of the par­
ticle, not at its final position. This is the gyrokinetic effect 
discussed by Lashmore-Davies and Dendy.8 

Since the variable x has already been Fourier trans­
formed in obtaining Eq. (1). the introduction of x here should 
be regarded as being part of a separation into different length 
scales, with the k1. corresponding to the short scale length of 
the waves and the x to the long scale length of the equilib­
rium gradient. This simple procedure gives the same result as 
orbit integration carried out to first order in xl L in a non­
uniform field. We shall take ky=O, but if ky:f=O then the drift 
velocity due to the magnetic field gradient should be taken 
into account, since it can introduce a term of the same order 
as the gyrokinetic effect when kyp;::;; 1 where P is the Larmor 
radius of a resonant particle. 

If Eq. (2) is substituted into Eq. (1) and the variable in 
the r integral changed to k = - We rl L we obtain 

LW;J dio ·(b· (J o· CF •• = -i -----,.- uv du dv dO - J (b)e 1 sm - ) 
~~ wL. 1. 1. au 1 

X dk exp ikx- ---+ i -i-sinO . fOO { ikkllLu kv } 
o we We 

Using 
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the integrals over velocity can be carried out in the usual 
way. In terms of CF1:z(kl.), the z-component of the current 
coming from the z-z component of the conductivity tensor, 
is, in a uniform plasma, 

In the non-uniform case, we. substitute the expression 
obtained above for CFzz ' depending both on k L and explicitly 
on x. in this integral to obtain 

w
2

J'" f'" J(x) = EoL -:-4 dk' E(k') dk 
w -00 0 

(
k'(k+k')p2) 

XII 2 

(3) 

In this equation p is the Larmor radius of a thermal 
particle. i.e. v th I We where the distribution function has been 
taken to be proportional to exp( -v2Iv~h)' and E is the 
z-component of the electric field. If the Larmor radius is 
small we may expand the Bessel function and the final ex­
ponential function in power series and use the fact that 

Powers of k' then produce derivatives of the electric 
field and powers of k derivatives of the Z function and the 
integral in Eq. (3) becomes a differential operator acting on 
E, as discussed in Ref. 6. The procedure described here is a 
somewhat streamlined version of that given in the earlier 
paper. Now, however, we wish to consider the large Larmor 
radius regime where such an expansion is not valid. In this 
regime we might expect the response of the plasma to the 
field to be non-local and the current to be given by a term of 
the form 

W
2

fOO J(x)=EoL }. -00 E(x')G(x,x')dx' 

= EoL ~ f:oo dk' E(k') J:oodX' eik'x' G(x,x'). (4) 

We now note that Eqs. (3) and (4) will be identical if 

= fooo 
dk ei(k+k')X-k2p2/4-k2k"L2p2/411( k'(k~k')p2) 

xe-k '(k+k')p2/2(1_ tk2k~L2p2). 
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Since the left hand side of this equation is the Fourier 
transform of G with respect to x', we can use the Fourier 
inversion theorem to obtain 

G(x,x')= - dk' e- lk x dk 1 I'" . , 'foo 
2'IT -oc 0 

( 
k' (k+ k' )p2) 

XII 2 

Xe-k'(k+k')p2/2( 1- tk2k[L2p2). (5) 

Equation (5) gives an explicit expression for G(x ,x'), 
but as a double integral over an infinite half-plane it is not a 
very suitable form for numerical calculation or further analy­
sis. 

One way of simplifying Eq. (5) to some extent is to use 
the expression 

(6) 

The integrand then involves the exponential of a qua­
dratic in k and k'. The transformation k' == K -!k switches 
to the principal axes of this quadratic and separates the K and 
k integrals. Using 

Z(~) = i Iox exp( ik~- ~) dk, 

(7) 

we obtain 

P f1T G(x,x') = 2112 312. d OcosO 
'IT I 0 

[
1 (x+x') k[L2 u(x+x')] X -Z -- +---:-rZ --
a ap a ap 

(8) 

with 

a = (2 + 2cosO+ 4k~ L 2) 112. 

This reduces G to a single integral over a finite range 
rather than a double integral over an infinite half-plane. An 
alternative derivation avoiding the use of Fourier transforms 
is given in the Appendix. 

III. GENERAL GRADIENTS 

The previous section deals with linear magnetic field 
gradients and neglects gradients in density or temperature. 
Since the resonance condition is determined by the magnetic 
field, this approximation may be adequate for many pur­
poses. It is, however, of interest to consider the more general 
case where we show that a comparatively simple calculation 
can give the results of Brambilla and of Vaclavik and 
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Sauter. 10-12 Again, for the sake of illustration, we restrict our 
attention to the z-z element of the dielectric tensor, and be­
gin with it in the form 

w~I Bfo 
O'zz= - €o;Z uV.l.du dV.l.dO a;; 

J (kv Iw )e(iku.tsinOlwc) -i/l 
X I .1. c (9) 

w-wc-kl1u 

This is just the standard homogeneous plasma expres­
sion, with k the perpendicular wave number. As before we 
have separated out the resonant contribution for the funda­
mental resonance. 

If we now suppose that the parameters have a slow 
x-dependence, we can regard this as a dependence on a 
slowly varying variable x, despite the fact that we have al­
ready Fourier transformed over the rapid x variation corre­
sponding to the oscillations of the fields in the wave. How­
ever, we must recognise that, as before, the dependence 
should be on the values of the parameters at the guiding 
centre, not at the final position of the particle. Thus the spa­
tial dependence comes through the magnetic field, density 
and temperature being evaluated at 

v.l. sinO 
x+--­

we 

This can be done by writing 

(10) 

In this integral the density, temperature and magnetic 
field, in the distribution function or elsewhere are to be taken 
as functions of x". For convenience, we have taken the dis­
tribution function normalised so that its integral over veloc­
ity is one, the density variation being in the plasma fre­
quency. 

The contribution to the current from this tensor element 
is 

(11) 

where E is the Fourier transform of the z-component of the 
field. Again we suppose that this current is given by a non­
local response of the form 

J(x)= I~", G(x,x')E(x')dx' 

= f~", dk E(k) I~oo dx' G(x,x')eikx
'. (12) 

Comparing (11) and (12) gives 
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and, inverting the Fourier transform, we obtain 

i€ Joo I w
2 

G(x,x')=-_O dkeik(x-x') dx"~ 
27T -00 w-

xI uvjtiudv1dO 

a'f J (kv /w)eikVl.sinO/Wc-iO x_a 1 .L c 

au w-wc-kIIU 

(13) 

Assuming the velocity distribution to be Maxwellian, we 
can carry out the integral over u, using 

2 2 

I'" U "2 Vth 
dll e-U-/Vth=-g(l+gZ(g» 

-co W-(Uc-kIlU kll 

where Z is the plasma dispersion function and 

w-w g=_._c 
kllvth . 

If we now use the formula 

(
SinO) I J'oo 'k ' [' (. 01 )] 8 x' -x-vl. -- = - e' x -x- V.L sm We dk' 
We 27T-00 

then Eq. (13) is found to contain a factor 

x exp[ i(k-::)V.L sinO- W+ ik' (x,i -X)] 
which can be treated by methods familiar from the derivation 
of the dielectric tensor in a hot uniform plasma to give 

ik'(x"-x) (k(k+k')V;h) [ k
2
+(k+k')2 2] 

e II 2 2 exp - 4 2 v th . 
we we 

This still leaves infinite integrals over k and k' in the 
expression for G. As in the previous section it is possible to 
reduce these to a single integral over a finite range by again 
using the identity of Eq. (6). 

The integrals over k and k' then become 

I~"" dk J~oo dk' exp{ ik' (x" - x) + ik(x-x') 

+ kCk+k')p2 cosfJ- ep2 _ (k+k')2p2 }. 
244 

which can be integrated using standard techniques to give the 
final result 

, _ i€OI " w; . f7T [ (X-X')2(1-COSO)+4(X"-tx-tx')2(1+COSO)]. 
G(x,x )-- dx k 2 g(1+gZ(g» dfJcoteexp - 4 2' 20 . 

7T IIV thP ° P sm 
(14) 

In this formula the spatial dependence of the plasma fre­
quency, the Larmor radius p, etc., is to be taken into account 
by regarding them as the appropriate functions of x". This 
result is in a form identical to that derived by Sauter and 
Vaclavik.11 It is clear from the presence of the final exponen­
tial term in Eq. (14) that there is only a significant contribu­
tion from values of x, x' and x" within a few Larmor radii 
of each other. It is unlikely that smoothing out density and 
temperature variations over such a scale length, as opposed 
to taking the local value, will make much difference to ab­
sorption calculations. The magnetic field, however, appears 
in the argument of the Z function which can vary rapidly in 
the vicinity of a cyclotron resonance. It is in the evaluation 
of g as a function of x" that the important effects of inhomo­
geneity occur rather than in w;, vth or p. For the linear 
magnetic field strength gradient study in Section II we have 
g= wcX" / Lkllv th' If the integral representation of the plasma 
dispersion function is used once again, the integral over x" in 
Eg. (14) can then be carried out analytically and we recover 
the results of Section II, though it is more straightforward, as 
there, to introduce the linear magnetic field gradient at an 
earlier stage in the calculation. This calculation also demon­
strates that in the limit as kll--':O there is not, as might appear 
from the form of Eq. (14), any singularity and that the ab-
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sorption profile remains of finite width as would be expected 
since the gyrokinetic correction is included. 8 

IV. WKB SOLUTIONS AND REDUCTION TO 
DIFFERENTIAL EQUATIONS 

A WKB approximation, using the integral response cal­
culated in Section II can be obtained as follows. A conve­
nient starting point is provided by combining Eqs. (4) and 
(5), showing that the plasma current is 

e L W

2J'" J"" . , , J(x)=~~ dx'E(x') dk'e- lkx 
27T w- -00 -00 

If we take E(x)=Eoeikox then the integral over x' in Eq. 
(15) just involves 
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which, in turn allows us to evaluate the k I integral and leaves 
us with 

(16) 

All the dielectric tensor elements behave similarly, so we 
can obtain a local dispersion relation in which the coeffi­
cients are integrals, which retain the non-local response to 
the field, rather than the simple polynomials in ko which 
would result from a differential equation. The integral of the 
imaginary part of ko through the resonance region generally 
yields a good approximation to the wave transmission coef­
ficient though it does not, of course, give any information on 
reflection or mode conversion. 

A related approximation which can give the reflection 
coefficient, but does not separate mode conversion from cy­
clotron damping, is the fast wave approximation,13.l4 which 
is very similar to the widely used Born approximation in the 
theory of atomic collisions. IS This is a perturbative method 
in which the unknown electric field, which occurs in the 
kernels of the integrals describing the resonant non-local re­
sponse (the scattering terms), is approximated by a plane 
wave E(x) = Eoe ikox where the wave number ko is obtained 
from the cold plasma dispersion relation. A term of the form 

H(ko ,x )Eoeikox= H(ko ,x )E(x) (17) 

is obtained in exactly the same way as Eq. (16). The fast 
wave approximation consists of replacing the full integral by 
the terms of the form given in Eq. (17), while retaining the 
derivatives of E which come from the V xCV XE) term in 
the wave equation. In this way a simple differential equation 
for the electric field is obtained, with the large Larmor radius 
effect included through the coefficients which are of the form 
of Eq. (16) and the corresponding terms of a similar nature 
for the other dielectric tensor elements. 

Some preliminary work has been carried out on the ap­
plication of this technique to minority cyclotron damping. 
With the usual neglect of the z-component of the electric 
field, the equations for the other two components become 
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(18) 

where the subscripts "a" and "b" denote the majority and 
minority ion species respectively, 

(20) 

and 

(21) 

(22) 

We also obtain 

(23) 

where 

(24) 

(25) 

and 
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FIG. 1. Non-unifonn. large Larmor~ radius calculation of the transmission (T), absorption (D) and reflection (R) coefficients as a function of the toroidal 
(parallel) wave number k t for a fast wave incident on the helium-3 fundamental resonance from the low field side in a plasma where the majority ion species 
is deuterium. The plasma parameters are ne=5X 1019 m- 3

, n3H/ne=0.05, Bo=3.4 T, L=3.1 m for helium-3 temperatures of 100 keV (solid line) and 1 
MeV (dotted line). 

(26) 

(27) 

The quantities rl and r2 are given by rl = Ob lOa' 
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r2=nObZblnOaZa where Za ,Zb are the charges of the two 
ion species and noa and nob their equilibrium densities. The 
fast wave equation can now be obtained from Eqs. (18) and 
(23) by eliminating EX<x) in favour of Ey(x), giving 

(28) 

where 

(29) 

Cairns et al. 3707 

Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



1.0 ""-rmI-..".""",,c;m!;n==rrmrt;==-rmI-==c=+.-=---+---+---+==.,.,rt. ....... ......... jj . ................................................................................................ .. 

0.9 

0.6 

0.7 

] 
0 0 •• . ., 
~ 
00.5 
o 

~ 
1;; 0.' 

~ 
0.3 

0.2 

0.1 

T 

Tb=100 KeV 

Tb= f MeV 

T=Transrnission 

R=Reflection 

D=Dissipation 

o.o..lw.1ll4iloo.w ........ .=p.lJ.W. .......... ·"" .. "!'· ."" ... "" .. "' ... "" .. "" ... .:.r • • "-' .. "" ... "-' ... "' .. "' ... "I"."" ... !!. ... "' .. "' ... !!. .. + .. .::; ... !!. ... ::: .. .::; ... !!. .. :.r.: •• !!. ... !!. .. ::: ... !!. ... :.:: .. "(-.• "' .. "" ................ ..j.. 

R2 10 12 14 16 16 

Toroidal wavevector kz (/rn) 

FIG. 2. Locally unifonn. large Larmor radius calculation of the transmission. absorption and reflection coefficients for the same parameters as Fig. 1. 

The fast wave approximation has therefore allowed us to 
reduce two coupled integro-differential equations to a second 
order differential equation. The response of the large Larmor 
orbit ions in the non-uniform magnetic field is contained in 
the fast wave potential given in Eq. (29). 

We have obtained some preliminary results from a nu­
merical solution of Eq. (28). These results are shown in Fig. 
I which refer to the case of a fast wave incident on a minor­
ity, helium-3 fundamental resonance from the low magnetic 
field side. The majority ion species is deuterium. Two sets of 
curves are shown in Fig. I which correspond to helium-3 
temperatures of 100 keY (full line) and 1 MeV (dotted line). 
The other parameters specified in the calculation are an elec­
tron density of 5 X 1019 m - 3, a minority ion to electron den­
sity ratio of 0.05, a magnetic field of 3.4 T and a magnetic 
field scale length of 3.1 m. 

In the case of the 100 keY minority ions, k.LPb=0.32 
and for the I MeV ions, k.LPb= 1.02 where we have taken 
kJ.. =ilb/CA giving kJ..Pb=VTbicA with b denoting helium-3. 
The transmission coefficient for a minority fundamental cy­
clotron resonance obtained from a locally uniform model 
with the small Larmor radius approximation yields a value 
which is independent of the minority temperature. 14 How­
ever, Fig. I shows a pronounced change in the transmission 
coefficient between 100 ke V and I Me V minority ions. Also 
shown in Fig. I is the total absorption which is the sum of 
the energy dissipated by minority ion cyclotron damping and 
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the energy mode converted to an ion Bernstein wave l4
. The 

reflection coefficient can be seen to be completely negligible 
for the higher temperature case and only noticeable for the 
lower temperature for values of kit below 2 m -I. 

A comparison has been made between these results, ob­
tained from the non-uniform, large Larmor radius theory and 
the corresponding results obtained from a locally uniform, 
large Larmor radius model. The results from the locally uni­
form model are given in Fig. 2. The curves for 100 keY are 
in reasonable agreement with those obtained from the non­
uniform model. The main discrepancies occur for the reflec­
tion coefficient for the smaller values of kll and the transmis­
sion and absorption coefficients at the larger values of kll' 
The locally uniform model predicts more reflection at the 
lower values of kll and more absorption for the larger values 
of kll' The difference between the non-uniform and locally 
uniform theories is more pronounced at the higher minority 
ion temperature but only for values of kll larger than 
12 m - I. Notice that the dependence of the transmission co­
efficient on the minority ion temperature predicted by the 
non-uniform theory is also given by the locally uniform 
model. This dependence is evidently due to the inclusion of 
large Larmor radius effects. 

V. CONCLUSIONS 

We have shown how the response of an inhomogeneous 
plasma, with gradients in magnetic field strength. tempera-
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ture and density perpendicular to the field direction, can be 
obtained using a comparatively simple technique. This tech­
nique is, in fact, fully equivalent to the Fourier transform of 
the inhomogeneous problem. For an inhomogeneity de­
scribed by a linear spatial dependence the Fourier transform 
can be carried out exactly. The general results of earlier 
workers lO- 12 can be reproduced but, in Section II, we have 
derived equations for the special case in which the strength 
of the magnetic field is assumed to have a linear gradient, 
while other quantities are constant. Since the effect of large 
Larmor radius ions extends only over a few Larmor radii, we 
have pointed out that gradients in temperature and density 
are not likely to be important, but that the magnetic field 
gradient in the vicinity of cyclotron resonance does lead to 
rapid variation in the plasma response: The terms which we 
have calculated for this case have not, so far as we are aware, 
been given previously in this form. Since they involve one 
fewer integration than the general forms they are likely to be 
of some advantage for numerical computations. 

We have also shown how a local dispersion relation, 
which still retains features of the non-local response, can be 
obtained and how an approach analogous to the Born ap­
proximation of scattering theory can yield differential equa­
tions in which the coeffiCients are modified by the non-local 
response. Some preliminary results of the use of this ap­
proximation to describe minority heating are described. 
Fuller development of the numerical work and comparison 
of the solutions of the differential equation with those of the 
full integral equation are planned for the future .. 

Clearly many different representations of the non-local 
response of a plasma containing high energy ions are pos­
sible. The methods given have provided a relatively 'easy 
way of exploring the possibilities, with a view to obtaining 
forms amenable to numerical calculation. The forms given in 
Section II for a linear magnetic field gradient include, in our 
view, the major physical effects of importance and are sim­
pler than the general form used in the numerical analysis of 
Sauter and Vaclavik.lO We have also suggested ways in 
which the problem can be further simplified, at the cost of 
losing some information on the division between absorbed 
and mode-converted power. If further study verifies that 
these techniques, which have been successful in the small 
Larmor radius regime, are of use here, then a considerable 
simplification will result. This will make analysis of the im­
portant problems of ion cyclotron heating in the presence of 
a high energy minority tailor a-particle distribution much 
easier. It is also of relevance to ion cyclotron emission from 
fusion products and other energetic ions. 
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APPENDIX: CONFIGURATION-SPACE CALCULATION 
OF NON-LOCAL REPONSE 

For a detailed solution of propagation across a reso­
nance, the equations must be solved numerically in x-space. 
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We have already shown, in Section II, how such equations 
can be derived from the'k-space expressions for the conduc­
tivity tensor. Here we offer an alternative approach in which 
the response is calculated directly in x-space without the' 
need to Fourier transform forwards and backwards. 

As usual, we look at the simplest case--that of the ordi­
nary wave propagating' perpendicularly .. through the 
fundamental-to illustrate the technique. Solving the lin­
earised Vlasov equation by the method of characteristics, 
gives us the following standard expression for the perturbed 
current density: 

J 1(X)=-.,q2I d3VfO dT 
m -'X) 

(

' V 1. ) alo .. 
X~I x+n{sinCo,T-8)+sin8/ ua;;/~':T;' 

EI is clearly oscillatory in o,T- 8 'and so' we may express It 
in terms of a Fourier senes,' ... ,,' 

E (x')= ~ (E) ein(Or-lJ) 
1., .t.J 1 n 

n=-oo 

where 

thus enabling us to express the perturbed current density, 
J 1, in terms of harmonics of 0, T. For the fundamental reso~ 
nance, we need only consider the first (n= I)' harmonic of 
E 1 , giving, 

q2 I IO J21T J1(x)=;-.-,.,- d3pdT - da 
_7rm -00 0 

XEI( x+ ~ {sin a+sin 8}) 

x alo -i(a+e) -i(w-O)r 
U au e e . 

The gyro kinetic correction is now included by inserting, 

o,x V1. 
w-o,= -+ - sin8 

L L ' 

in the final exponential, to give, 

XEI( x+ ~ {sin a+sin 8}) 

Xu alo e -i(a+O)e-i[(OxIL) + (V.LIL)sin01T: 
au 

The expression for J 1 now contains five integrals, two of 
which, u and T, are reasonably straightforward. The Vx and 
v y integrals, however, cannot be performed as they are both 
arguments of E I. However, one of these integrals can be 
made tractable by linearly transforming the velocity coordi-
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nates so that only one occurs in E I' Noting that, 
sina+sin6=2sin~(a+ 6)cos~(a- 6), we may make the sub­
stitution a' = ~(6+ a) and 6' = ~(6- a) (which in Cartesian 
velocity space gives us the linearly transformed velocities 
Vx=V.lcosO', Vy =v.lsin6' and we also take U=u), to give, 

X e -i[(flxIL) + (Vx sin a' + Vy cos a')/LjT. 

with 6' now having the range [ - 7T, 7T]. It should also be 
noted that we have taken a Maxwellian distribution, of the 
formfo=no7T-3/2v;3e-u2/{ The U integral is in the form 
of a gamma function and can be evaluated. The integrand of 
the Vy integral is quadratic, and can also be evaluated in the 
form of a gamma function, by completing the square with the 
substitution V;=Vylvt+iTVtcosa'12L. Performing both of 
these integrals, in this fashion, gives us, 

X e -i[(flxIL) + (Vxsina' IL)jT-(1/4)(u,cos a l /L)2,.2. 

The T integral can also be performed by noting the iden­
tity, 

f
~' 22 1 
dt e,xt-(1/4)a t =:- Z(x/a), 

o la 
where a>O, 

giving, 

3710 Phys. Plasmas, Vol. 2, No. 10, October 1995 

- ieow~L f'" f2
'JT, ( 2Vx • ,) 

J1(x)- - 27T3/2V; -oc dVx 0 da EI x+ 0 sma 

_v2/ 2 -2' I, ,(x+ (VxI'o')Sina') Xe x Ute ta seca' Z . 
picosa'i 

Finally, by making the change of variable 
Vx= 4(x-x')!L cosec a' the expression for the perturbed 
current density becomes, 

ieow2L f'" 12
'JT , , 

J (x)= - p dx' da'lcoseca'seca'!e-2ta 
1 47T3/2pV t -cc 0 

XZ( 2~:o:~'I)exp{ - (2:::~' r} E(x'). 

If the change of variable 6= 2 a is made, this becomes 
equivalent to the result of Eq. (7) for the case when kll = 0. 
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