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Abstract

Impurity ions with sufficiently high mass in toroidally-rotating tokamak plasmas are
deeply trapped by a centrifugal potential well in the outer plasma midplane, with a
bounce period that is shorter than both the bounce period of magnetically-trapped
ions and the collision time. As a result trace impurity ions can undergo collisional
transport at a rate exceeding that in non-rotating plasmas. Due to modifications to
the effective magnetic field arising from the Coriolis force, the increase in transport is
greatest for relatively low charge states of massive impurity ions in plasmas rotating
in the same direction as the plasma current. These effects are quantified analytically
and using test-particle simulations of tungsten (W) transport in transonically-rotating
spherical tokamak plasmas. It is shown that the collisional confinement time of W ions
in such plasmas can be two orders of magnitude shorter than the confinement time in
the absence of rotation.

1. Introduction

Tokamak plasmas always contain ions of species other than the dominant fuel species,
due to the sputtering of material from plasma-facing solid surfaces or fusion reactions.
The presence of such impurity ions is generally undesirable, since it degrades the
fusion fuel and enhances radiative energy losses from the plasma. Experimental and
theoretical studies of impurity transport thus play an important role in the prediction of
overall plasma performance in future burning plasma devices such as ITER. Tungsten
(W) is an impurity species that is of particular relevance for ITER because it is currently
the material of choice for the divertor, due to its high melting point and the fact
that tritium co-deposition is an unavoidable consequence of using carbon as a divertor
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material. In preparation for ITER, bulk W and W-coated tiles will be included in a
new first wall that will be installed in the JET tokamak during an extended shutdown
in 2009-2010 [1], and over the past few years progressively greater quantities of W have
been incorporated into the first wall of the Asdex Upgrade tokamak [2]. It is therefore
timely to re-examine theoretically the behaviour of heavy impurity ions, in particular
tungsten ions, under tokamak conditions.

Compared to other impurity species typically found in tokamak plasmas, W ions have
very high mass (A = 184 in the case of the most common isotope) and, in present-day
devices, tend to be incompletely ionized: the last ionization potential of a species with
nuclear charge Ze (e being the proton charge) is approximately equal to Z2 × 13.6 eV,
which in the case of W (Z = 74) is more than an order of magnitude higher than typical
tokamak temperatures. Tungsten ions in tokamaks thus tend to have a relatively
low charge-to-mass ratio, and a thermal speed that is much lower than that of the
bulk ions. An important consequence of the latter property is that in the presence
of toroidal rotation velocities that are comparable to (or a significant fraction of) the
bulk ion thermal speed, W ions will be dragged collisionally by the bulk ions at a
rotation velocity that is hypersonic in terms of their own thermal speed, irrespective
of their velocity distribution when they first enter the plasma. In these circumstances
centrifugal and Coriolis forces play a key role in the collisional dynamics of the ions.

Our aim in the present paper is to determine the orbits of heavy trace impurity
ions in the hypersonic regime, and to explore the consequences of these orbits for
collisional transport. A similar approach to the modelling of impurity transport in
rotating tokamaks was adopted by Wong and Cheng [3], prompted by measurements
of impurity radiation from the PLT [4] and TFTR [5] tokamaks. We extend the work
of Wong and Cheng by obtaining analytical expressions for the bounce frequency of
centrifugally-trapped heavy ions (section 2) and the transport coefficients of such ions
in the banana regime (section 3). In section 4 we use results from a test-particle
simulation code to compare the collisional confinement times of W ions in stationary
and transonically-rotating spherical tokamak plasmas. In section 5 we summarise our
results and briefly consider their significance in the context of past, present and future
tokamaks containing tungsten impurity ions.

2. Centrifugal trapping

By considering force balance in the absence of dissipation within a single flux surface
of a toroidally-rotating hydrogenic plasma, Wesson [6] showed that the density
distribution of trace impurity ions on that surface is given by

nZ = nZ0 exp

[(
1 − Te

Ti + Te
Z

mi

mZ

) mZΩ2
ϕR2

2TZ

]
, (1)
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where nZ0 is a constant for the flux surface, Te, Ti and TZ denote electron, bulk ion and
impurity ion temperatures, mi and mZ denote bulk ion and impurity ion mass, Z is
the impurity ion charge state, Ωϕ is the toroidal rotation frequency of the flux surface
(assumed to be rotating as a rigid body), and R is major radial distance. Impurity
ions in tokamaks are strongly coupled via collisions to bulk ions, thereby ensuring that
TZ � Ti [7]. For an incompletely ionized species such as W, the value of the exponent
in equation (1) is reduced only slightly by the Z-dependent term in the brackets, which
arises from the presence of an electric field within the flux surface. It is thus clear that
in the hypersonic regime (Ω2

ϕR2 � TZ/mZ) impurity ions will be strongly concentrated
in the outer plasma midplane. This result was in fact first demonstrated numerically
(for Ar18+ ions) by Wong [8] several years before Wesson’s analytical treatment [6].

We now consider the implications of this result for collisionless particle orbits. The
fact that impurity ions are restricted to a region close to the outer midplane indicates
that they are trapped poloidally, primarily by a centrifugal potential well rather than
the magnetic field. To quantify the trapping effect of the centrifugal potential we first
note that, in the absence of collisions, the impurity ion equation of motion in a frame
rotating toroidally at frequency Ω can be written in the form [3]

mZ
dv

dt
= Ze (E + v × B) +

1

2
mZΩ2∇(R2) + 2mZΩv × êZ , (2)

where E and B denote the electric and magnetic fields in the rotating frame and êZ is
the unit vector in the vertical direction (i.e. the direction of the rotation axis). Equation
(2) can be obtained by writing down the standard Lagrangian of a nonrelativistic
charged particle in an electromagnetic field in terms of inertial frame coordinates [9],
making the coordinate transformation ϕ′ = ϕ−Ωt where ϕ is toroidal angle, and then
determining the corresponding Euler-Lagrange equations. The two last terms on the
right hand side represent the centrifugal and Coriolis forces on the ion. It is apparent
from equation (2) that the latter in effect introduces a vertical magnetic field to the
equilibrium, the total effective field being

B∗ ≡ B +
2mZ

Ze
ΩêZ . (3)

If B∗ rather than B is taken to be the magnetic field, there is no Coriolis force as such
and hence no Coriolis drift. In the nonrelativistic limit B itself is unaffected by the
transformation from the laboratory to the rotating frame, while E is related to the
electric field in the laboratory frame Ei by the expression

E = Ei + Ω∇Ψ, (4)

where Ψ is the poloidal flux, defined such that the equilibrium magnetic field is given
by B = RBϕ∇ϕ + ∇Ψ × ∇ϕ where Bϕ is the toroidal magnetic field. With this
convention, the plasma current is oriented in the negative ϕ direction if Ψ increases
from the magnetic axis to the plasma edge, in which case Ω < 0 for a frame rotating
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in the co-current direction. In the limit of ideal magnetohydrodynamics (MHD), the
laboratory frame electric field is simply equal to −Ωϕ∇Ψ [10]. By transforming to
a frame rotating at frequency Ω = Ωϕ we thus eliminate the ideal MHD part of the
electric field. However, there remains a nonvanishing field in this frame, arising from
the requirement of quasineutrality in a rotating plasma containing only trace quantities
of impurity ions [11]:

E = −mi

2e
∇
(

TeΩ
2
ϕR2

Ti + Te

)
, (5)

where êR is the unit vector in the major radial direction. Substituting this expression
into equation (2), taking the scalar product with v, assuming that TeΩ

2
ϕ/(Te +Ti) does

not vary significantly along the particle trajectory, and identifying the local rotation
rate of the plasma with that of the frame (i.e. setting Ωϕ = Ω), we deduce the existence
of an energy invariant

E ≡ 1

2
mZ

[
v2 − Ω2R2

(
1 − ZmiTe

mZ(Ti + Te)

)]
, (6)

in addition to the toroidal canonical momentum invariant

Pϕ = mZR(vϕ + ΩR) + ZeΨ, (7)

where vϕ is the toroidal velocity component in the rotating frame. For thermalised
impurity ions the magnetic moment µ = mZv2

⊥/(2B∗), where v⊥ is velocity
perpendicular to the effective magnetic field B∗, is also approximately conserved in
the rotating frame, as it is in the laboratory frame, but it should be noted that the
effective field direction differs in the two frames. For low ionization states of a heavy
impurity species in a tokamak plasma with Te ∼ Ti, the Z-dependent term in equation
(6) is small and v2 − Ω2R2 is then approximately conserved along the trajectory. In
the case of thermalised hypersonically-rotating impurity ions, for which v2 ∼ TZ/mZ ,
the presence of the centrifugal potential term in the energy integral prevents individual
ions from moving beyond a narrow range of values of R. Hence these ions are deeply
trapped.

Wong and Cheng [3] presented numerical calculations of the bounce frequency of
centrifugally-trapped impurity ions. We can obtain a simple expression for this
frequency using the parallel component of the guiding centre equation of motion, which
in the rotating frame can be written in the form [12]

mZ v̇‖ = ZeE‖ − µ∇‖B∗ +
1

2
mZ∇‖(Ω2R2), (8)

where v‖ is the velocity of the guiding centre parallel to the effective magnetic field, ∇‖
denotes the spatial derivative along this direction, and E‖ is the parallel component of
the electric field given by equation (5). Assuming, as before, that the rotation rate of
the frame can be equated to that of the plasma over the particle trajectory (valid for
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sufficiently narrow orbit widths), the E‖ term in equation (8) can be incorporated into
the centrifugal force term by defining an effective rotation rate

Ω∗ = Ω

(
1 − ZmiTe

mZ(Ti + Te)

)1/2

. (9)

The other term on the right hand side of equation (8) represents the magnetic mirror
force. Given that tokamak magnetic fields vary approximately as 1/R, it is clear that
the equation can be written compactly as

v̇‖ �
(
v2
⊥/2 + Ω2

∗R
2
)
∇‖ (ln R) . (10)

From this form of the equation it is evident that for hypersonically-rotating thermalised
minority ions the mirror force will be negligible, and the bounce period will be
determined solely by the centrifugal force [modified by the electric field given
by equation (5)]. Considering the usual limit of large aspect ratio flux surfaces
with circular poloidal cross-section, assuming that particles can undergo only small
excursions from the midplane, and writing v‖ = ṡ where s is the distance of the guiding
centre from the midplane along an effective field line, we find that equation (10) then
reduces to

s̈ = −Ω2
∗

q
s, (11)

where q is the effective safety factor, i.e. the number of toroidal circuits made by a
field line on the local flux surface in the course of one poloidal circuit. From equation
(11) it is immediately apparent that the bounce frequency is Ω∗/q1/2 and the bounce
period is

τ c
b =

2πq1/2

Ω∗
. (12)

Comparing this result with the bounce period of a magnetically-trapped particle τm
b

[13], neglecting the Coriolis modification to B, we find that

τ c
b

τm
b

�
(

ε

2q

)1/2
v⊥

Ω∗R
, (13)

where ε is the local inverse aspect ratio of the flux surface. Given that ε � 1 and
q >∼ 1 in conventional tokamaks, it is clear that the centrifugal bounce period will be
much shorter than the magnetic bounce period whenever the minority ions are rotating
hypersonically. Wong and Cheng [3] solved numerically the guiding centre equations for
impurity ions in rotating plasmas, and found a linear correlation between the bounce
and rotation frequencies for high values of the latter: this scaling is consistent with the
above analysis.

Figure 1 illustrates the phenomenon of centrifugal trapping for the case of a Solov’ev
magnetic equilibrium with aspect ratio, shaping and plasma current similar to those of
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plasmas in the MAST spherical tokamak [7]. The two frames of this figure show the full
collisionless orbits of W20+ ions initially in the outer midplane with velocity components
that are identical except that in the case of the right hand frame the toroidal velocity
is boosted by ΩR where Ω = 200 krad s−1; toroidal rotation rates of this magnitude
have been achieved in MAST through the use of counter-current neutral beam injection
[14]. The orbit of this particle was calculated in the laboratory frame using an electric
field equal to −Ω∇Ψ plus the expression given by equation (4), with the electron and
ion temperatures assumed to be equal. For the orbit shown in the left hand frame,
the electric field was taken to be zero. In both cases the particle energy in the plasma
rest frame was taken to be 600 eV (a typical mid-radius temperature in MAST). The
extreme trapping effect of rotation can be clearly seen; whereas the particle in the left
hand plot is free to circulate around the torus poloidally and toroidally, the particle
in the right hand plot is prevented by the centrifugal potential well from moving more
than a few centimetres from the outer midplane.

(a) (b)

R (m)

Z
(m

)

Figure 1: Collisionless orbits of 600 eV W20+ ions in (a) non-rotating and (b)
transonically co-rotating spherical tokamak plasmas. The ions initially have identical
velocity components in the plasma rest frame.

3. Collisional transport

In this section we restrict our attention to the trace impurity limit, which, for a plasma
with a single impurity species, requires nZZ2 � n where nZ and n denote the impurity
and bulk ion densities [15]. It has been found previously that strong localisation of
impurity ions in the outer midplane leads to enhanced neoclassical transport of those
ions in the Pfirsch-Schlüter regime [3, 16]. However, as noted by Wong and Cheng [3],
impurity ions that are in the Pfirsch-Schlüter regime in a stationary plasma can be in
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the banana regime in a rapidly rotating plasma, due to their higher bounce frequency.
This is important since, for a given collision frequency, transport rates are higher for
banana regime particles than they are for those in the Pfirsch-Schlüter regime. In the
former case the neoclassical particle diffusivity for a stationary plasma is of the order
of the square of the orbit width ∆ divided by the product of the collision time τc and
the square root of the local inverse aspect ratio ε [13]. This dependence on inverse
aspect ratio arises because both the trapped particle fraction and the rate at which
particles are detrapped by collisions vary with ε. In the case of centrifugal trapping
of hypersonically-rotating impurity ions, the trapped particle fraction is essentially
unity [3], and the collisional detrapping rate is essentially zero. On the basis of the
usual random walk picture of particle transport across magnetic field lines [12], the
diffusion rate of banana regime particles would then be expected to be simply ∆2/τc,
with no aspect ratio dependence (other than the possible aspect ratio dependence of ∆
itself): because of the depth of the centrifugal potential well, a large-angle deflection
due to collisions will always transfer a particle into another trapped orbit rather than
a circulating one.

Impurity ions of relatively low mass (carbon, for example) are generally in the Pfirsch-
Schlüter regime in typical tokamak conditions, even when bulk ions are in the banana
regime. The reason for this is apparent from the expression for the collision rate of
impurity ions with bulk ions [7]:

1

τc
=

m
1/2
i

mZ

Z2e4n lnΛ

6
√

2π3/2ε2
0T

3/2
i

, (14)

where mi is the bulk ion mass, lnΛ is the Coulomb logarithm and ε0 is the permittivity
of free space. Because the mass number of a typical tokamak impurity species is either
exactly or approximately equal to twice the atomic number, and tokamak temperatures
are generally high enough for such species to be fully ionized, the charge-to-mass
ratio is similar to that of the bulk ions, and the collision rate is therefore essentially
proportional to Z. The bounce frequency of magnetically-trapped impurity ions, on the
other hand, varies inversely as m

1/2
Z . These two scalings have the effect of making low

mass impurity ions much more likely than bulk ions to undergo large angle collisions
within a single bounce period, and hence more likely to be in the Pfirsch-Schlüter
regime. Several authors have studied the effects of rotation on impurity ion transport
in this regime [16, 17, 18], which is generally applicable to low mass impurity ions when
the bulk ion flow is subsonic.

The situation is different for a very heavy species such as W in a plasma rotating
at a significant fraction of the bulk ion sound speed. In these circumstances the
ions are centrifugally trapped, with a bounce frequency that can be much higher
than that of magnetically-trapped ions, and does not decrease with the square root
of the mass [cf. equation (12)]. Moreover, as commented previously, very massive
species are generally only partially ionized under tokamak conditions. In a recent
paper Camenen and co-workers [19] assumed a charge state of Z = 46 for W ions in
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tokamak plasmas with temperatures in the range 3-4 keV, while Hinnov and Mattioli
[20] estimated Z � 19 − 34 for this species in PLT tokamak plasmas, with central
electron temperatures of typically around 1 keV. Even lower ionization states would
be expected in the relatively cool region close to the plasma edge, where sputtered
impurity ions first enter the plasma (although the rotation rate is generally lower here
than it is in the plasma centre). It should be noted finally that heavy species such as W
have significantly more neutrons than protons, resulting in a further reduction of the
charge-to-mass ratio. These considerations suggest that it is possible for very heavy
impurity ions in a rotating plasma to be in the banana regime of collisional transport.
To quantify this statement, we note from equations (12) and (14) that the ratio of
collision frequency to centrifugal bounce frequency for an impurity ion is given by

τ c
b

2πτc
=

m
1/2
i

mZ

Z2e4n ln Λ

6
√

2π3/2ε2
0T

3/2
i

q1/2

Ω∗
. (15)

Evaluating this ratio for a W20+ ion in a MAST plasma with Ti = 600 eV, n =
3 × 1019m−3, q = 1 and Ω∗ = 2 × 105 rad s−1 we obtain τ c

b /(2πτc) � 0.03. In this
particular case it is clear that the Pfirsch-Schlüter regime does not apply.

The usual random-walk picture of tokamak transport is simplified in the present case by
the fact that the problem is essentially one-dimensional, since the centrifugal potential
well restricts the impurity ions to a region (the outer midplane) in which the only
significant variations occur in the major radial direction. To estimate the diffusion
rate of centrifugally-trapped ions we require an expression for the orbit width, ∆.
As in the case of magnetically-trapped particles, this is determined essentially by the
invariance of Pϕ in the collisionless limit. The expression for Pϕ given by equation (7)
differs from the usual expression for toroidal canonical momentum in that it contains
an extra term, mZΩR2. The presence of this extra term, which is associated with the
Coriolis force in equation (2), indicates that mZΩR2/Ze is effectively added to the
poloidal flux. As far as centrifugally-trapped particles are concerned, this means that
the poloidal magnetic field is either decreased or increased depending on whether the
rotation is in the direction of the plasma current (Ω < 0) or counter to this direction
(Ω > 0). The width of the orbit, as in the magnetic trapping case, is essentially equal
to the poloidal Larmor radius of the particle [13], but this should be evaluated using the
effective poloidal field, taking into account the Coriolis force. The Coriolis modification
to the poloidal field can be significant for partially-ionized heavy impurity ions in
rapidly rotating plasmas, particularly close to the magnetic axis where, by definition,
the poloidal field vanishes in the laboratory frame. Indeed the effective magnetic axis
location depends on the rotation rate, as well as the charge and mass of the particles
under consideration.

In the limit considered previously of large aspect ratio flux surfaces with circular cross-
section, the effective poloidal field is given by

B∗θ =
εB

q
+

2mZΩ

Ze
. (16)
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Taking the particle diffusivity Dc to be given by the square of the effective poloidal
Larmor radius divided by the collision time τc, assuming that the Coriolis correction
to Bθ is small, and using the expression for τc given by equation (14), we obtain for
the case of thermalised minority ions

Dc ∼ e2m
1/2
i q2n ln Λ

6
√

2π3/2ε2
0ε

2B2T
1/2
i

[
1 − 4

q

ε

Ω

ωZ

]
, (17)

where ωZ = ZeB/mZ is the minority ion cyclotron frequency. It is important to note
that whereas the leading order term on the right hand side is independent of Ω, Z
and mZ , the Coriolis correction term depends on all of these parameters and moreover
changes sign when the sense of rotation is changed from co-current (Ω < 0) to counter-
current (Ω > 0). Equation (17) indicates that centrifugally-trapped impurity ions are
more rapidly transported by collisions in co-rotating plasmas than they are in counter-
rotating plasmas. There is a straightforward physical reason for this. In the rest frame
of a co-rotating plasma, the effective poloidal magnetic field in the outer midplane
is reduced, causing an increase in the drift orbit excursions of impurity ions, which
are consequently transported across the plasma more rapidly than they would in the
absence of the Coriolis force. In a counter-rotating plasma, the effective poloidal field
in increased, thereby suppressing transport.

The leading order term in equation (17) differs from the banana regime diffusivity in
a non-rotating plasma by an extra factor of order 1/ε1/2 [13]. However, as discussed
earlier the relevant comparison here is with the Pfirsch-Schlüter diffusivity DPS, since
impurity ions in non-rotating tokamaks tend to be in this regime. A simple random-
walk estimate gives DPS ∼ q2ρ2/τc, where ρ is the ion Larmor radius [12]. Combining
this expression with equation (17), and neglecting the Coriolis correction term in the
latter, we obtain

Dc ∼ DPS/ε2. (18)

We infer from this that centrifugal trapping is likely to produce a significant
enhancement in neoclassical transport, particularly in the core region of conventional
tokamaks where ε � 1. Using test-particle simulations of impurity ion guiding centre
orbits in TFTR, Wong and Cheng [3] computed diffusion rates in rapidly rotating
plasmas exceeding those in stationary plasmas by a factor that increased towards the
magnetic axis and, except very close to the axis, was of the order of 1/ε2, broadly
consistent with equation (18) (cf. figure 9 in Ref [3]).

It is well-known that the presence of a loop voltage and hence a toroidal electric field
Eϕ leads to an inward pinch of trapped particles, the pinch velocity vp being Eϕ/Bθ

[21]. This will also be modified by the Coriolis force; when the modification is small,
the pinch velocity is given by

vp � qEϕ

εB

[
1 − 2

q

ε

Ω

ωZ

]
. (19)
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As in the case of the diffusivity, the Coriolis correction to vp depends on the sign of
the rotation, with a higher pinch velocity predicted in the co-rotating case (Ω < 0).
It should be noted that equations (17) - (19) are not applicable when ε → 0. In this
limit the effective poloidal field is dominated by the Coriolis term in equation (3), and
it is this term that then determines both the diffusivity and the pinch velocity in the
banana regime. However, in the immediate vicinity of the effective magnetic axis the
assumption of narrow orbit widths does not apply, and the orbits are potato-like rather
than banana-like [13].

4. Test-particle simulations

In order to quantify the effects on global particle confinement of the effects discussed in
the previous section we return to the MAST-like equilibrium used to generate the orbits
in figure 1. Specifically, we use an orbit-following code CUEBIT [7] to calculate the orbits
of 104 tungsten ions initially at the magnetic axis, taking collisions with rotating bulk
ions into account. Tungsten is not a naturally-occurring impurity species in MAST; we
have chosen this species and this device in order to illustrate the extreme consequences
for collisional impurity transport of a combination of high impurity mass, moderate
impurity charge, high plasma rotation and low magnetic field. The impurity ion orbit
equation solved using CUEBIT includes a drag term that forces the impurity ions to
have a mean toroidal flow close to that of the bulk ions, and a Langevin term to ensure
that the impurity ion velocity distribution relaxes to a Maxwellian with the local bulk
ion temperature. The time taken for the number of ions in the system to drop to 1/e of
its initial value gives us a measure of the global neoclassical confinement time. For the
purpose of modelling collisions with bulk ions, the background temperature and density
were assumed to be linear functions of Ψ, with Ti ranging from 0.1 keV at the edge to 1
keV in the core and n ranging from 1019m−3 to 5×1019m−3. In the presence of rotation
the density of bulk ions is not a flux function [11], although the inboard/outboard
asymmetry is much less extreme than it is for massive impurity species, and for
simplicity we neglect it here, along with the small modifications to Solov’ev equilibria
arising from rotation [22]. We model the Ware pinch by assigning a finite, uniform value
to Eϕ (0.3Vm−1). However, since the impurity ions are concentrated at the magnetic
axis, the transport is dominated by outward diffusion, particularly at early times.

Table 1 lists the computed confinement times in ms of W10+, W15+ and W20+ ions in
stationary, counter-rotating and co-rotating plasmas (in the latter two cases the entire
plasma is assumed to rotate as a single rigid body). For non-rotating plasmas, there is a
modest monotonic rise in the confinement time with increasing Z. This may reflect the
fact that impurity ions of a given mass become progressively more collisional, and are
therefore transported at the relatively slow Pfirsch-Schlüter rate over a greater region
of the plasma, as Z is increased. In the trace impurity limit that we are considering,
the impurity ions make a negligible contribution to the total ion current, and therefore
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the neoclassical theory prediction of impurity ion density peaking at the magnetic axis,
required by ambipolarity [13], does not apply to these simulations.

Table 1: Confinement times in ms of W ions in stationary and rotating MAST-like
plasmas

Z Stationary Counter-rotating Co-rotating
10 232.6 8.1 0.8
15 267.6 6.3 1.4
20 298.4 5.6 2.1

The most striking feature of the results in Table 1 is a sharp drop in the confinement
time, from several hundred ms to a few ms or less, when the plasma is either co-
rotating or counter-rotating. Indeed the computed confinement times in the rotating
cases are significantly lower than typical H-mode energy confinement times in MAST
(∼ 20 − 50 ms), which are determined by turbulent rather than neoclassical transport
[14]. There is also a clear co/counter asymmetry, which diminishes with increasing Z,
with more rapid transport occurring in the co-rotating case.

The difference in confinement times between stationary and rotating plasmas in these
simulations appears to be broadly consistent with equations (16) and (17), despite the
latter being calculated on the assumption of large aspect ratio circular flux surfaces.
Although the equilibrium is that of a spherical tokamak, with an overall aspect ratio
close to unity, 1/ε2 in the outer midplane has a typical mid-radius value of around 20-
30, and so we would expect much shorter confinement times in the rotating cases. The
co/counter asymmetry in the confinement times, and the dependence of this asymmetry
on Z, is also consistent with the analysis in the previous section: for ions of a given
mass in plasmas rotating at a given absolute rate, the predicted Coriolis modification
to the transport coefficients is inversely proportional to the ion charge.

Insight into the role played by the Coriolis force in these simulations can be gained by
plotting effective flux surfaces in the rotating frame for W ions, taking into account the
mZΩR2/Ze contribution to Ψ. Figure 2 shows the effective flux contours for the three
rotation scenarios we have considered and Z = 20. The actual plasma boundary is
shown as a solid contour in each case. It is clear from these plots that counter-rotation
effectively compresses the flux surfaces whereas co-rotation causes them to expand
beyond the plasma boundary, with a pronounced outward shift in the magnetic axis.
In these circumstances it is not surprising that W ions are more rapidly ejected from
a co-rotating plasma than they are from a counter-rotating one.

Figure 3 shows snapshots of the distributions of W10+ ions in the poloidal plane in the
simulations with Ω = 0 (t = 250 ms) and Ω = −2 × 105 rad s−1 (t = 10 ms). These
snapshots were taken at times slightly longer than the particle confinement times in
each case. When ions cross the plasma boundary the code stops tracking the orbit, and
the recorded position in figure 3 is thus the point at which the ion leaves the plasma. In
the non-rotating case the ions are distributed across the plasma cross-section, although
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(a) (b) (c)

R (m)

Z
(m

)

Figure 2: Effective flux surfaces for W20+ ions in (a) stationary, (b) counter-rotating
and (c) co-rotating MAST-like plasmas. In (b) and (c) the absolute value of the rotation
rate is 2 × 105 rad s−1. The plasma boundary is shown as a solid contour in all three
cases.

there is a slight up-down asymmetry in the losses, reflecting the direction of the grad-B
and curvature drifts. In the rotating case, as expected from the analysis in section 2,
the ions all lie close to the outer midplane and, unlike the non-rotating case, no ions
remain close to the magnetic axis.

(a) (b)

R (m)

Z
(m

)

Figure 3: Distribution of W10+ ions in the (R, Z) plane for (a) Ω = 0, t = 250 ms and
(b) Ω = −2 × 105 rad s−1, t = 10 ms.

Simulations were also performed for the three rotation scenarios with Z = 10 and 104
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impurity ions initially at the outboard plasma edge. The confinement time was found
to be a few ms or less in all three cases, with the longest confinement time in the
counter-rotating plasma and the shortest in the co-rotating plasma.

5. Conclusions and discussion

In this paper we have considered the orbital dynamics and collisional transport of
heavy trace impurity ions in toroidally-rotating tokamak plasmas. It has been known
for some time that under equilibrium conditions such ions are concentrated on the low
field side of the plasma, due to the net effect of the centrifugal force and an electric
field required to maintain quasineutrality [6]. We have pointed out that this poloidal
localisation requires that individual ions are deeply trapped, by a centrifugal potential
well rather than a converging magnetic field, and shown that the bounce frequency can
be much higher than that of magnetically-trapped ions, and higher than the collision
rate. As first noted by Wong and Cheng [3], the commonly-held assumption that
heavy impurity ions are generally in the highly collisional (Pfirsch-Schlüter) regime of
neoclassical transport thus requires re-examination in the presence of toroidal rotation.
We have also considered the modification to the effective magnetic field arising from the
Coriolis force. Taking these effects into account, we have obtained simple expressions
for the diffusivity and pinch velocity of centrifugally-trapped heavy trace impurity ions.
These expressions indicate that centrifugal trapping increases the particle diffusivity
above the conventional Pfirsch-Schlüter value by a factor of order 1/ε2 where ε is the
local inverse aspect ratio, and moreover that, due to the presence of the Coriolis force,
heavy trace impurity ions are transported at a higher rate in plasmas rotating in the
plasma current direction than they are in plasmas rotating counter to the plasma
current.

With regard to this last point, it should be noted that the orbits of bulk ions will also be
altered by the Coriolis modification to the effective field, and it may be expected that
this modification will affect to some extent the transport of those ions. For electrons,
on the other hand, the rotation rates that can be achieved in tokamak plasmas are
sufficiently low that both the centrifugal and Coriolis forces are completely negligible.

We have illustrated the effects of toroidal rotation on heavy trace impurity transport
using test-particle simulations of tungsten ion orbits in transonically-rotating spherical
tokamak plasmas. In these simulations it is found that rotation reduces the confinement
time of W ions by around two orders of magnitude, with significant differences between
co-current and counter-current rotation that are consistent with analytical predictions
based on Coriolis force modifications to the effective magnetic field. We note that
Camenen and co-workers [19] have recently found that the Coriolis force can also have
a significant effect on the turbulent transport of impurity ions, particularly those with
low Z/A.
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Any comparison between collisional transport calculations and experimental data for
rotating plasmas is complicated by the fact that turbulent transport tends to be
suppressed to some extent in the presence of rotation shear, and moreover the properties
of counter-rotating plasmas are generally very different from those of co-rotating
plasmas with similar momentum sources in the same device, not least because of higher
impurity sputtering rates due to beam ion losses in the counter-rotating case [14].
These caveats notwithstanding, it is notable that several independent experimental
studies in limiter tokamaks consistently indicated higher confinement of impurities,
including tungsten, with counter-current beam injection (hence counter-rotation) than
with co-current injection [4, 5, 23, 24, 25]. A possible explanation of this result was
provided by Burrell and co-workers [17], who considered the Pfirsch-Schlüter regime
transport of impurity ions with thermal velocities comparable to the plasma rotation
velocity, and found a greater inward flux of impurities for counter-rotation than co-
rotation, assuming fixed absolute momentum input and plasma profiles. In the case
of the TFTR experiments Wong and Cheng [3] showed that it was possible for the
impurity ions to be in the banana regime in the presence of high rotation. In an earlier
analysis, Wong [8] found a rotation-induced enhancement in the neoclassical transport
of impurities in the banana regime, but could not account for the observed co/counter
asymmetry. Both our results and those of Wong and Cheng [3] are consistent with the
limiter tokamak data insofar as they indicate that retention of heavy impurity ions in
the plasma is favoured by counter-rotation.

In recent years toroidal rotation velocities close to or (in the case of MAST) exceeding
the bulk ion thermal speed have been achieved in several divertor tokamaks, including
JET [26]. When tungsten is introduced into the first wall of JET, it may be expected
that ions of this species will be present, and that in rapidly-rotating plasmas they
will have toroidal velocities far in excess of their own thermal speed, giving rise to
centrifugal trapping. Our analysis suggests that W ions in JET could then undergo very
rapid collisional transport, depending on the local values of rotation velocity and ion
temperature (which determine whether the ions are in the centrifugal banana regime).
As noted previously, the first wall of Asdex Upgrade already incorporates tungsten [2]:
a systematic study of W transport specifically in rapidly-rotating plasmas in this device
would be of considerable interest. On the other hand, tungsten ions sputtered from
the ITER divertor are unlikely to be in the centrifugal banana regime. Calculations by
Staebler and St John [27] indicate rotation velocities of about 160 km s−1 in the core
of a baseline scenario ITER plasma, where Ti � Te � 20 keV, n � 1020 m−3, q � 1.
For these parameters tungsten ions would be fully-stripped and supersonic, but their
collision time (� 60 µs) would be substantially shorter than their centrifugal bounce
period (� 300 µs). Our results may nevertheless have relevance for other proposed
experiments, in particular a spherical tokamak Component Test Facility (CTF) [28],
which would be likely to have a tungsten divertor; modelling of momentum sources and
transport in this proposed device indicate toroidal Mach numbers close to unity [29].

We comment finally that all of the analytical results obtained in this paper could, of
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course, have been obtained by considering impurity ion orbits in the laboratory frame,
without considering explicitly the effects of the centrifugal and Coriolis forces. Indeed,
the numerical results discussed in section 4 were obtained by solving the Lorentz force
equation in an inertial frame. In this frame impurity ion trapping can be attributed to
an electrostatic force rather than a centrifugal one. However, the dynamical behaviour
of the impurity ions can be more clearly understood if one considers their orbits in the
rotating frame.
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