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Abstract. Fusion power from a tokamak increases like β2, (β is the ratio of the

plasma and magnetic field pressures) and so the mitigation of instabilities such as

the resistive wall mode (RWM), that can prevent high β operation, is important.

Stabilization of the RWM with a plasma rotation frequency of below 1% ΩA, where

ΩA is the Alfvénic rotation frequency, has been observed in a number of tokamaks. An

analytical model for this stabilization, in a cylindrical plasma with a resonant layer,

is discussed here. The layer theory of Porcelli (Porcelli 1987 Phys. Fluids 30 1734)

is used to provide a model of the physics within the resonant layer. A dispersion

relation connecting the plasma equilibrium to the layer physics in a rotating plasma

is developed. Two mechanisms for RWM stabilization are investigated. The first

includes viscosity in the resonant layer. The second assumes that stabilization occurs

in the transition from one layer response to another. These models indicate a priori

that there is a large parameter space where stabilization of the RWM by rotation is

possible. However, if experimentally realistic timescales and rotation, namely O(1)%

ΩA, is considered then only a small window for stabilization exists. It is therefore

unlikely that these mechanisms explain the observed experimental RWM stabilization.
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1. Introduction

1.1. Background

The resistive wall mode (RWM) in a tokamak is a mode which is stable with a perfectly

conducting wall at the plasma edge, but is unstable in a non-rotating plasma with

no wall. If the wall is not perfectly conducting but the discharge is sufficiently short

compared to the wall time, τw (the vertical field diffusion time), then the wall will look

approximately ideally conducting and the mode will be stable. However, if the discharge

duration is long compared to τw then the mode will be unstable and it will grow at a rate

comparable to τ−1

w . The long pulse lengths required in a potential power plant mean that

RWMs may be present if the β is high enough to drive the mode, where β = 2µ0p/B
2

is the ratio of the plasma pressure, p, to the magnetic pressure. Mitigating the RWM

will improve the efficiency that can be achieved in a tokamak power plant since fusion

power increases like β2 [1].

Experimental results, which control plasma rotation using magnetic braking [2, 3]

and using neutral beam injection [4, 5] on DIII-D and other machines, have indicated

that the RWMs may be stabilized by the rotation of the plasma. If the tokamak has

major radius R0 and plasma density ρ0, then this stabilization occurs at plasma rotation

frequencies ofO(1)% ΩA and lower, where ΩA = B/(2πR0

√
ρ0µ0) is the Alfvén rotational

frequency. To explain this result the following theoretical models have been proposed:

RWM coupling to a dissipative rational surface [6, 7]; Alfvén continuum damping [8];

sound wave damping [8, 9]; ion Landau damping [10]; and precessional drift resonance

[11]. However, none of these models yet satisfactorily explains all the facets of the

experimental results.

The RWM coupling to a dissipative rational surface model will be investigated

further here. The model is based on a cylindrical plasma, which is unstable without a

wall and contains a resonant layer, as analyzed in [7]. This provides a qualitative model

of a tokamak plasma in a toroidal geometry. The plasma was assumed to be governed by

ideal MHD outside the resonant layer, but by resistivity inside the layer (the ‘tearing’

response of Furth, Killeen and Rosenbluth [12]). It was shown in [7] that a small

window in parameter space exists where stabilization of the RWM is possible, but it is

so operationally small that it seems unlikely that it could be exploited experimentally.

This paper is motivated by investigating two mechanisms that may provide an

explanation of the experimental results, as suggested in [13]. These were deduced by

considering (8) below, taken from Porcelli [14], which models the plasma inside the

resonant layer. The physical effects that are included in the resonant layer equation

depend, in part, on Ωp, the plasma rotation frequency. If Ωp ∼ ΩA then only the

inertial terms are required. However, if the plasma rotation were reduced other physical

effects, such as viscosity and resistivity, would become important and the terms relating

to these effects should be included in the layer equation. It is possible to determine the

point at which these terms should be included either by balancing terms in (8) or by

considering table I in [14].
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The first proposed mechanism is that viscosity is needed in the layer to provide the

dissipation required. The viscosity terms in the layer equation become important when

Ωp ≃ 1%ΩA, if realistic timescales are used in the calculation. The second proposed

mechanism is based not on the absolute layer response, but on the transition from an

inertial to a resistive response or from an inertial to a viscous-inertial response. Again,

by balancing terms in (8) and using realistic timescales it can be deduced that these

transitions occur at Ωp ≃ 1%ΩA.

1.2. Overview

This paper seeks to extend the previous work of reference [7]. The two mechanisms

suggested above will be investigated. The effect of viscosity in the resonant layer will

be established first. Following this two models of the transition of the physical response

of the resonant layer will be investigated.

A cylindrical model which contains one rational surface will be developed in

section 2 using force balance and ideal MHD. Special consideration is required at the

wall and at the resonant layer where non-ideal effects are required. The resistive wall

will be assumed to be electromagnetically ‘thin’, i.e. the width of the wall is very

much less than the skin depth. Section 3 deals with how the non-ideal effects will be

modelled inside the resonant surface using work by Porcelli [14]. There are several

different plasma responses in the layer depending on the level of plasma rotation and

these will be catalogued. The layer responses that model the transition from the so-

called visco-ideal to ideal and from tearing to ideal responses are discussed. Rotational

stabilization of the RWM with viscosity included in the resonant layer will be considered

in section 4. Characteristic timescales from experiments will be calculated in section 5.

These timescales will then be used to assess the viscosity result from the previous chapter

and to numerically investigate plasma rotation with the visco-ideal to ideal and tearing

to ideal layer responses. In particular, the parameter space where stabilization of the

RWM with rotation is possible will be investigated. Finally, conclusions and discussion

are given in section 6.

2. Cylindrical model

In work on the rotational stabilization of the RWM by coupling to a dissipative rational

surface Finn [6, 15] and Bondeson and Xie [16] used a cylindrical model with a resistive

wall. This model aimed to qualitatively model the toroidal plasma so the cylindrical

plasma contains a resonant layer. The formulation that Bondeson and Xie [16] used for

the magnetic perturbation outside of the resistive wall and resonant layer will be used

here.

A cylindrical plasma is modelled with a single mode rational surface. A rational

surface occurs at the radius at which m = nq(r), where n, m are the toroidal and

poloidal mode numbers and q(r) is the safety factor profile. The plasma is modelled
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with ideal MHD outside of the resonant layer, but non-ideal effects, such as resistivity

and viscosity, may be included at the rational surface r = rs and at the wall r = rw.

Bondeson and Xie [16] use the marginal force balance equation to model the perturbed

poloidal magnetic flux ψ(r) sufficiently far from the rational surface yielding

1

r

d

dr

(

r
dψ

dr

)

−
m2

r2
ψ −

mj′

rF
ψ = 0, (1)

where F = (Bθ/r)(m− nq), ′ denotes the radial derivative, j is the equilibrium current

density, and B and Bθ are the unperturbed toroidal and poloidal magnetic field. The

solutions of this equation are matched at the resonant surface and also at the resistive

wall r = rw. Bondeson and Xie [16] define two solutions of (1): ψ0(r), the solution with

no wall; and ψ∞(r) the solution with a perfectly conducting wall at rw. These solutions

are normalized so that ψ0(rw) = 1 and ψ′

∞
(r−w ) = −1/rw. The solution to the resistive

wall problem is a linear combination of these two solutions

ψ = aψ0 + bψ∞, (2)

with a and b constants.

The boundary condition at the resistive wall can be calculated using the pre-

Maxwell equations and a thin wall approximation to be

∆′

w =
[ψ′]rw

ψ(rw)
= pτw, (3)

where p is the growth rate of the mode and

[f ]r = lim
ǫ→0

(f(r + ǫ) − f(r − ǫ)) . (4)

Imposing this boundary condition on (2) determines the ratio a/b so that the solution

becomes

ψ = a (ψ0 + pτwψ∞) . (5)

The outer solutions are continuous across the resonant layer, but experience a jump

in their first derivatives. On defining the well-known quantity

∆′

s =
[ψ′]rs

ψ(rs)
, (6)

where rs is the location of the resonant surface, Bondeson and Xie [16] used this

definition to deduce

∆′

s =
δ0 + pτwδ∞

ψ0(rs) + pτwψ∞(rs)
, (7)

where δ0 = [ψ′

0
]rs

and δ∞ = [ψ′

∞
]rs

. Bondeson and Xie [16] note that in the denominator

of (7) ψ0(rs) = 0 and ψ∞(rs) = 0 denote the marginal stability of the ideal kink mode

without and with a perfectly conducting wall at rw, respectively. If ψ(rs) < 0 then

the mode is ideally unstable since the perturbed magnetic flux has been normalized at

the wall, so that ψ(rw) = 1. This means that ψ(r) = 0 somewhere in the subinterval

rs < r < rw and so by Newcomb [17] Theorem 5 and its corollaries the plasma is

unstable.
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3. Layer physics

Equation (1) is used outside the resonant layer. The solutions to this equation couple

the wall mode to the resonant layer. Inside the layer non-ideal effects may be required.

Porcelli [14] has analyzed the effects of including resistivity, momentum and viscosity

on the growth rate of the resonant layer and also gives the regimes in which they apply.

The Fourier transform of the non-ideal MHD equations considered in a slab geometry

produces

d

dk

(

k2

1 + δ2
ηk

2

dξ(k)

dk

)

− δ2

ink
2ξ(k) − δ4

µk
4ξ(k) = 0, (8)

where ξ(k) is the Fourier transformed displacement. The non-dimensionalized inertial,

viscous and resistive quantities used in this formula are defined as

δ2

in ≡ λ2, δ4

µ ≡ ǫµλ, δ2

η ≡ ǫη/λ, (9)

where λ is the mode growth rate normalized by τA = Ω−1

A the Alfvén time, ǫµ ≡ νµτA
is the viscous Reynolds number, and ǫη ≡ νητA is the resistive Reynolds number both

normalized by the Alfvén speed. The unnormalized growth rate is p so that λ = pτA.

The rate of collisional transport of transverse ion momentum is νµ and the rate of

collisional resistive diffusion of the magnetic field is νη [14]. An analytic solution to the

full equation is not known, but analytic solutions are possible in certain limits.

The solution outside the layer is matched to the solution inside the layer by setting

the ∆′

s = ∆′

L(p), where ∆′

s is given by (6) and ∆′

L(p) is given by the solution of (8).

The layer response that is appropriate depends on the value of ∆′

s. The results for the

so-called tearing, visco-resistive, visco-ideal and ideal layer responses will be catalogued

next, based on the solutions of (8). These results are obtained from Porcelli [14] but

have been rescaled so that the full dependence on timescales can be seen. The resistive

timescale is defined as τη = ν−1

η and the viscous timescale is defined as τµ = ν−1

µ .

3.1. Tearing

The tearing response (or reconnecting mode [14]) is used when resistivity dominates

inertia and viscosity in the layer. This layer response gives

∆′

L(p) = (pτL)5/4 = p5/4τ
2/4

A τ 3/4

η , (10)

inside the layer, so that τL = τ
2/5

A τ 3/5

η . This is the layer theory used by Gimblett and

Hastie [7]. It applies whenever

τ 7/6

η

τ
5/6

µ τ
1/3

A

< ∆′

s <
τ 1/3

η

τ
1/3

A

. (11)
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3.2. Visco-resistive

The visco-resistive response (or visco-tearing mode in [14]) is used when viscosity and

resistivity dominate inertia in the layer. This layer response gives

∆′

L(p) = pτL = p
τ

1/3

A τ 5/6

η

τ
1/6

µ

, (12)

so that τL = τ
1/3

A τ 5/6

η /τ 1/6

µ . This layer response applies whenever

0 < ∆′

s < min

{

τ 7/6

η

τ
5/6

µ τ
1/3

A

,
τ 1/6

η τ 1/6

µ

τ
1/3

A

}

. (13)

3.3. Visco-ideal

The visco-ideal response is used when viscosity and inertia dominate resistivity in the

layer. This layer response gives

∆′

L(p) = −
1

(pτL)1/4
= −

(

τµ
pτ 2

A

)1/4

. (14)

so that τL = τ 2

A/τµ. It applies whenever

−
τ 1/3

µ

τ
1/3

A

> ∆′

s > −
τ 1/6

η τ 1/6

µ

τ
1/3

A

. (15)

3.4. Ideal

Finally, the ideal response is used when inertia dominates viscosity and resistivity in

the layer. This layer response gives

∆′

L(p) = −
1

pτL
= −

1

pτA
. (16)

This layer response applies whenever

0 > ∆′

s > max

{

−
τ 1/3

η

τ
1/3

A

,−
τ 1/3

µ

τ
1/3

A

}

. (17)

3.5. Visco-ideal to Ideal

The previous sections give discrete limits depending upon the dominant physics,

however, it is possible to solve the layer equation exactly if resistivity is neglected.

The equation that fully models the response from visco-ideal to ideal is

d

dk

(

k2
dξ(k)

dk

)

− δ2

ink
2ξ(k) − δ4

µk
4ξ(k) = 0. (18)

The solution of this yields the following

∆′

L(p) = −
1

2

τ 1/3

µ

τ
1/3

A

1

Q
1/6

µ

(

Γ [(Qµ + 1)/4]

Γ [(Qµ + 3)/4]

)

, (19)
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where Γ [x] is the Gamma function and

Qµ =

(

δin
δµ

)2

=
(

p3τ 2

Aτµ
)1/2

. (20)

This layer response applies whenever

0 > ∆′

s > max

{

−
τ 1/3

η

τ
1/3

A

,−
τ 1/6

η τ 1/6

µ

τ
1/3

A

}

. (21)

3.6. Ideal to Tearing

An exact solution of the layer equation is also possible if viscosity is neglected. The

equation that fully models the response from tearing to ideal is

d

dk

(

k2

1 + δ2
ηk

2

dξ(k)

dk

)

− δ2

ink
2ξ(k) = 0. (22)

The solution of this yields the following dispersion relation

∆′

L(p) = −
τ 1/3

η

τ
1/3

A

Q5/6

η

8

(

Γ [(Qη − 1)/4]

Γ [(Qη + 5)/4]

)

, (23)

where

Qη =
δin
δη

=
(

p3τ 2

Aτη
)1/2

. (24)

This layer response requires a more intricate set of conditions for applicability. If ∆′

s > 0

then this layer response applies for

τ 7/6

η

τ
5/6

µ τ
1/3

A

< ∆′

s <
τ 1/3

η

τ
1/3

A

, (25)

or if

∆′

s >
τ 1/3

η

τ
1/3

A

as long as
τη
τµ

< 1. (26)

If ∆′

s < 0 then this layer response applies for

∆′

s > max

{

−
τ 1/3

η

τ
1/3

A

,−
τ 1/3

µ

τ
1/3

A

}

, (27)

or if

∆′

s < −
τ 1/3

η

τ
1/3

A

as long as
τη
τµ

< 1. (28)

If no viscosity is assumed, which amounts to τµ → ∞, then this layer response is valid

for all ∆′

s.
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3.7. Dispersion relation

The dispersion relation is formed by matching the solution inside and outside the layer.

The RWM is defined to have an unstable ideal mode with no wall and a stable resistive

mode with a perfect wall at the plasma boundary assuming a non-rotating plasma. The

layer theory above can be used to frame the outer ∆′

s more succinctly than (7).

For an RWM two conditions must apply. First, the mode must be ideally unstable

with no wall, which is equivalent to taking τw → 0. Matching the no wall outer ∆′

s to

the ideal response inside the layer, see (16), and defining ǫ

−
1

pτA
=

δ0
ψ0(rs)

= −
1

ǫ
, (29)

where ψ0(rs) < 0 and δ0 > 0 for ideal instability and ǫ > 0. This guarantees that

p = ǫ/τA > 0 and so the mode is unstable.

Next, the mode must be stable with a perfect wall at the plasma boundary, which

is equivalent to taking τw → ∞. The perfect wall outer solution is matched to the

visco-resistive response, see (12), inside the layer. The visco-resistive response is used

because the mode must be resistively stable with a perfect wall. The matching produces

pτL =
δ∞

ψ∞(rs)
= −δ, (30)

where ψ∞(rs) > 0 for ideal stability and δ > 0. This guarantees that p = −δ/τL < 0 so

the mode is stable.

It can also be shown, by considering the edge region of the plasma as a near vacuum,

that ψ∞(rs)/δ0 ≃ 1, hence, dividing (7) through by δ0 the outer solution can be expressed

as

∆′

s =
1 − δpτw
−ǫ+ pτw

, (31)

where ǫ > 0 and δ > 0. It will be assumed that δ = O(1) and calculations based

on approximating the region outside the resonance as vacuum indicate that this is

reasonable.

As remarked earlier, the dispersion relation is formed by setting the outer and inner

solutions equal

∆′

L(p) = ∆′

s =
1 − δpτw
−ǫ+ pτw

. (32)

The growth rate of the mode p can be found be solving this equation with the appropriate

layer response. There are several possible roots of the dispersion relation, but the mode

of interest is the mode which is ideally unstable when there is no wall. This mode can be

followed as the wall is made more perfect, therefore as τw → ∞. It moves from unstable

when τw = 0 to p→ 0 as τw → ∞. The effect of rotation will be considered next.
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4. Rotation

It is possible to investigate the effect of rotation on certain instabilities using the

dispersion relation. The plasma rotation is introduced by including a simple Doppler

shift of the growth rate, p, at the resonant layer. This rotation is equivalent to a

stationary plasma with a rotating wall (or a bulk toroidally rotating plasma with a

stationary wall). If a tearing response is assumed the dispersion relation is

(pτL)5/4 =
1 − δpτw
−ǫ+ pτw

. (33)

Gimblett and Hastie [7] found that it is possible to stabilize the mode with rotation,

but only in a very small parameter window

0 < ǫδ < 0.04. (34)

Indeed, this condition is only a necessary one. Gimblett and Hastie [7] further identified

that stabilization only occurs in part of this parameter space. If a visco-resistive or ideal

response is used then stabilization is not possible within this model.

4.1. Visco-ideal response

The dispersion relation for the visco-ideal layer response, assuming that the wall is

rotating with frequency Ω and the plasma is fixed is

−
1

(pτL)1/4
=

1 − δ(p− iΩ)τw
−ǫ+ (p− iΩ)τw

. (35)

The mode becomes marginally stable with rotation when Re(p) = 0, where Re(x)

denotes the real part of x, therefore when p = iω where without loss of generality

ω > 0 and real. An indicative dispersion relation

−
1

(iω)1/4
=

1 − iδ(ω − Ω)

−ǫ+ i(ω − Ω)
, (36)

is found by assuming that τL = τw. The equations arising from the real and imaginary

parts of this equation give

δX2 + (
√

2 + 1)(1 − ǫδ)X + ǫ = 0, (37)

where X = (ω−Ω). The discriminant of this quadratic equation gives the condition for

X to be real to be

(
√

2 + 1)2(1 − ǫδ)2 > 4ǫδ. (38)

This condition is satisfied for ǫδ ≤ 0.446 or ǫδ ≥ 2.240. Recalling (29), pτA = ǫ is the

dispersion relation without a wall from which it can be seen that typical values of ǫ

would be less than 0.1, say. Values of ǫ > 0.1 would represent a strong ideal instability.

The consequent value of δ > 22 for the second inequality is then considered unrealistic.

This can be seen by considering the edge of the plasma as a near vacuum. The second

region is therefore not considered further. This indicates that it is possible to stabilize

the RWM in this regime and that the parameter space for which stabilization is possible

is apparently an order of magnitude larger than for the tearing response, (34).
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Re(p)

Im(p)

RWM

Figure 1. Root locus for the RWM with visco-ideal response with a stability window.

4.2. Root loci with respect to rotation

The analysis in [7] showed that the roots of the dispersion relation for the tearing

response (33) had a non-trivial structure. Figure 4 in [7] shows four different classes of

root loci with respect to rotation. Two of these classes have stable windows present and

two have no stable window. However, the structure of the roots of the dispersion relation

with the visco-ideal response only displays two varieties of behaviour; one with a stable

window and one without. If a stable window exists the imaginary part of the growth

rate increases with plasma rotation while the real part decreases until Re(p) = 0, which

is the marginal point. Increased plasma rotation then stabilizes the mode. However, if

the plasma rotation is increased still further the mode is destabilized. The locus of the

growth rate with increasing plasma rotation is shown schematically in figure 1. If no

stable root exists the locus of the growth rate follows a similar path to the case with a

stable window but does not cut the imaginary axis, shown schematically in figure 2.

Gimblett and Hastie [7] were able to analyze where the stabilization window closes

with rotational frequency. The mode is stabilized with rotational frequency Ωst and

subsequently destabilized with rotational frequency Ωunst. The stabilization window

closes when Ωst = Ωunst. The analysis of the visco-ideal case starts with the visco-ideal

dispersion relation with bulk toroidal plasma rotation and static wall

−
1

((p− iΩ)τL)1/4
=

1 − δpτw
−ǫ+ pτw

. (39)

Again, the point of marginal stability, p = iω, where ω is real, is taken to give

−
1

(i(ω − iΩ)τL)1/4
=

1 − iδωτw
−ǫ+ iωτw

. (40)
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Re(p)

Im(p)

RWM

Figure 2. Root locus for the RWM with visco-ideal response with no stability window.

The real and imaginary parts of this equation give two equations which are rearranged

to yield

ω2τ 2

wδ + ωτw(1 − ǫδ)(
√

2 + 1) + ǫ = 0, (41)

and

Ω = ω −
1

τL

(

ǫ2 + ω2τ 2

w

1 + δ2ω2τ 2
w

)2

. (42)

The two solutions of (41) are then used to determine the values of Ωunst and Ωst by

using (42). It is found that in the visco-ideal case stability windows exist in two regions;

ǫδ ≤ 0.446 or ǫδ ≥ 2.240. These regions for the existence of a stability window are

exactly the same as the necessary conditions for stabilization from (38). This indicates

that for the visco-ideal regime the roots always have the same locus shape with rotation

so these conditions are necessary and sufficient for stabilization, unlike the tearing layer

case.

4.3. Regime change

The layer responses given in (19) and (23) can be used to model the dispersion relation

when the increase in rotation takes the layer response from one regime to another,

say from tearing to ideal. The resulting dispersion relations are difficult to investigate

analytically, so they will be solved numerically with experimentally relevant timescales

in the next section.
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5. Comparison with experiments

Reimerdes et al [2] give some of the typical plasma parameters for the JET and DIII-D

machines where RWM stabilization is seen. This information can be used to check that

stabilization is possible in these experimental regimes.

Timescales similar to those seen on DIII-D will be used. The important parameters

are: τw ≃ 7ms wall time; τA ≃ 0.5µs Alfvén time; τµ ≃ 0.1s ‘phenomenological’ viscous

time; and τη ≃ 50s resistive diffusion time. The ‘phenomenological’ viscous timescale

based on the momentum confinement time typically seen in the machine has been used

here rather than the ‘Braginskii’ classical viscous timescales, which would be much

longer. The resistive diffusion timescale has been estimated using the typical Lundquist

number S = τη/τA ≃ 108 for a tokamak plasma at the q = 2 layer.

The visco-ideal result derived earlier can be re-examined in the light of these

experimental timescales. If the dispersion relation (36) is solved for ω and this is

substituted back to find the values of Ω, using τA/τw << 1, then

ǫ ≈
(

Ω

ΩA

τA
τµ

)1/4

. (43)

In experiments Ω/ΩA ≤ 1% and τA/τµ ≃ 5 × 10−6 so that ǫ ≃ 0.015 which is of similar

order to the tearing case. This indicates that viscosity at the rational surface does not

explain the stabilization of the RWM.

The other mechanism proposed here for the stabilization of the RWM is stabilization

in the transition from one regime to another. The two dispersion relations which handle

transitions of regimes can now be solved numerically with the above typical values.

First, we consider the tearing to ideal response

−
τ 1/3

η

τ
1/3

A

Q5/6

η

8

(

Γ [(Qη − 1)/4]

Γ [(Qη + 5)/4]

)

=
1 − δ(p− iΩ)τw
−ǫ+ (p− iΩ)τw

. (44)

This dispersion relation was solved for increasing values of ǫ. The values of rotation

where the mode was stabilized and destabilized can be seen in figure 3. This figure

shows that stabilization is only possible for ǫ < 0.04 when δ = 1. This agrees with the

analytical result from the pure tearing response.

Next, we consider the visco-ideal to ideal response

−
1

2

τ 1/3

µ

τ
1/3

A

1

Q
1/6

µ

(

Γ [(Qµ + 1)/4]

Γ [(Qµ + 3)/4]

)

=
1 − δ(p− iΩ)τw
−ǫ+ (p− iΩ)τw

, (45)

This dispersion relation was also solved for increasing values of ǫ. The values of rotation

where the mode was stabilized and destabilized can be seen in figure 4. This figure

shows that stabilization is only possible for ǫ < 0.0068 when δ = 1. This agrees with

the estimate produced for the visco-ideal regime.
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Figure 3. Stable and unstable regions with increasing rotation for the tearing to ideal

resonant layer response.
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Figure 4. Stable and unstable regions with increasing rotation for the visco-ideal to

ideal resonant layer response.
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6. Conclusions and discussion

A dispersion relation has been derived for a cylindrical plasma with one resonant surface

within the plasma and an electromagnetically thin resistive wall. This cylindrical model

provides a qualitative model of a toroidal plasma. A specific cylindrical equilibrium has

not been studied here but instead a generic form, which has the characteristics of the

RWM, has been used. Ideal MHD has been assumed outside of the resonant surface

and resistive wall. Inside the resonant layer the theory of Porcelli [14] has been used

to provide solutions of the MHD equations including resistivity and viscosity. Several

layer responses have been catalogued.

A succinct outer solution, which encapsulates the RWM equilibrium, has been

matched with the inner solutions provided by the layer theory to produce dispersion

relations. The solution to the dispersion relation with bulk plasma rotation has been

calculated for the visco-ideal layer response and it was found that the equilibrium

parameter space which allowed rotational stabilization was apparently an order of

magnitude larger than for the tearing layer response.

When timescales for experimental devices were used it was found that the actual

parameter space for stabilization of the visco-ideal regime was of the same order as the

tearing response. Viscosity in the resonant layer is therefore unlikely to explain the

experimentally observed RWM stabilization.

The other mechanism proposed, which looks for stabilization in the transition

between responses was investigated. The dispersion relations which allow for transition

from tearing to ideal response and from visco-ideal to ideal response were solved

numerically also using the experimental timescales. The results here also showed very

small windows for stabilization.

These results indicate that only very weak RWMs can be stabilized with the two

mechanisms suggested in this paper. It seems unlikely that rotational stabilization of

the RWM by coupling to a dissipative resonant surface is the mechanism responsible

for stabilization of the RWM, especially since experiments have demonstrated plasmas

operating in excess of 50% above the no wall limit for many resistive wall times, τw
[2]. It should be noted that a cylindrical model has been used for the outer equilibrium

here. It may be that toroidal mode coupling in the outer equilibrium is important for

stabilization.
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