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PHYSICS OF PLASMAS VOLUME 5, NUMBER 11 NOVEMBER 1998
Bifurcated neoclassical particle transport
P. Helander
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB, United Kingdom

~Received 13 July 1998; accepted 18 August 1998!

The theory of neoclassical transport in an impure, toroidal plasma is extended to allow for steeper
pressure and temperature gradients than are usually considered. It is found that the ion particle flux
is a nonmonotonic function of these gradients for plasma parameters typical of the tokamak edge.
A sudden transition between states of low and high confinement is therefore possible.
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I. INTRODUCTION

In well-confined tokamak plasmas, the ion particle tra
port can be comparable to the neoclassical prediction. On
other hand, the pressure and temperature profiles are o
very steep, especially near the plasma edge. It is well kno
that the observed gradients are frequently too large for c
ventional neoclassical theory1,2 to be valid, and the need t
extend the theory in this direction is widely recognized.3–7

Since the conventional neoclassical transport fluxes are
portional to the gradients but cannot increase indefinite
one might expect that some saturation of the transport sh
occur when the profiles become very steep. As we shall
in the present paper, it is also possible that the plasma tr
port becomesqualitativelydifferent under such conditions.

The essential difficulty in generalizing neoclassic
transport theory to steep gradients lies in the use of the
pansion parameter,

d[
ru

L'

,

where ru is the poloidal ion gyroradius andL' the radial
scale length associated with the density and temperature
files. Neoclassical theory requiresd!1, and it is very diffi-
cult to envisage constructing a tractable transport the
when this assumption does not hold. There is then no s
ration of scales, so the transport fluxes become nonlocal
depend not only on the local gradients but on the entire d
sity and temperature profiles.

While constructing transport theory in the regimed
5O(1) is fundamentally difficult, it is nonetheless possib
to allow for steeper gradients than are admissible in conv
tional neoclassical theory while still assumingd!1. The
point is that not only isd assumed to be small in conven
tional theory, but it is also effectively taken to be the sma
est of all parameters of the transport problem. This has
consequence of making all densities and temperatures
functions, essentially because the system of lowest-o
drift kinetic equations,

v i¹ i f a5(
b

Cab~ f a , f b!,

for all speciesa only has solutions that are Maxwellian an
are constant on flux surfaces.1 The only two-dimensional fea
1070-664X/98/5(11)/1/6/$15.00 399
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ture of the plasma that survives in this ordering is the m
netic field inhomogeneity, which is what gives rise to t
neoclassial enhancement of the transport over the clas
level.

When d is made larger, poloidal asymmetries becom
possible. Typically the first plasma parameter to develo
poloidal variation is the density,nz , of highly charged im-
purity ions,8,9 whose poloidal modulation is of the order10

ñz

nz
;D[dn̂ i i z

2, ~1!

wheren̂ i i [L i /l i i is the collisionality, withl i i the mean-free
path for the bulk ions andL i the connection length. If the
plasma is not deep into the collisionless regime,D can easily
be of order unity whiled remains small.

Here, we study neoclassical transport in an impu
plasma with steep profiles, with the ordering

d!1, D5O~1!, ~2!

enabling a nonuniform distribution of impurities over ea
flux surface. For simplicity, we restrict our attention to th
case of a hydrogen plasma with a single species of hig
charged (z@1) impurity ions. The electrons (e) and H ions
( i ) are taken to be collisionless while the impurities are
sumed to be collisional, as is typical of a tokamak plas
somewhat inside the last closed flux surface. The anal
presented here complements earlier work by Hsu
Sigmar,10 who considered a collisional, isothermal plasma
a torus with large aspect ratio and circular cross section.

In order to calculate the poloidal distribution of impur
ties, it is necessary to solve their parallel momentum eq
tion. This is accomplished in Sec. II, where it is shown th
the impurity density generally has both up–down and in–
asymmetry. This has surprising implications for the neocl
sical transport, which is evaluated in Sec. III. When the g
dients are sufficiently steep the confinement is improved,
the radial ion particle flux can even be anonmonotonicfunc-
tion of the gradients for plasma parameters typical of
tokamak edge. Sudden transitions between states with
and high particle confinement are therefore possible. T
conclusions are summarized in the last section.
9
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II. PARALLEL DYNAMICS

We begin by estimating the time scales associated w
the transport along and across the magnetic field. The
quency of collisions of one particle species (a) with another
(b) is, generally,11

1

tab
;

nbea
2eb

2 ln L

~4pe0!2ma
2vT.vTa

2
,

where vT. is the larger of the thermal velocitiesvTa and
vTb . In a tokamak, the impurity density is usually larg
enough to make the ion–impurity and ion–ion collision fr
quencies comparable, so we assume

Zeff215nzz
2/ni5O~1!. ~3!

The time scale on which a parallel equilibrium is establish
for the impurities is

t i;
L i

2

vTz
2 tzz

,

whereL i is the connection length, and the time scale ass
ated with the cross-field particle transport is

t';
L'

2

rz
2/tzi

,

with L' the perpendicular scale length andrz5vTz /Vz the
impurity gyroradius. The ratio between these time scales
be written as

t i

t'

;
~Zeff21!D2

z3/2
,

which is small because of the orderings~2! and ~3!. The
parallel dynamics can thus be analyzed on each flux sur
separately. If this were not the case, the transport prob
would be effectively two-dimensional and much more dif
cult.

Since z@1, the assumption~3! implies nzz!ni . As a
result, the electrostatic potential is approximately constan
flux surfaces,F.F0(c), which can be verifieda posteriori.
The first-order drift kinetic equation for the H ions is

v i“ iS f i11
Iv i

V i

] f i0

]c D1
ev i“ iF1

Ti
f i05Ci~ f i1!,

wheref i0 is a Maxwellian at rest,V i5eB/mi , and the mag-
netic field isB5I (c)“w1“w3¹c, so thatc is the poloi-
dal flux. The gradient is taken at constant magnetic mom
m and lowest-order energyE0[miv

2/21eF0. The first-
order ion distribution function thus becomes

f i152
Iv i

V i

] f i0

]c
2

eF1

Ti
f i01hi~E0 ,m,c,s!,

where s5v i /uv iu and hi vanishes in the trapped domai
The electron distribution is of a similar form~but with mi

→me ande→2e), and the impurity density can be relate
to F1 by quasineutrality,
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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nz5
ne2ni

z
5

2n0

T0

eF1

z
, ~4!

where 2n0 /T0[ne0 /Te1ni0 /Ti , andni0, Ti0, ne0 and Te0

are the densities and temperatures associated with the low
order, Maxwellian, distribution functionsf i0 and f e0. Since
the impurities are highly charged, their perpendicular vel
ity is dominated by theE3B drift,

Vz'.
b3¹F0

B
5

dF0

dc S I

B
b2R2¹w D ,

whereb5B/B is the unit vector along the field. From th
continuity equation,“•(nzVz)50, it follows that there must
be a parallel impurity return flow equal to

Vzi52
I

B

dF0

dc
1

Kz~c!B

nz
,

where the integration constantKz(c) is proportional to the
poloidal flow velocity.

Since the H ions generally have a different parallel flo
velocity, they exert friction on the impurities. The ion
impurity collision operator is

Ciz5
n iz~v !

2

]

]j
~12j2!

]

]j
1n iz

miv iVzi

Ti
f i0 ,

n iz~v !5
3p1/2

4t iz
S vTi

v D 3

,

with vTi5(2Ti /mi)
1/2 the ion thermal speed,j[v i /v and

t iz53(2p)3/2e0
2mi

1/2Ti
3/2/nzz

2e4 ln L5(ni /nzz
2)tii the ion–

impurity collision time. The parallel friction force between
ions and impurities is

Rzi52E miv iCiz~ f i1!d3v

52
piI

V it iz
S d ln pi

dc
2

3

2

d ln Ti

dc D1
mini

t iz
S u2

Kz

nz
DB,

~5!

where

u[
t iz

niB
E v in izhid

3v ~6!

is a flux function sinced3v}BdE0dm/v i .
We now turn our attention to the parallel momentu

equation for the impurities,

mznzb•~Vz•“Vz!52nzze“ iF1

2“ ipz2b–¹•pz1Rzi ,

wherepz is the impurity viscosity tensor. If the radial elec
tric field is of the same order as the temperature gradi
eF8;T8, the flow velocities of both ion species are of th
orderVi;dvTi . The ratio between the inertial term and th
friction is then

mznzb•~Vz•“Vz!

Rzi
;

d

zn̂ i i

.
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4001Phys. Plasmas, Vol. 5, No. 11, November 1998 P. Helander
For simplicity, we shall assume that this parameter is sm
which is realistic in edge plasmas where the bulk ions are
far into the banana regime. This also enables us to neg
any poloidal variation in the impurity temperature, which
determined by the impurity energy equation,

3

2
nzVz•“Tz1pz“•Vz52“•qz2pz :“Vz1Qzi ,

where compressional heating,

pz“•Vz;dpzvTi /L i ,

and the divergence of the diamagnetic heat flux,

“•qz`5“•S 5pz

2zeB
b3¹TzD;dpzvTi /zLi ,

tend to produce poloidal asymmetries. Both these terms
however, overwhelmed by ion–impurity energy equilibr
tion,

pz“•Vz

Qzi
;

z“•qz`

Qzi
;

dpzvTi /L i

nz~Ti2Tz!/tzi
;

d

zn̂ i i

Ti

Ti2Tz
,

so that (Ti2Tz)/Ti;d/zn̂ i i !1. In addition, the parallel vis-
cosity associated with the impurities becomes smaller t
the pressure gradient,

b•“•pz

¹ ipz
;

pztzzVi /L i
2

pz /L i
;

d

z3/2n̂ i i

ni

nzz
2

.

With these simplifications, the parallel momentum equat
reduces to

nzze“ iF11Ti“ inz5Rzi , ~7!

from which we can now calculate the poloidal impurity r
tation Kz by noting the solubility constraint̂ BRzi&50,
where

^•••&5 R ~••• !du

B•“u Y R du

B•“u

is the flux surface average, withu the poloidal angle. Thus
solving for the poloidal flowKz appearing in~5!, and insert-
ing the resulting friction force in the parallel momentu
equation~7!, we obtain

S Ti1
nzz

2

2n0
T0D“ inz

52
pi I

V it iz
S d ln pi

dc
2

3

2

d ln Ti

dc D S 12
^nz&
nz

B2

^B2&
D

1
miniu

t iznz
S nz2

^nzB
2&

B2 D B,

where we have used~4! to eliminate the electric field. Fi-
nally, we write this equation in dimensionless form by intr
ducingn[nz /^nz&, b[B/^B2&1/2, a[^nz&z

2T0 /2n0Ti ,

g[2
eu

ITi
^B2&S d ln pi

dc
2

3

2

d ln Ti

dc D 21

, ~8!

and a modified poloidal angle coordinateq defined by
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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dq[
^B•“u&
B•“u

du,

so that the flux-surface average is equivalent to an ave
over q. The parallel momentum equation then becomes

~11an!
]n

]q
5g@n2b21g~n2^nb2&!b2#,

~9!

g[2z2
IB

V it i i ^B•“u&S d ln pi

dc
2

3

2

d ln Ti

dc D .

This equation governs the distribution of impurities o
the flux surface. It is straightforward to verify thatg
5O(D), and it is thus clear that the poloidal variation of th
impurity density satisfies the estimate given in Eq.~1!. The
parameterg measures the magnitude of the parallel fricti
force relative to the parallel pressure gradient. When eit
of these forces is dominant, so thatg is either much smaller
or larger than unity, it is not difficult to solve~9!.

In conventional neoclassical theory, the pressure
temperature gradients are assumed to be so small
g!1.12 It is then immediately clear from~9! that the impu-
rity density is nearly constant on each flux surface,n.1,
with a smallup–down asymmetry10 given by

~11a!
]n

]q
5g~12b2!1O~g2! ~g!1!,

where we have noted that (n2^nb2&)b25O(g). The asym-
metry changes sign if the toroidal field is reversed but is
affected by a reversal of the plasma current.

In the opposite limit of very steep gradients,g@1, the
friction force exceeds the pressure gradient and causes a
stantial rearrangement of impurities within each flux surfa
If we expandn in powers ofg21,

n5n01n11O~g22! ~g@1!, ~10!

the lowest-order solution isin–out asymmetric,

n05
g

12^~11gb2!21&

b2

11gb2
. ~11!

The first-order termn1 contains up–down asymmetry and
determined by

~11an0!
]n0

]q
5g@n11g~n12^n1b2&!b2#. ~12!

In a torus with a small inverse aspect ratio,e5r /R!1,
the variation of the impurity density is small,n215O(e).10

In the opposite limit of a tight aspect ratio, there are very f
circulating particles, so thatu→0 and thusg→0. Thenn0

→b2, implying a much larger impurity density on the insid
of the flux surface than on the outside—by an order of m
nitude in the edge of a typical spherical tokamak. Th
should be an experimentally verifiable prediction of t
theory. It is, however, worth noting that rapid toroidal rot
tion ~which is ruled out by our orderings! has the opposite
effect since the centrifugal force pushes impurities to
outside of each flux surface.13
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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III. RADIAL TRANSPORT

The rearrangement of impurities on each flux surface
have just calculated has surprising implications for the n
classical transport. The radial neoclassical flux of H ions
driven by the parallel ion–impurity friction force and
equal to

^G i
neo

•“c&5 K IRzi

eB L
5^B•“u&

^pz&I

e^B2&
F K n

b2L 211g~12^nb2&!Gg.

~13!

It increases linearly with the gradients wheng is small, and
is then proportional tô b2221&g as is characteristic o
Pfirsch–Schlu¨ter transport.~Note that the particle flux scale
like the Pfirsch–Schlu¨ter value although the H ions are in th
banana regime.14! However, when the profiles become s
steep thatg@1 then Eqs.~10!–~13! show that

^G i
neo

•“c&}g21. ~14!

The contributions to the flux from bothn0 andn1 vanish, and
as a result the neoclassical particle fluxdecreaseswith in-
creasing gradients when the latter become sufficiently ste

We have tacitly assumed thatg does not vary too much
when g increases. This assumption can be justified in
limits of large and small aspect ratio. The functionhi , which
determinesu and henceg by Eqs.~6! and ~8!, is obtained
from the solution of^(B/v i)Ci( f i1)&50.1,2 The redistribu-
tion of impurities which occurs wheng5O(1) affects this
equation by making the ion–impurity collision frequen
vary over the flux surface and by changingVzi . If the in-
verse aspect ratio is small, these effects are no larger
O(e). The functionhi is therefore not much affected by th
impurity redistribution and is approximately equal to th
found in the conventional theory. The quantityu is thus pro-
portional to the gradients, which makesg independent ofg.
In the opposite limit of tight aspect ratio,g is small since the
function hi is nonzero only in the small circulating doma
of velocity space.

As the neoclassical channel is suppressed, class
transport becomes relatively more important. The class
particle flux is

^G i
cl
•“c&5 K R2

“w•Rz'

e L ,

whereRz' is the perpendicular friction force,

Rz'5
mini

t iz
S V i'2Vz'2

3

2miV i
b3¹Ti D .

Since the difference in diamagnetic velocities isV i'2Vz'

.b3¹pi /nieB, and “w•(b3¹c)52Bu
2/B, the classical

flux becomes
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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^G i
cl
•“c&52

piB
2

miV i
2t iznz

S d ln pi

dc
2

3

2

d ln Ti

dc D
3K R2Bu

2

B2
nzL . ~15!

It is immediately apparent that this flux can also be affec
by the redistribution of impurities. To understand the beh
ior of the total~classical1 neoclassical! transport, it is in-
structive to take the limits of large and tight aspect ratio, n
considered separately.

A. Large aspect ratio

In a torus with large aspect ratio and circular cross s
tion, b2(q)5122e cosq1O(e2), and we can expand th
impurity density similarly,

n~q!511nc cosq1ns sinq1O~e2!.

The solution then found from~9! is

ns5
2e~11a!g

~11a!21~11g!2g2
,

nc5
2e~11g!g2

~11a!21~11g!2g2
.

Thus, the in–out asymmetry increases monotonically with
increasing gradient, while the up–down asymmetry ha
maximum atg5(11a)/(11g). It is now straightforward to
evaluate the fluxes~13! and ~15! to obtain

^G i
cl
•“c&1^G i

neo
•“c&5

epz

q2eS 11
2q2

11S 11g

11a D 2

g2D g,

whereq5rB/RBu is the safety factor. The second term re
resents the neoclassical contribution and exceeds the
classical term by the Pfirsch–Schlu¨ter factor 2q2 when the
gradients are weak,g!1. On the other hand, if the profile
are steep (g@1) the neoclassical flux is suppressed and cl
sical transport dominates. As the latter is not much affec
by the weak@O(e)# impurity redistribution, the flux then
increases linearly withg. The total flux is nonmonotonic if
q.2.

Figure 1 shows the fluxes as functions of the normaliz

FIG. 1. The neoclassical ion particle flux~dotted curve!, the classical flux
~dashed line! and the total flux~solid curve! vs gradient in a toroidal plasma
with circular cross section, large aspect ratio and safety factorq53.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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gradientsg in a torus with safety factorq53. The total flux
~solid line! depends on the gradients in a way characteri
of bifurcating systems.15 If the flux is raised above the loca
maximum, a sudden transition occurs to a state with m
steeper gradients. Conversely, if the flux is decreased be
the local minimum of the curve, the gradients suddenly
come much smaller. Sudden transitions between state
high and low confinement are thus possible.

B. Tight aspect ratio

At a tight aspect ratio the situation is slightly differen
Not only is the neoclassical transport suppressed when
gradients are large, but the classical transport is also affec
Sincen5b2 when g@1, most ion–impurity collisions then
occur on the inside of each flux surface, and the step siz
the ion–impurity collisional walk is reduced, resulting
weaker classical transport; cf. Ref. 13.

To illustrate the transport wheng varies from small to
large values, we have solved Eq.~9! numerically, with a
periodic boundary condition, for the equilibrium shown
Fig 2. This has been obtained by magnetic reconstructio
experimental data from a discharge~No. 35096! in the Small
Tight Aspect Ratio Tokamak~START! at Culham.16 The
transport fluxes calculated from~13! and ~15! are shown in
Fig 3. The neoclassical flux~dotted line! is completely sup-
pressed wheng@1, and the classical diffusion coefficient
reduced by a factor,

FIG. 2. A magnetically reconstructed flux surface close to the edge
START dischage No. 35096.

FIG. 3. The same as Fig. 1, but for START discharge No. 35096, assum
g50, a!1.
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cl
•“c&~g!1!/g

5
^R2Bu

2&

^R2Bu
2/B2&^B2&

.0.27.

At tight aspect ratio it is also possible for the classic
diffusion coefficient to exceed the neoclassical one wheg
!1. An example is shown in Fig. 4, where we have calc
lated the transport in a different START discharge~No.
36544!, in which the toroidal magnetic field was much low
than in the previous example. The classical transport is ab
twice as large as the neoclassical transport wheng!1, and
dominates completely wheng.1. The total flux is a mono-
tonic function of the gradients, and no bifurcation can occ
However, the plasma confinement is still significantly e
hanced wheng@1, with a particle diffusivity less than one
third of that forg!1.

C. General remarks

It should be pointed out that the neoclassicalheat fluxis
generally not expected to be a nonmonotonic function of
gradients. Not only ion–impurity collisions, but also ion–io
collisions, drive the heat flux. The redistribution of impur
ties reduces the ion–impurity friction but does not affect t
ion–ion collisions.

As we have seen, the transition to improved particle c
finement need not be sudden but can also be gradual,
pending on whether the flux decreases for largeg or merely
increases at a slower rate. This is sensitive to the magni
of the classical or anomalous transport and also to proce
we have neglected. In order to estimate the maximum gr
ent allowed in the present ordering, we note that, when in
tia and compressional heating are included, the solution~10!

is expected to acquire additional terms of orderO(d/zn̂ i i ),
which compete with theO(g22) term when the gradients
become so steep that

d>
1

zn̂ i i
1/3

⇒D>n̂ i i
2/3z.

This suggests that our banana-regime analysis is limite
g,6 for realistic impurities. However, as follows from th
work by Hsu and Sigmar,10 the phenomenology can be sim
lar in the Pfirsch–Schlu¨ter regime (n̂ i i .1). Indeed, it is ap-
parent from Sec. II above that although the ion–impur
friction force may depend on the collisionality, most oth
aspects of the impurity dynamics do not. Crucially, in t

f

ng

FIG. 4. The same as Fig. 3, but for START discharge No. 36544.
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equation that controls the behavior of the impurities~9!, only
the definitions ofg andg are sensitive to the collisionality
not the form of the equation itself.

IV. SUMMARY

In conclusion, in an impure toroidal plasma with ste
gradients, heavy impurity ions undergo a spontaneous r
rangement on each flux surface, reducing their parallel f
tion with the bulk ions. This is the driving force for th
neoclassical flux, which therefore decreases if the gradi
become sufficiently steep. This gives rise to the possibility
a transport bifurcation. Indeed, the relations between par
flux and the gradients shown in Figs. 1 and 3 are remarka
similar to that postulated by Hinton and Staebler15 for the
anomalous heat flux.

The neoclassical heat flux is less influenced than the
ticle flux by the impurity redistribution, since heat is tran
ported by both ion–ion collisions and ion–impurity coll
sions but only the latter are affected by the redistributi
However, if Zeff215O(1) so that the contributions from
these different classes of collisions are comparable, the
flux is significantly reduced as the contribution from ion
impurity collisions becomes less important.

The circumstance that neoclassical transport is s
pressed when the gradients are steep may be of import
for interpreting tokamak experiments where the transport
pears to be lower than the conventional neoclass
prediction.17 More speculatively, the presence of a neocl
sical transport bifurcation could be related to the H mo
~high confinement mode, which involves a reduced anom
lous heat flux!. For instance, the latter could be triggered
a suddenly improved neoclassical particle confinement, le
ing to a steepened pressure gradient, increased radial ele
field and shear stabilization of the plasma turbulence.
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