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The scattering of electromagnetic waves from counter-rotating vortex streets associated with
nonlinear convective cells in uniform plasmas has been considered. The vortex street solution of the
Navier–Stokes or the Hasegawa–Mima~and of the ‘‘sinh-Poisson’’! equation is adopted as a
scatterer. Assuming arbitrary polarization and profile function for the incident electromagnetic field,
a compact expression for the scattering cross section has been obtained. Specific results for the
differential cross section are obtained for the case in which the incident beam has a Gaussian profile
and propagates as an ordinary mode. The results show that when the characteristic wavelength of the
vortex street (lv52p/a) is larger than that of the incident electromagnetic wave (l i52p/ki), the
differential cross sectionds/dV has a very well-defined angular periodicity; in fact, it is a
collection of Gaussians varying as exp@2f (kiw)

2#, wherew is the waist andf is a function
expressing a kind of ‘‘Bragg condition.’’ On the other hand, forl i.lv the incident electromagnetic
beam is unable to distinguish the periodic structure of the vortex street. The effects of the vortex
street as well as the incident beam parameters on the scattering cross section are examined. ©1996
American Institute of Physics.@S1070-664X~96!01203-4#

I. INTRODUCTION

Recently, considerable interest has been devoted to the
study of drift vortex streets1–3 in the framework of a more
general concern for nonlinear structures in plasma turbu-
lence. Vortex streets are exact stationary solutions of the
pseudo-three-dimensional Hasegawa–Mima equation4 and
have the distinctive feature of being periodic in one of the
dimensions. These periodic solutions are also present in the
theory of vortices in fluids,5 in the problem of acoustic-
gravity waves3 in the atmosphere, and in the dynamics of
drift waves in dusty plasmas.6 The vortex street that is often
encountered in the literature1–3,6 is represented by the so-
called ‘‘Kelvin–Stuart’s cat’s eyes;’’1 but the one we found
more appropriate for our purposes here is the ‘‘breather’’
solution.5

Drift-like vortex streets may be present in inertial con-
finement fusion and in tokamak plasmas, where they may
play a role as one of the several components of the turbulent
drift wave spectrum. We recall that the convective cell and
drift wave turbulence are one of the possibilities for explain-
ing the anomalous transport in fusion plasma experiments.7–9

They can also be present in space plasmas, where they could
act as an effective scatterer for radio waves in the Earth’s
lower ionosphere.

In this paper, we consider scattering of electromagnetic
waves from counter-rotating vortex streets in plasmas, in or-
der to assess whether the presence of convective cell vortex
streets could be detected by this method. The main goal of
this work is, therefore, to obtain analytical expressions for
the scattering cross section associated with counter-rotating

vortex streets. We closely follow the method of a recent work
by Dendy and Mendonc¸a,10 where scattering of electromag-
netic waves bydrift dipolar vorticeswas considered.10,11The
calculation is made in the first-order Born approximation and
for an arbitrary polarization of the incident electromagnetic
wave. Generalizing this method, we consider the possibility
of an arbitrary wave profile and then specialize to the case of
a Gaussian beam.

In Sec. II, we describe the geometry of the model and
the nature of the incident electromagnetic wave and discuss
the choice of the vortex street solution and the main assump-
tions involved in our model. In Sec. III, we derive an ana-
lytical expression for the scattering cross section involving
arbitrary density perturbations. In Sec. IV, we present a
simple case of a periodic~yet arbitrary! density perturbation
and take advantage of the simplification it can introduce in
the calculation. In Sec. V, we study a more specific situation,
i.e., the propagation of a Gaussian beam that is polarized in
the ordinary mode. Finally, Sec. VI contains the conclusions
of our investigation.

II. THE MODEL

Let us assume an unbounded uniform plasma, embedded
in an external static magnetic fieldB05B0ẑ, whereẑ is the
unit vector along thez axis. The incident electromagnetic
wave, with frequencyvi and wave vectork i , propagates
along an arbitrary direction toẑ, with an arbitrary polariza-
tion. We also assume thatv i@vpe ,vce , wherevpe ~vce! is
the electron plasma~gyro!frequency, so that we can neglect
the effects of the density perturbation associated with elec-
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tromagnetic waves. This condition is absolutely fulfilled by
current laser experiments. We adopt the standard approach of
scattering experiments that do not perturb the plasma be-
cause of the low power of the incident beam. Thus, the pon-
deromotive force effect, which is proportional to
~vpe/v!2!1, is negligibly small, and we may assume that the
vortex street structure is unaffected by the incident radiation.

We now turn our attention to the discussion of the
counter-rotating vortex street, which is a stationary solution
of the pseudo-three-dimensional Hasegawa–Mima
equation,4

]

]t
~f2¹'

2f!2J~f,¹'
2f!50, ~1!

where the convective cell potentialf is in the unit ofTe/e,
the time and space variables are normalized byvci

21 and
rs5cs/vci , respectively,cs is the ion sound speed, and
J( f ,g)5(]af )(]yg)2(]yf )(]xg) is the Jacobian. Further-
more, the last term on the left-hand side of~1! is the usual
Jacobian nonlinearity arising from the nonlinear ion polariza-
tion drift.

In order to obtain the stationary solution of~1!, we set
]t50 and note thatJ~f,¹'

2f!50. The latter is satisfied by
¹'
2f5F~f!, whereF is any well-behaved function off. On

choosing F(f)52(f0/4)(a
22b2)sinh~4f/f0!, b<a,

wherea, b, andf0 are arbitrary constants, we find that the
‘‘sinh-Poisson’’ equation has an exact solution,5

f~x,y!5f0 S b cos~ay!

a cosh~bx! D , b<a, ~2!

which represents a row of counter-rotating vortices.
We note that the ‘‘breather solution’’~2! is bounded. On

the other hand, if we chooseF~f!5~12e2!exp~22f!, then
the Liouville’s equation ¹'

2f5~12e2!exp~22f!, where
ueu,1, admits an infinite row of identical Stuart’s vortices,
given byf(x,y)5log~coshy2e cosx!; the latter then exhib-
its f~x,`!→`. In the following we shall, therefore, use the
solution~2! for our purposes. It is also interesting to note that
on using arctanh(x)5~12!log[(11x)/(12x)] ~for uxu,1,
which is the case!, f can be written in the form

f~x,y!5
f0

2
$ log@a cosh~bx!1b cos~ay!#

2 log@a cosh~bx!2b cos~ay!#%, ~3!

which is actually a subtraction of two Kelvin–Stuart’s cat’s
eyes solutions.

Finally, we define the incident electromagnetic wave by
writing the electric field vectorEi as

Ei~r ,t !5ReSE0

2
âi p~r !exp@ i ~k i–r2v i t !# D , ~4!

whereâi is the unit polarization vector andp~r ! is a dimen-
sionless profile function.

III. THE SCATTERING CROSS SECTION

The wave equation for the scattered field is obtained12 by
combining the plasma hydrodynamic equations with Max-
well’s equations. Assuming that the scattered field is polar-
ized with a given unit vectorâs , we obtain

S k3k3âs1
v2

c2
e–âsDEs~k,v!52 ivm0Jnl~k,v!, ~5!

wherec is the speed of light,e is the dielectric tensor, andJnl
is the nonlinear current density arising owing to the interac-
tion of the vortex perturbation with the incident electromag-
netic wave. Multiplying both sides of~5! by âs* and rearrang-
ing terms, we have

Es~k,v!52
i

e0v

âs* –Jnl~k,v!

D~k,v!
, ~6!

where

D~k,v!5~k22uk–âsu2!
c2

v22âs* –e–âs ~7!

is the linear dispersion relation. Neglecting the ion contribu-
tion to the high-frequency electromagnetic waves, we retain
only the terms due to the electrons in the nonlinear current
density and write

] tJnl~r ,t !52e] t~nvv i1nivv!1
n0e

2

m S vv3Bi

1
m

e
@~vi–“ !vv1~vv–“ !vi # D , ~8!

where the subscriptsv and i denote the corresponding quan-
tities associated with the vortex and the incident wave, re-
spectively,e is the magnitude of the electron charge, andm
is the electron mass. Specifically, we havenv5n0ef/Te,
where n0 is the unperturbed plasma number density,
vv5(1/B0) ẑ3“f is the vortex velocity vector, andvi is ob-
tained from ~] t2vceẑ3!vi52(e/m)Ei . The electromag-
netic fields are related byBi5~k i /v i!3Ei . To obtain an es-
timate of the relative magnitude of various terms in~8!, we
linearize the differential operators and the hydrodynamic
equations. We can neglect the term2enivv in comparison
with the term2envvi , because we are takingv@vpe ,vce .
Furthermore, the nonlinear Lorentz force and the advective
convection terms are relatively smaller than2e] t~nvvi!, be-
cause we are assuming that the wave vectorkv and the fre-
quencyvv associated with the vortex perturbation satisfy
vv/kv5vv,c, which indeed is the case. Thus, we retain
only the dominant nonlinear term2e] t~nvvi!, and write
Jnl~v,k! as
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Jnl~v,k!52epE dq

~2p!3
nv~k2q!m~v,q!

3SE0

2
âi p~q2k i !d~v2v i !

1
E0*

2
âi* p~q1k i !d~v1v i ! D , ~9!

wherem is the electron mobility tensor.
We now proceed to the calculation of the scattered

power, by employing the usual definition,

P~ t !52E Jnl~r ,t !–Es~r ,t !dr , ~10!

and averaging~10! over a timeT long compared with 1/vi .
On using~6! and ~9! one can then express~10! as

^P&52
ie2uE0u2

16e0v i
E dk

~2p!3
dq

~2p!3
dq8

~2p!3

3nv~k2q!nv* ~k2q8!p~q2k i !p* ~q82k i !

3S m* 00~v i ,q!m0** ~v i ,q8!

D* ~v i ,k!

2
m000~v i ,q!m*** ~v i ,q8!

D* ~2v i ,2k! D , ~11!

where m* 00(v i ,q)5âs* –m(v i ,q)–âi and m0** (v i ,q8)
5âs–m* (v i ,q8)–âi* , and in the same way form000 and
m*** . The expression for the scattering cross section is ob-
tained from~11! through

sv5Zp
Re~P!

uE0u2
. ~12!

On using the relation13

ReS i

D* ~6v,6k! D52p
d@6v2v~6k!#

]D/]vuv56v~6k!
, ~13!

wherev~k! is the solution of the dispersion relationD~v,k!
50, we obtain, for the scattering cross section,

sv5Zp
e2p

16e0v i
E dk

~2p!3
dq

~2p!3
dq8

~2p!3
nv~k2q!

3nv* ~k2q8!p~q2k i !p~q82k i !

3S m* 00~v i ,q!m0** ~v i ,q8!d@v i2v~k!#

]D/]vuv5v~k!

2
m000~v i ,q!m*** ~v i ,q8!d@v i1v~2k!#

]D/]vuv52v~2k!
D .

~14!

Equation~14! is general and it can be applied to any type of
electrostatic density perturbations. In the next section, we
calculate the Fourier transform of the density perturbation
associated with the vortex street~2! in order to specialize
~14! for the case of periodic perturbations.

IV. FOURIER TRANSFORM OF THE DENSITY

Let us first derive an expression for the Fourier trans-
form of a perturbation that is periodic in they direction,
f(x,y)5f(x,y12p/a), having periodicity wave numbera.
We also assume thatf is even in they variable, which is the
case for the perturbation~2!. It follows thatf can be written
as a Fourier series as

f~x,y!5 (
n50

1` E
0

2p dt

p
fS x, taD cos~nt!cos~nay!, ~15!

and, consequently, the Fourier transform has the general
form

nv~k!52pn0d~kz! (
n50

1`

@d~ky2na!

1d~ky1na!#Fn~kx!, ~16!

with

Fn~kx!5E
2`

1`

dxF E
0

2p

dt fS x, taD cos~nt!Gexp~ ikxx!,

~17!

where we have made use of the fact that for small perturba-
tionsnv~r !5n0f~r !.

We now calculate the functionFn(kx) for the breather
vortex, given by~2!. To do this, we write it in the form~3!
and perform thet integration by employing

E
0

2p

log~c6cosx!cos~nx!dx

52
2p

n
~7c6Ac221!n, ucu.1, n.0.

Forn50 the result is 2p log@(c1 Ac221)/2# for both cases,
and these results imply thatFn(kx)50 if n5even. On the
other hand, whenn is odd, we find that

Fn~kx!5
2pf0

n E
2`

1`Fab cosh~bx!

2AS ab cosh~bx! D 221Gn cos~kxx!dx. ~18!

The x integration in~18! can be readily carried out,14 yield-
ing

Fn~kx!5
pf0

2b

~b/a!n

n!
GS n21 i

kx
2bDGS n22 i

kx
2bD ,

when n.0 is odd ~19!

and

Fn~kx!50, when n.0 is even, ~20!

where we have used

Fab cosh~bx!2AS ab cosh~bx! D 221Gn

.
1

2n S baD
n 1

coshn~bx!
. ~21!
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With the general form~16! for nv~k!, we can further simplify
the expression~14!. Thus, the final expression for the scat-
tering cross section for our purposes reads as

sv5
Zpe

2n0
2

64pe0v i
E dk dqx dqx8

~2p!5 (
n,m51

1`

Fn~kx2qx!

3Fm* ~kx2qx8! (
a,b51,2

p~qa2k i !p~qb82k i !

3S m* 00~v i ,qa!m0** ~v i ,qb8 !
d@v i2v~k!#

]vDuv5v~k!

2m000~v i ,qa!m*** ~v i ,qb8 !
d@v i1v~2k!#

]vDuv52v~2k!
D ,

~22!

where we have used the notations]v5]/]v, q15(qx ,ky
2na,kz), q25(qx ,ky1na,kz), q18 5 (qx8 ,ky 2 ma,kz), and
q285(qx8 ,ky1ma,kz).

V. APPLICATION: ORDINARY WAVE AND GAUSSIAN
BEAM

We now present some specific results for the scattering
cross section by assuming that~i! the incident wave propa-
gates along thex direction and is polarized in the ordinary
mode. Thusâi5ẑ andk i5ki x̂; ~ii ! the radiation phase veloc-
ity is much larger than the electron thermal velocity, so that
one can use the cold plasma dispersion relation
D~v,k!512(k2c21vpe

2 )/v2, which is valid for
v i@vpe ,vce . Using the cold plasma mobility tensor, it is
easy to see that the scattered wave is also polarized in the
ordinary mode, viz.âs5ẑ. This means that in this case there
is no mode coupling;~iii ! the incident beam is Gaussian and
that its divergence is negligible. This means that we have
p~r !5exp[2(y21z2)/w2], wherew is the beam waist, and
thusp~k!52pd(kx)p(ky ,kz).

With these assumptions in mind, we can now derive a
much more simple expression for the scattering cross sec-
tion. The cold plasma mobility tensor gives
um*00~vi ,qa,b!u5e/(mev i), and the same for the other three
terms in ~22!. Using spherical coordinates in Eq.~22!, one
obtains

sv5
3

16
n0
2sTE

0

2p

dw (
n,m51

1`

Fn@ki~cosw21!#

3Fm* @ki~cosw21!# (
a,b521,11

p~ki sin w

1ana,0!p* ~ki sin w1bma,0!. ~23!

Now, p(ky ,kz)5pw2 exp@2(ky
21kz

2)w2/4] and thus we
consider that the product of the two profile functions in~23!
contributes to the integral only in the casea5b and ifm5n.
Then, by writing

sv5E dw
dsv

dw
, ~24!

the differential cross section is defined by

dsv

dw
5
3p2

16
n0
2w4sT (

n52`

1`

uF unu@ki~cosw21!#u2

3expS 2~ki sin w2na!2
w2

2 D . ~25!

Heren can take only odd values. Equation~25! displays, as
expected, a kind of Bragg’s diffraction law. This is because
the vortex street acts like a diffraction grating. The intensity
maxima are given by the condition

sin w5n
a

ki
. ~26!

If d52p/a is the spacing between two adjacent vortices,
one obtains the familiar equation for the maximum intensity
lines of a diffraction grating,

d sin w5nl i . ~27!

The analogy with the classical Bragg diffraction is
slightly broken because the Bragg peaks are modulated by
the functionuF unu@ki~cosw21!#u2, which is a decreasing func-
tion of its argument. This results in a decrease of the inten-
sity of the peaks between zero andp/2.

We now turn to the graphical illustration of our results. A
complete set of parameters have been chosen, namelyki , a,
b, w, andf0. Once we neglect the divergence effects on the
Gaussian beam,ki andw define the beam completely. The
beam waist is naturally limited between the mm to cm
ranges.

Figure 1 displays the variation of the differential cross
section againstw for two values ofki . The two plotted
curves have a common set of parameters:f051, n051010

mm23, w55 mm, b50.5 mm21, and a51 mm21. For the
lowest curve we haveki54p mm21, whereas for the upper
we haveki52p mm21. From this figure, it is evident that
increasingki leads to sharper peaks in the differential cross
section. This can be explained if we keep the analogy with
the diffraction grating: the angular spread of the lines is pro-
portional to the wavelength of the incident wave. Of course,
this could be immediately predicted from the exponential of

FIG. 1. Differential cross section~on the logarithmic scale! versusw ~in
radians! for two different values ofki ~ki52p mm21 in curve 1 andki54p
mm21 in curve 2!. We note that sharper peaks in the cross section arise with
decreasing incident wavelength.

904 Phys. Plasmas, Vol. 3, No. 3, March 1996 Guerra et al.

Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



~25!. Based on Fig. 1, we can state with generality that if we
choose a laser beam such thatki@1/w, a slight angular de-
viation from the Bragg condition will turn into a very severe
decrease of the cross section. This means thatds/dw is so
sharply peaked that, for any practical purposes, it is the sum
of delta functions. This is the case for CO2 laser, which has
ki.593 mm21, much greater than a typical value of 1/w. If
ki.1/w, the form of the cross section changes from a sum of
lines ~delta functions! to a sum of Gaussian peaks. Again, on
the basis of the figure, we see that, depending on the several
parameters involved, the damping of the larger angles can be
so strong that only the first peak is experimentally detectable.
In this case, the proper identification of the vortex street is
not possible.

In Fig. 2 we keepki52p mm21 and a51 mm21, but
vary the value of the waist,w. We observe that for smallerw
values the resolution of the peaks is lost. Mathematically,
this can be easily understood from the Gaussian factor of
~25!: the exponent is proportional tow2 and so the angular
spread of the peaks is proportional to 1/w2. Thus, decreasing
w will produce overlap of the peaks with a consequent loss
of resolution. Physically, the interpretation is also simple: if
w,2p/a, the beam is incapable of seeing the periodic struc-
ture, because it is ‘‘smaller’’ than its characteristic wave-
length. We see that in the limit ofw→` ~plane wave! the
peaks transform into lines.

VI. CONCLUSION

In this paper, we have studied the scattering of electro-
magnetic waves from a counter-rotating vortex street, which

is described by a stationary solution of the Hasegawa–Mima
equation. The calculation of the scattering cross section is
made in the first-order Born approximation and is kept gen-
eral, with arbitrary polarization and profile of the incident
electromagnetic wave. As a simple but realistic application
of our general results, we have studied the scattering of an
electromagnetic wave that is polarized in the ordinary mode
and has a Gaussian profile function. We obtain results that
are closely linked to the effect of a diffraction grating. The
difference from the classical Bragg diffraction lies in the fact
that the peaks are weighted by a decreasing function of the
scattering angle. This strong damping may imply that only
the first peak can be seen and thus the vortex street cannot be
properly identified. In conclusion, we stress that the results
of our investigation should be useful in identifying coherent
nonlinear structures as well as for plasma diagnostics in
space and laboratory plasmas.
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