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The scattering of electromagnetic waves from counter-rotating vortex streets associated with
nonlinear convective cells in uniform plasmas has been considered. The vortex street solution of the
Navier—Stokes or the Hasegawa—Mirfend of the “sinh-Poisson” equation is adopted as a
scatterer. Assuming arbitrary polarization and profile function for the incident electromagnetic field,

a compact expression for the scattering cross section has been obtained. Specific results for the
differential cross section are obtained for the case in which the incident beam has a Gaussian profile
and propagates as an ordinary mode. The results show that when the characteristic wavelength of the
vortex street ,=2/a) is larger than that of the incident electromagnetic wave=2/k;), the
differential cross sectiordo/d() has a very well-defined angular periodicity; in fact, it is a
collection of Gaussians varying as éxgd (kw)?], wherew is the waist andf is a function
expressing a kind of “Bragg condition.” On the other hand, ¥¢r\ , the incident electromagnetic

beam is unable to distinguish the periodic structure of the vortex street. The effects of the vortex
street as well as the incident beam parameters on the scattering cross section are exaniiied. ©
American Institute of Physic§S1070-664X96)01203-4

I. INTRODUCTION vortex streets. We closely follow the method of a recent work

. , by Dendy and Mendoyag® where scattering of electromag-
Recently, considerable interest has been devoted to thg.ii- waves bydrift dipolar vorticeswas considered® 1 The

. _3 .
study of drift vortex streei:‘s in the framework of a more . icyjation is made in the first-order Born approximation and
general concern for nonlinear structures in plasma turbugo, o arbitrary polarization of the incident electromagnetic
lence. Vortex streets are exact stationary solutions of the, e Generalizing this method, we consider the possibility

pseudo-three-dimensional Hasegawa—Mima qufatmnﬁ of an arbitrary wave profile and then specialize to the case of
have the distinctive feature of being periodic in one of the, G5ussian beam.

dimensions. These periodic solutions are also present in the |, sec. |1 we describe the geometry of the model and

theory of vortices in fluids, in the problem of acoustic- e nature of the incident electromagnetic wave and discuss
gravity waves in the atmosphere, and in the dynamics of e choice of the vortex street solution and the main assump-
drift waves in dusty plasmdsThe vortex street that is often jons involved in our model. In Sec. Iil, we derive an ana-
encountered in the literatufe® is jJrepresented by the SO- | tical expression for the scattering cross section involving
called "Kelvin—Stuart's cat's eyes,”but the one we found apyitrary density perturbations. In Sec. IV, we present a
more appropriate for our purposes here is the “breather'siyyie case of a periodiget arbitrary density perturbation
solut|o.n. , o and take advantage of the simplification it can introduce in
Drift-like vortex streets may be present in inertial con-yhe cajculation. In Sec. V, we study a more specific situation,

finement fusion and in tokamak plasmas, where they maye  the propagation of a Gaussian beam that is polarized in

play a role as one of the several components of the turbulenfe orginary mode. Finally, Sec. VI contains the conclusions
drift wave spectrum. We recall that the convective cell andg¢ o, investigation.

drift wave turbulence are one of the possibilities for explain-
ing the anomalous transport in fusion plasma experimétits. |
They can also be present in space plasmas, where they cou,d
act as an effective scatterer for radio waves in the Earth’s Let us assume an unbounded uniform plasma, embedded
lower ionosphere. in an external static magnetic fieB,=B,z, wherez is the

In this paper, we consider scattering of electromagnetiainit vector along thez axis. The incident electromagnetic
waves from counter-rotating vortex streets in plasmas, in orwave, with frequencyw; and wave vectok;, propagates
der to assess whether the presence of convective cell vort@tong an arbitrary direction ta, with an arbitrary polariza-
streets could be detected by this method. The main goal dfon. We also assume that> wpe,wce, Wherewp, (wg) is
this work is, therefore, to obtain analytical expressions forthe electron plasmégyro)frequency, so that we can neglect
the scattering cross section associated with counter-rotatintpe effects of the density perturbation associated with elec-

THE MODEL
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tromagnetic waves. This condition is absolutely fulfilled by Ill. THE SCATTERING CROSS SECTION

current laser experiments. We adopt the standard approach of

scattering experiments that do not perturb the plasma be- The wave equation for the scattered field is obtathbg
cause of the low power of the incident beam. Thus, the poneombining the plasma hydrodynamic equations with Max-
deromotive force effect, which is proportional to well's equations. Assuming that the scattered field is polar-
(wpdw)*<1, is negligibly small, and we may assume that theized with a given unit vectoas, we obtain

vortex street structure is unaffected by the incident radiation.

We now turn our attention to the discussion of the 2
counter-rotating vortex street, which is a stationary solution kxkxag+ wT €3 |Esk,w)=—iougly(k,®), (5)
of the  pseudo-three-dimensional Hasegawa—Mima c
equation!

wherec is the speed of lighte is the dielectric tensor, anj,

is the nonlinear current density arising owing to the interac-
tion of the vortex perturbation with the incident electromag-
netic wave. Multiplying both sides @6) by a% and rearrang-
where the convective cell potentialis in the unit of T /e,  ing terms, we have

the time and space variables are normalized«y' and

d 2 2
S (6-V24)=1(4,V2)=0, M

ps=Cd w:i, respectively,c, is the ion sound speed, and i A (ko)
J(f,9)=(daf )(3,9)— (4, )(4,Q) is the Jacobian. Further- E(K o) = — —— & -attw) ®)
more, the last term on the left-hand side(@f is the usual € D(k o)
Jacobian nonlinearity arising from the nonlinear ion polariza-
tion drift. _ _ _ where
In order to obtain the stationary solution (), we set
4=0 and note thatl(¢,V2¢)=0. The latter is satisfied by
V2 $=F(¢), whereF is any well-behaved function af. On o Ao c? P
choosing ()= —(¢/4)(a2—b?)sinh4dldy), b=a, D(k,w)=(k"~[k-&*) 5~ & -e-a @)

wherea, b, and ¢, are arbitrary constants, we find that the

“sinh-Poisson” equation has an exact soluton, ) ) ] ) ] ) ) _
is the linear dispersion relation. Neglecting the ion contribu-

tion to the high-frequency electromagnetic waves, we retain
, b=a, (2) only the terms due to the electrons in the nonlinear current
density and write

b cogay)
a cosh{bx)

d(X,Y)= o

which represents a row of counter-rotating vortices.

We note that the “breather solution2) is bounded. On _ noe? B
the other hand, if we choose(¢)=(1—€’)exp(—2¢), then Idn(r, ) =—ed(nyui+niv,) + ——| v, XB;
the Liouville’s equation V2¢=(1—€e)exp(—2¢), where
|¢/<1, admits an infinite row of identical Stuart's vortices, + m VIV + (V. -V)V; ) 8
given by ¢(X,y) =log(coshy — e cosx); the latter then exhib- e [vi-V)vy+ (v V)Vl |, ®

its ¢(x,0)—c0, In the following we shall, therefore, use the
solution(2) for our purposes. It is also interesting to note that
on using arctanh()=(3)log[(1+x)/(1—x)] (for |x|<1,
which is the case ¢ can be written in the form

where the subscripts andi denote the corresponding quan-

tities associated with the vortex and the incident wave, re-

spectively,e is the magnitude of the electron charge, and

is the electron mass. Specifically, we hawg=nged/T,,

d(Xy)= @{Iog[a cost(bx)+b cogay)] where ng Ais thg unperturbed plgsma number_ density,

2 v,=(1/By)zxV ¢ is the vortex velocity vector, ang is ob-

3) tained from (9,— w..zX)v;=—(e/m)E;. The electromag-
netic fields are related bB;=(k;/w;)XE;. To obtain an es-

timate of the relative magnitude of various terms(&), we

—log[a coshlibx)—b cogay)]},

which is af:tually a subtraction of two Kelvin—Stuart's cat's linearize the differential operators and the hydrodynamic
eyes solutions.

: ' o . equations. We can neglect the teraenyv, in comparison
Finally, we define the incident electromagnetic wave bywith the term—en.v. . because we are taking>w. . o
writing the electric field vectoE; as Vi N> Wpe, Wee-

Furthermore, the nonlinear Lorentz force and the advective
convection terms are relatively smaller thaed,(n,v;), be-
E(r,t)=R % ap(nexdi(k -r—wt]], (4 cause we are as_suming .that the wave vektoand _the frej
quency w, associated with the vortex perturbation satisfy
w,/k,=v,<c, which indeed is the case. Thus, we retain
whereg; is the unit polarization vector anglr) is a dimen-  only the dominant nonlinear term-ed,(n,v;), and write
sionless profile function. Jn(wk) as

902 Phys. Plasmas, Vol. 3, No. 3, March 1996 Guerra et al.
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dqg
Jnl(wyk):_eT"J Wnu(k—Q)M(w,Q)

X

Eo .
- ap(@—kjdlo—w)

*

Eo .
+75‘1*p(q+ki)5(w+wi) , 9

where u is the electron mobility tensor.

IV. FOURIER TRANSFORM OF THE DENSITY

Let us first derive an expression for the Fourier trans-
form of a perturbation that is periodic in the direction,
d(X,¥)= d(x,y+2m/a), having periodicity wave number.

We also assume thatis even in they variable, which is the
case for the perturbatiof®). It follows that ¢ can be written
as a Fourier series as

& orendt t
<¢>(x,y)=n§0 fo ;d)(x, a)cos(nt)cos{nay), (15)

We now proceed to the calculation of the scattered

power, by employing the usual definition,

P(t)=—f Jn(r,t) -Eg(r,t)dr, (10

and averaging10) over a timeT long compared with L .
On using(6) and (9) one can then expres40) as

_ie?|Eg)? dk dq dqg’
(P)=— 16€qw; J (2m)3 (2m)3 (2m)3

xn,(k=aq)ny (k—q")p(q—k)p*(q'—k)
(M*Oo(wi Qu** (w;.q)

D*(wi !k)
IU’OOO(wi ’q)ILl’*** (wi vq,)
T D e,k ) y

where u* 0w, ,Aq)=é§ m(w;,0)-3 and u* (w;,q')
=2, m*(w;,9')-8", and in the same way fop°%
*k*k

and

and, consequently, the Fourier transform has the general
form

+ o

nv(k)=27-rn05(kz)n§o [S(k,—na)

+ &8(ky+na) JF,(Ky), (16)
with

cognt) |expik,x),

17
where we have made use of the fact that for small perturba-
tions ny(r)=nge(r).

We now calculate the functiok ,(k,) for the breather
vortex, given by(2). To do this, we write it in the forn{3)
and perform the integration by employing

+oo 2w t
Fn(kx)zf dx . dt ¢<x,5

—o0

2
log(c = cosx)cog nx)dx
0

w** . The expression for the scattering cross section is ob-

tained from(11) through

Re(P)
g,= DW. (12)
On using the relatior!
i To—w(xk)]
Re( D*(iw,ik))__w DI 90| e+ wrte) (13

where w(k) is the solution of the dispersion relati@w,k)
=0, we obtain, for the scattering cross section,

_ e’ f dk dq dqg’ )
T=20 T6eow; | (27)° (2m)2 (22 (KD
xny (k—q")p(a—k)p(q' —ki)

« p* A, q) p** (07,9") o~ w(K)]
aD/8w|m:w(k)

p2 @, p*** (0;,q") o+ w(—k)]>
&D/&w|w:,w(,k) ’

(14)

2
== (Fcxc2=1)", |c|>1, n>0.

Forn=0 the result is 2r log[(c + \/c>— 1)/2] for both cases,
and these results imply th#t,(k,)=0 if n=even. On the
other hand, whem is odd, we find that

2 +oo
Fn(ky) = WTQSO j % coshbx)

— o0

a 2
- \/(5 cosr(bx)) -1

The x integration in(18) can be readily carried odf,yield-
ing

n

cogkyx)dx. (18)

n
Fatko= T 15 ) )
when n>0 is odd (29
and
Fn(ky)=0, whenn>0 is even, (20

where we have used

Equation(14) is general and it can be applied to any type of| a

electrostatic density perturbations. In the next section, w

N
LB cosh{bx)— (E cosr(bx)) —1}

calculate the Fourier transform of the density perturbation

associated with the vortex stre€?) in order to specialize

(14) for the case of periodic perturbations.

Phys. Plasmas, Vol. 3, No. 3, March 1996
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= (21)

b)” 1
a/ cost(bx)"
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With the general fornt16) for n,(k), we can further simplify

the expressioril4). Thus, the final expression for the scat- 1000.
tering cross section for our purposes reads as "; 0.00001
g
o s -13
 Zpeing f dk da da +E E o a) £ 1 1
Tv 647T€0wi (277')5 nm=1 ™ G § -2
s1. 10 2
g -29
XFr(ke—a) X p(d.—ki)p(az—k) Ot 10
a,f=1,2 =
_R1. 10
O wi—w(k)]
X| w* %% w;i,0,) u®** (w;,0p) I 0 0.25 0.5 0.75 1 1.25 1.5
w w=w
Angle(rad)
_,,000/ .. *kk o 6[wi+w(_k)]
M (wl lqa)lu“ (wl !qﬁ) 9 Dl ' . . . . . .
o”lo=—w(—k) FIG. 1. Differential cross sectiofon the logarithmic scajeversuse (in
(22) radians for two different values ok; (k;=27 mm 1 in curve 1 anck; =4

mm~1in curve 2. We note that sharper peaks in the cross section arise with
where we have used the notatiods=d/dw, 0;=(dy k,  decreasing incident wavelength.

_’navkg): qZI(QXvky+na’kz)v a1 = (ax aky — mak,), and
02= (G . ky+mak,).

do, 372 2 4 = )
V. APPLICATION: ORDINARY WAVE AND GAUSSIAN do 16 oW "Tn:z,w [Fimlki(cose—1)]]
BEAM
W2
We now present some specific results for the scattering Xex;{ —(k; sin ¢—na)? > (25

cross section by assuming th@t the incident wave propa-

gates along the direction and is polarized in the ordinary Heren can take only odd values. Equati@2b) displays, as

mode. Thusy; =z andk;=k;X; (ii) the radiation phase veloc- expected, a kind of Bragg’s diffraction law. This is because

ity is much larger than the electron thermal velocity, so thathe vortex street acts like a diffraction grating. The intensity

one can use the cold plasma dispersion relatiormaxima are given by the condition

D(wk)=1-(k*c*+w5)/w®, ~which is valid for a

;> wpe, 0. Using the cold plasma mobility tensor, it is sin ¢=n o (26)

easy to see that the scattered wave is also polarized in the i

ordinary mode, vizas=z. This means that in this case there If d=2=/a is the spacing between two adjacent vortices,

is no mode coupling(iii) the incident beam is Gaussian and one obtains the familiar equation for the maximum intensity

that its divergence is negligible. This means that we havéines of a diffraction grating,

p(r)=exp[— (y?+z%)/w?], wherew is the beam waist, and o

thus p(k)=2ma(k,) (K, k). d sin p=nh;. 27
With these assumptions in mind, we can now derive a The analogy with the classical Bragg diffraction is

much more simple expression for the scattering cross sealightly broken because the Bragg peaks are modulated by

tion. The cold plasma mobility tensor gives the function|F [k (cose—1)]%, which is a decreasing func-

|* o, .d.p)|=el(Mew;), and the same for the other three tion of its argument. This results in a decrease of the inten-

terms in(22). Using spherical coordinates in E€R2), one  sity of the peaks between zero antR.

obtains We now turn to the graphical illustration of our results. A
3 5 +o complete set of parameters have been chosen, nadiety
m .
o =1g ”SUTL dqon;:l F[ki(cose—1)] b, w, and¢,. Once we neglect the divergence effects on the

Gaussian beank; andw define the beam completely. The
beam waist is naturally limited between the mm to cm

XFilk(cose—1)] > p(k sing ranges.
«p=-1+1 Figure 1 displays the variation of the differential cross
+ana,0)p* (k; sin ¢+ Bma,0). 23) section against for two values ofk;. The two plotted

curves have a common set of parametefg=1, n,=10%
Now, p(k, k,)=mw?exd—(kj+k)w?4] and thus we mm 3 w=5 mm,b=0.5 mni, anda=1 mm L. For the
consider that the product of the two profile functiond23)  |owest curve we havé;=47 mm %, whereas for the upper
contributes to the integral only in the cagegand ifm=n.  we havek,=27 mm™L. From this figure, it is evident that
Then, by writing increasingk; leads to sharper peaks in the differential cross
do section. This can be explained if we keep the analogy with
ouzf de d -, (24)  the diffraction grating: the angular spread of the lines is pro-
¢ portional to the wavelength of the incident wave. Of course,
the differential cross section is defined by this could be immediately predicted from the exponential of
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is described by a stationary solution of the Hasegawa—Mima

equation. The calculation of the scattering cross section is
a 1 . i . . .
= made in the first-order Born approximation and is kept gen-
E« 0.00001 eral, with arbitrary polarization and profile of the incident
-% _10 electromagnetic wave. As a simple but realistic application
%1. 10 3 of our general results, we have studied the scattering of an
% -15 > electromagnetic wave that is polarized in the ordinary mode
81- 10_20 and has a Gaussian profile function. We obtain results that
'El. 10 1 are closely linked to the effect of a diffraction grating. The

difference from the classical Bragg diffraction lies in the fact

that the peaks are weighted by a decreasing function of the
scattering angle. This strong damping may imply that only

Angle(rad) the first peak can be seen and thus the vortex street cannot be
FIG. 2. Differential i or three different values of properly identified. In conclusion, we stress that the results
(wes, 5, and 2 mm for eurves 1 nz\”;sc';’i’orgspr:;iyé,yegmt;’?hf;ss o Of our investigation should be useful in identifying coherent
resolution with decreasing waist. nonlinear structures as well as for plasma diagnostics in
space and laboratory plasmas.

0 0.25 0.5 0.75 1 1.25 1.5

(25). Based on Fig. 1, we can state with generality that if we
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