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Abstract. Plasma rotation in tokamaks is of special interest for its potential

stabilising effect on micro- and macro instabilities, leading to increased confinement.

In MAST, the torque from Neutral Beam Injection (NBI) can spin the plasma to a

core velocity ∼ 300km.s−1 (Alfvén Mach number ∼ 0.3). Low density plasmas often

exhibit a weakly non-monotonic safety factor profile just above unity. Theory predicts

that such equilibria are prone to Magneto-Hydro-Dynamic (MHD) instabilities, which

was confirmed by recent observations. The appearance of the mode is accompanied

by strong damping of core rotation on a timescale much faster than the momentum

confinement time.

The mode’s saturated structure is estimated using the CASTOR code together with

Soft X-Ray measurements, enabling the calculation of the plasma braking by the MHD

mode according to Neoclassical Toroidal Viscosity theory. The latter exhibits strong

similarities with the torque measured experimentally.
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1. Introduction

Plasma rotation has recently received growing interest as it proved beneficial in achieving

better confinement in tokamaks [1]. On a micro-scale, the resulting E × B flow shear

helps suppress the turbulence [2,3], while on the macro-scale, rotation exerts a stabilising

effect on Magneto-Hydro-Dynamic (MHD) modes. This is observed for a large range of

instabilities, including the ballooning mode [4–8], the internal kink mode [9,10] and the

sawtooth instability [11–13].

Advanced scenarios for plasma operation being presently developed for ITER

[14–18] aim at high fusion gains and steady state operation. They rely on an optimised

self generated plasma current, the so-called bootstrap-current [19], to produce steady-

state discharges. In the hybrid scenario [20, 21], a broad low shear or weakly reversed

shear safety factor (q) profile is used towards this goal, the magnetic shear being defined

here as s = rq−1dq/dr. Such safety factor profiles also have a minimum value just above

1, which prevents the appearance of the sawtooth instability, detrimental for plasma

confinement. In high performance plasmas however, this scenario suffers from the

Resistive Wall Mode (RWM) arising from the interaction of a pressure-driven external

kink instability with the tokamak wall [22]. A relevant performance measure is the

plasma β defined as 2µ0〈p〉/B2
0 , angled brackets denoting a flux surface average and B0

the toroidal magnetic field at the magnetic axis. Sustaining high toroidal rotation is of

importance when dealing with the RWM, since it is one of the ways of operating above

the mode’s β threshold [23–29], and helping achieve the targeted high pressures.

Over the past few years, a number of deleterious phenomena have been observed,

whereby electromagnetic perturbations degrade plasma rotation, the latter change

further amplifying the original instability, leading to a self-feeding process which destroys

plasma confinement. This is observed at the edge of the plasma, where penetration of

error-fields can occur [30], or in the triggering process for Edge Localised Modes [31]. It

can also affect the whole plasma, for example in the form of mode locking [32], the drag

being associated with mode-induced eddy currents penetrating into the tokamaks coils

and vessel. Such effects with far-reaching consequences on plasma performance justify

the investigation of the interplay between MHD activity and plasma rotation.

Neutral Beam Injection (NBI) in MAST provides ideal conditions for such studies.

The torque it provides spins the plasma core up to velocities ∼ 300km.s−1 which

corresponds to a core Alfvén Mach number ∼ 0.3. The latter is defined as the ratio of

the plasma velocity to the Alfvén velocity, MA = vφB
−1
0 (µ0ρ)

1/2, with vφ the toroidal

plasma velocity and ρ its mass density. The increased core temperature resulting from

the NBI heating slows down current diffusion, producing a hybrid-like, broad low shear

or weakly reversed shear q profile just above 1. Equilibria with such q profiles are

predicted to be prone to saturated ideal MHD instabilities when the minimal q value,

qmin, approaches an integer value [33–36]. This type of instability is indeed observed in

MAST when qmin ∼ 1 [37,38] and is referred to as Long-Lived Mode (LLM).

Following the onset of the LLM, strong damping of core rotation is observed on a
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timescale much shorter than that of momentum transport (figure 1). During this phase,

the mode angular frequency does not evolve significantly. After the plasma angular

frequency profile has become flat, both the rotation of the plasma and that of the mode

gradually decrease.

This study focuses on the initial flattening of the rotation profile. Its short timescale

compared to that of momentum transport implies that the braking of the plasma does

not arise from MHD-enhanced momentum transport. The LLM causes fast ion losses

and redistribution, which affects rotation. Initial calculations indicate that the torque

associated with this effect is significantly smaller than that needed to produce the

observed braking. Further calculations using the HAGIS drift kinetic code [39] will

be performed to assess the effect of the fast ion redistribution on rotation in the future.

High resolution temperature measurements using Thomson Scattering (TS) do not show

any local profile flattening characteristic of magnetic islands. Additionally, no π phase-

jumps are observed between neighbouring channels of poloidal cross-section Soft X-Ray

cameras (SXR). These phase jumps are another indication of magnetic reconnection, and

are indeed observed in MAST in the presence of Neoclassical Tearing Modes (NTM).

This does not only corroborate the ideal-MHD nature of the mode, but also rules

out resonant electromagnetic torques associated with reconnection as a mechanism for

plasma braking [40, 41]. Electromagnetic torques can act on the plasma even in the

absence of magnetic islands [42]. They are nevertheless strongly localised around the

Alfvén resonances, in the vicinity of the minimal and integer q locations, inconsistent

with the collapse of the whole rotation profile caused by the LLM. In plasmas featuring

the LLM, the innermost Alfvén resonance is located around mid-radius, meaning that

electromagnetic torques would result in a maximal damping outside the core of the

plasma, in contradiction with the observations. Significantly affecting core rotation

with these torques would require a diffusion about an order of magnitude higher than

observed before mode onset, and the resulting damping profile would still not be peaked

in the core, as seen in the experiment. In contrast, the torque arising from Neoclassical

Toroidal Viscosity (NTV) [43] is distributed and occurs on a thermal ion collision time

scale (∼ 10−4s), thus appearing well suited to describe the measured braking of the

plasma by the LLM.

The research presented here investigates whether the torque predicted by NTV

theory is consistent with the observed damping of core rotation following the LLM

onset. The structure of the LLM is first determined using the CASTOR linear code [44],

its saturated amplitude is then estimated by comparing results of forward simulations

of the SXR emission to the measurements. This is detailed in section 2. Based on

this information, the NTV torque is calculated and compared to experimental data, a

process which is explained in section 3. Figure 2 summarises the rationale of the analysis

described through sections 2 and 3. Section 4 presents results of experiments carried

out on MAST, while section 5 draws conclusions.
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2. Structure of the MHD mode

The structure of the LLM is investigated using the CASTOR code (section 2.1). It is a

linear code, therefore giving the eigenstructure of the most unstable mode, but without

any information on the saturation amplitude. MHD modes can be observed on the SXR

diagnostic (section 2.2), which can yield an estimate of the saturated amplitude. This

is done, given the eigenstructure calculated by CASTOR, by simulating the observed

SXR fluctuations for a range of assumed amplitudes and selecting the best agreement

with the experimental data (section 2.3 and 2.4). The upper part of figure 2 summarises

this process.

2.1. Eigenstructure analysis from the CASTOR code

The equilibria analysed here are reconstructed using the EFIT code [45], constrained to

magnetic field pitch-angle data from the Motional Stark Effect diagnostic (MSE), as well

as total pressure data measured by TS, Charge eXchange Recombination Spectroscopy

(CXRS) and bremsstrahlung measurements. This enables an accurate calculation of the

q profile of the discharge (figure 3). The CASTOR code requires the equilibrium input

to be calculated by the HELENA code [46], a fixed boundary Grad-Shafranov equation

solver employing the same straight field line coordinates as in the linear stability analysis.

The HELENA equilibrium is adjusted to match the q profile reconstructed by EFIT.

Theory predicts the broad low shear or reversed shear equilibria studied to be

unstable to ideal modes [33]. In addition, experimental observations do not give any

evidence of the presence of reconnection, neither in the form of local flattening of

high resolution TS electron temperature profiles, nor in the form of π phase-jumps

in neighbouring channels of poloidal cross-section SXR cameras (section 2.2). The

resistivity in CASTOR is therefore set to zero. Although the MHD mode analysed

here was shown to interact with fast ions [38], this effect was not modelled while using

CASTOR. The stability analysis is done in full toroidal geometry, taking into account

plasma shaping. For a given toroidal n number, it assumes a spectrum of poloidal m

numbers with m ≤ 30, a spectrum broad enough to represent core instabilities. The

equilibrium at mode onset reconstructed by the HELENA code is found to be unstable

to an n = 1 ideal internal mode, consistent with [33].

2.2. Observation of MHD on SXR

In the case of MAST’s horizontal SXR cameras array, the lines of sight along which

the light is collected are located on a poloidal cross section, at a fixed toroidal position

(figures 4 and 5). In the frequency range of the cameras, the SXR emissivity of the

plasma is given by [48]:

ǫSXR α
neniZ

2
eff√

Te

∫

e−hν/eTedν (1)
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where ne, ni, Zeff , e, Te and ν are respectively the electron density, ion density,

effective ion charge, the elementary charge, electron temperature in eV and frequency

of emission. Equation 1 shows that the SXR emissivity is predominantly dependent

on Te and increases with it. In the case of a non axisymmetric plasma, as the

magnetic structure advected by the plasma motion flows past the cameras (figure 5),

the temperature perturbation associated with the magnetic structure results in the

fluctuation of the SXR signal in time, allowing the observation of MHD on SXR

measurements. SXR data exhibits an additional feature when a magnetic island is

present in the plasma: a characteristic π phase jump is observed between the two

neighbouring lines of sight viewing opposite sides of the island. This is because the

temperature perturbation changes sign across the island, and consequently the two lines

of sight measure fluctuations of opposite sign [47]. Such π phase jumps are observed in

MAST in the presence of NTMs, but not in plasmas with the LLM. Note however that

if an island were present and led to local impurity accumulation, the resulting parasitic

line-emission would screen the phase jump and would thus prevent the detection of the

island.

2.3. Simulation of SXR measurements

Equation 1 is used to express the SXR emissivity as a function of poloidal flux,

ǫSXR = f (ψ). Mid-plane TS measurements yield Te (ψ), ne (ψ) and ni (ψ) (assuming

quasi-neutrality) and Zeff (ψ) is given by the analysis of bremsstrahlung emission on an

equilibrium timescale.

The eigenstructure of the n = 1 ideal mode is given by CASTOR. Assuming an

arbitrary amplitude makes it possible to calculate the poloidal flux perturbation for the

entire three-dimensional plasma: δψ = f (R, φ, Z) (with (R, φ, Z) the usual cylindrical

coordinates). Added to the equilibrium flux, this provides the complete topology of the

plasma flux surfaces, ψ = f (R, φ, Z), thus yielding a three-dimensional map of the SXR

emissivity of the plasma: ǫSXR = f (R, φ, Z).

The reconstruction described above is valid for a non-rotating magnetic structure.

In reality, the structure moves toroidally due to plasma rotation, and its motion with

respect to the plasma. In order for the MHD mode not to lose coherence, this motion has

to be rigid rotation, such that ψ = f (R, φ+ ωt, Z), where ω is the angular frequency

deduced from the experimental data by Fourier transform and t the time. The magnetic

structure therefore moves across the camera plane located at φ = φ0 and the SXR

emission on that plane is ǫSXR = f (R, φ0 + ωt, Z). This allows the integration of the

SXR emission along the path of the camera line of sight, yielding the time-dependent

simulation of the SXR measurements for an arbitrary toroidal mode number and mode

amplitude.
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2.4. Determination of the LLM saturated amplitude

Fourier analysis of the SXR fluctuations shows that from its onset until several tens of

milliseconds later, the LLM does not feature any significant n = 2 component. Although

the Mirnov coils spectrogram in figure 1 does show an n = 2 component, these coils

measure the magnetic fluctuations outside the plasma, in contrast to the SXR cameras,

which are able to observe the plasma core. In addition, it is likely that the n = 2

component in figure 1 arises as a non-linear consequence of the n = 1 mode. The

absence of n > 1 modes is also expected from the stability analysis of the LLM [38]: the

n = 1 component is unstable at larger qmin than the n = 2 component, and since the q

profile evolves downwards during the discharge, the n = 1 component is always the only

unstable at the appearance of the LLM, which is the phase analysed here. Consequently,

we only consider the n = 1 component in the rest of this study.

The SXR signals are simulated for different mode amplitudes and compared to the

experimental data. Since the MHD perturbation does not affect the average SXR signal

but only results in its variation, this comparison is based on the SXR fluctuations only.

This method reduces the influence of parasitic SXR sources, as for example impurity line

emission. The simulation having the lowest residuals with respect to the measurements

is then considered a good estimate of the mode amplitude. (Should it be necessary to

include the n = 2 mode in the analysis, the simulation would be carried out with various

n = 1 and n = 2 amplitudes, as well as toroidal phases between these components).

It is assumed here that, as the instability saturates, its structure remains identical to

the linear one. This assumption, although quite strong, is likely to hold outside the

resonant surfaces and inertial layer of the mode [34,49].
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3. Torque according to NTV theory

The saturated MHD structure is determined as described in section 2. The braking

it induces is calculated using Neoclassical Toroidal Viscosity theory. This theory is

introduced in section 3.1 and a formulation applicable to MAST plasmas is presented

in section 3.2.

3.1. NTV theory

NTV theory describes the damping of the plasma flow arising from the breaking of

axisymmetry [43,50]. The underlying mechanism is most easily understood in collisional

plasmas where the dissipation of toroidal angular momentum is similar to that occurring

during magnetic pumping [51]. The presence of the magnetic perturbation results

in the distortion of the plasma’s flux tubes. Flux conservation prescribes parts of

the flux tube with small cross-section to have a high magnetic field, hence a high

perpendicular pressure by conservation of the first adiabatic invariant (the fluid cell

contains the same particles over time, provided many collisions occur during its toroidal

precession). If the collision time is short compared to the period of the fluid cell motion,

constant total pressure on the flux surface indicates that the parallel pressure is low.

Conversely, portions of the flux tube with large cross section have a low magnetic

field, low perpendicular pressure and high parallel pressure. Therefore, as the fluid

cell travels across the distorted flux tube, it experiences an oscillation of parallel and

perpendicular pressures as well as of flux tube’s shape. In such a system, the work done

by the parallel and perpendicular pressure vanishes because the pressure and shape

oscillations are in phase. The effect of collisions is however not instantaneous, and the

oscillation of pressures lags that of shape, causing an overall braking of the fluid cell.

This mechanism is sketched in figure 6. In the collisionless regime more relevant to

tokamaks, the variation of the toroidal field results in a drift of the particles trapped in

banana orbits. This gives rise to a radial current which exerts a j × B torque on the

plasma.

A quantitative expression for the NTV force can be obtained by solving the drift-

kinetic equation, then taking the velocity moment of the distribution function to obtain

the radial flux, and eventually using the flux-friction relation derived from neoclassical

theory [52,53] to obtain the plasma viscosity. This derivation is carried out in reference

[43].

NTV theory has been applied extensively to externally-driven, static magnetic

perturbation cases [54, 55]. This theory can also be used if the field’s axisymmetry

is broken by the presence of an MHD instability, in which case the torque arises from

the differential flow of the plasma through the non-axisymmetric perturbation. In this

case, the flow damping brings the rotation of the plasma into agreement with that of the

magnetic structure (figure 7). The equivalence with the static case is found by moving

from the lab frame to that traveling with the MHD instability, a frame change which

is possible only because the mode has a rigid body rotation. The angular frequency
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of this motion results from the interaction of the non-axisymmetric magnetic structure

with both the plasma and the conducting external components of the tokamak. This

frequency is measured experimentally, so that it is not necessary to calculate the external

drag on the magnetic structure. The presence of this drag explains why the presence

of the internal MHD mode not only leads to angular momentum density redistribution

but also to an overall loss of momentum.

Since the magnetic perturbation is not applied externally, its structure has to be

calculated using an MHD code. Although there are some uncertainties inherent in this

calculation, it does not require, unlike the external field case, the determination of the

plasma response to the perturbation, which was recently shown to have a significant

impact on the NTV torque [56].

3.2. Formulation

MAST plasmas are mainly in the so-called 1/ν collisionality regime (figure 8), where

the particles trapped in banana orbits are collisionless and dominate the radial flux of

ions. This regime is characterised by qωE×B < νii/ǫ <
√
ǫωt,i with ωE×B the E × B

drift frequency, νii the thermal ion collision frequency, and ǫ the local aspect ratio.

ωt,i = (R0q)
−1 vth,i is the ion transit frequency, vth,i the thermal ion velocity and R0 the

major radius of the plasma.

The NTV theory is expressed in straight field line, constant Jacobian, Hamada

coordinates (v, ζ, θ) [57], with v the volume enclosed by the flux surface, ζ and θ the

toroidal and poloidal coordinates. From the usual geometrical flux coordinates (ψ, φ, θg)

(ψ being the poloidal flux, φ and θg the geometrical toroidal and poloidal angles), they

can be obtained by the transformation [58]:

v (ψ) = 2π
∫ ψ

0
ψ′
∮ dθ′g

B · ∇θ′g
(2a)

ζ (ψ, φ, θg) =
φ

2π
+ F (ψ)

∫ θg

0

(〈

1

R2

〉

− 1

R2

) dθ′g
B · ∇θ′g

(2b)

θ (ψ, θg) =

(

∮ dθ′g
B · ∇θ′g

)−1 (
∫ θg

0

dθ′g
B · ∇θ′g

)

(2c)

Note that with the conventions chosen here, ζ and θ are periodic, of period unity (not

2π). In equation 2b, F (ψ) = RBφ with Bφ the toroidal field. Angled brackets denote a

flux surface average carried out in the following manner:

〈X〉 =

(

∮ dθ′g
B · ∇θ′g

)−1 (
∮

X
dθ′g

B · ∇θ′g

)

(3)

Reference [58] details some properties of the coordinates built using equations 2a-2c but

does not demonstrate that they are the Hamada coordinates. This is done in Appendix

A. The braking depends on |B|, the modulus of the total magnetic field, which needs
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to be written in its Lagrangian form:

|B (X + ξ)| = |B0 + δB + (ξ · ∇) B| = |B0|


1 +
∑

(m,n) 6=(0,0)

(

bn,m
|B0|

)

e2πi(mθ−nζ)



 (4)

Here, X, ξ and B0 are the position vector, the displacement vector, and the equilibrium

magnetic field respectively. By construction, bn,m are the coefficients of the Fourier

decomposition of the magnetic perturbation. In equation 4, the term (ξ · ∇) B is most

easily calculated by exploiting the equilibrium field’s axisymmetry and rewriting it as

(ξ · ∇) B = B0 (X + ξ) − B0 (X) + O
(

|ξ|2
)

. This calculation is detailed in Appendix

B and avoids tedious use of the tractable, though often diverging, ∇ × (ξ × B) and

∇ (ξ · B) operators.

Rather than the expression given in [43], it is convenient to use the expression for

the 1/ν regime NTV torque given in [50], which makes use of the force balance equation

for the ion fluid in order to express the torque as a function of the plasma profiles:

tφ,NTV = K
∑

(m,n) 6=(0,0)

|nbm,n|2Wm,n ((ωφ − ω∗
NC) − ωMHD) (5)

with:

K = 1.74ne
eTi
2νii

RBφǫ
3/2 〈R〉

〈

B−1
φ

〉 〈

R−2
〉

(6)

Here, Ti, Bφ, R and ωφ are the ion fluid temperature, the toroidal magnetic field, the

major radius and the toroidal angular frequency respectively. The ion temperature and

velocity are assumed to be equal to those of the carbon fluid measured by CXRS. ωMHD

is the angular frequency of the MHD, calculated by Fourier transform of the SXR signal,

it accounts for the needed change from the lab frame to that of the MHD mode. The

Wm,n coefficients are given by:

Wm,n =
∫ 1

0

(Fmnc (κ))
2 + (Fmns (κ))2

E (κ) − (1 − κ2)K (κ)
dκ2 (7)

where κ is a pitch angle parameter defined in [43], E (κ) and K (κ) the complete elliptic

of first and second kind. Fmnc (κ) and Fmns (κ) are defined by:

Fmnc (κ) = 2
∫ 2Arcsin(κ)

0

√

κ2 − sin2 (θ/2) cos ((m− nq) θ)dθ (8a)

Fmns (κ) = 2
∫ 2Arcsin(κ)

0

√

κ2 − sin2 (θ/2) sin ((m− nq) θ)dθ (8b)

ω∗
NC is a neoclassical offset angular frequency defined as:

ω∗
NC =

3.5

ZeR̄Bp

(

dTi
dr

)

(9)

where Bp and r are the poloidal field and minor radius. R̄ is the major radius of

outboard mid-plane point of the flux surface. This offset rotation has been shown to be

of importance [59].

The NTV torque given by equation 5 is proportional to the squared amplitude of

the magnetic perturbation, and to the difference of the ion fluid and mode’s frequencies,

ωφ−ωMHD (with an additional offset ω∗
NC), as expected from the heuristic mechanisms

introduced in section 3.1.
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4. MAST results

The comparison described in the previous sections and summarised in figure 2 was

carried out on MAST plasmas featuring the LLM, a saturated ideal MHD mode. The

eigenstructure calculated by CASTOR, for an equilibrium reconstructed at the LLM

appearance, is an n = 1 internal kink mode, shown in figure 9. The best agreement

between SXR simulations and experimental data is obtained for a radial amplitude

ξr = 1.2cm. The relative amplitudes as well as the phases of the SXR fluctuations are

well matched for each channel (figures 10 and 11). This best match corresponds to a

clear local minimum of the simulation’s residuals with respect to the measured data

(figure 12), which gives good confidence in the estimated amplitude. As mentioned in

section 2, no π phase jumps are observed in the SXR fluctuations, tending to rule out

electromagnetic torques associated with magnetic reconnection.

The rotation frequency profiles of the plasma during the braking are shown in

figure 13. The rotation is unchanged for the radial location R = 1.15m. It is tempting

to interpret this point as the position where the mode’s frequency and that of the plasma

are equal, hence where one would expect the torque applied by the mode to vanish. This

is actually not the case, and the dashed line in figure 13 indicates the frequency of the

mode at its onset. Although it decreases on equilibrium timescales, this latter frequency

does not reach that of the plasma at R = 1.15m at any time. This gap between the

rotation frequency of the plasma at R = 1.15m and that of the mode can be explained

by the presence of the offset frequency ω∗
NC in the NTV formulation (equation 5), and

these two shifts are of similar magnitude.

When the LLM appears, the plasma is assumed in a steady state from the point

of view of angular momentum transport. This means that the angular momentum

input from NBI exactly balances momentum transport and losses. The braking of

the plasma takes place on time scales faster than the momentum confinement time

(∼ 50ms on MAST), such the that NBI source can still be assumed to balance the

momentum transport and losses during the first milliseconds of the braking: over this

period, the latter is solely due to MHD. The comparison carried out in this study focuses

on this early rotation damping. Analysing later time slices would require an additional

assumption on the transport of angular momentum, which cannot confidently be made.

Note however that the LLM increases fast ion losses, possibly leading to two phenomena

neglected here: the torque deposition may be slightly altered after mode onset and the

fast ion redistribution is likely to affect plasma rotation. Initial calculations of this

second effect however indicate that it is significantly lower than the observed damping.

More accurate calculations using the HAGIS drift kinetic code are to be carried out in

the future.

The torque predicted by NTV at t = 255ms is plotted in figure 14, together with

the measured rate of change of angular momentum for each flux tube. The predictions

and observations have the same order of magnitude. The profile shapes are similar,

except in the vicinity of the rational surfaces and the inertial layer, the latter being
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located at the qmin surface, due to the absence of a q = 1 surface. In these regions,

large parallel magnetic field perturbations result in a high torque which is not observed

in the experimental data. Since the linear structure used here only differs from the

non-linear saturated one at these positions [34, 49], this disagreement is not regarded

as invalidating the applicability of the theory to the observations. The uncertainties

in the different plasma profiles involved in the calculation are bounded at a level that

does not compromise the calculated order of magnitude of the results, nor the shape

of the profile. Nevertheless, they do not allow more detailed comparisons, and seem

not accurate enough to have a predictive use. It is however worth mentioning that

the inclusion of the offset frequency ω∗
NC is crucial in order to reproduce the measured

torque profile with NTV theory. Furthermore, the Lagrangian term (ξ · ∇) B must be

taken into account to predict a torque of magnitude comparable to the one observed

experimentally, neglecting it decreases the calculated result by up to 70%, especially in

the vicinity of the magnetic axis.
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5. Conclusions

MAST NBI-heated plasmas with low density exhibit a weakly reversed shear q profile

just above 1, prone to the appearance of the LLM, a saturated long-lived MHD

instability. All experimental observations indicate that the mode is ideal in nature,

which is corroborated by analytical work and modelling [37, 38]. Measurements show

strong core damping of the sheared toroidal rotation simultaneous to the mode onset.

The eigenstructure of the mode was calculated using the CASTOR code, and its

saturated amplitude determined using the fluctuations of SXR experimental data. The

structure of the magnetic perturbation obtained was used to estimate the braking torque

induced by the mode according to NTV theory, the rationale of this entire study being

summarised in figure 2. The results were found in agreement with the experiment, in

terms of order of magnitude and profile.

In previous work, NTV has mainly been applied to externally applied magnetic

perturbations [54,55]. The similarity between predictions and experimental observations

are encouragements that this theory is also a good candidate mechanism for the

interaction between MHD and plasma rotation, as described in section 3. For this

type of study, the theory is applied in the frame moving with the MHD mode, which

has a rigid body rotation. This application to an MHD instability also provides an

additional observation of the offset rotation term ω∗
NC , after that made in experiments

with coil-induced magnetic perturbations on DIII-D [59].

The present study of the interplay between an MHD mode and rotation is not

limited to MAST cases, but is relevant to several tokamaks exploiting scenarios with

hybrid-like, reversed shear q profiles just above an integer value. Ideal saturated

(m,n) = (2, 1) modes are observed in JET’s hybrid plasmas with qmin > 2 [60, 61].

This so-called continuous mode also results in a flattening of core rotation. Slowly

growing ideal modes associated with hybrid like q profile and high normalised pressure

have also been observed on DIII-D [62] and JT-60U [63], with a simultaneous collapse

of the toroidal rotation. Damping of core rotation by MHD has also been observed in

NSTX [64], although the mode was observed to be resistive and the braking attributed

to electromagnetic torques arising from magnetic reconnection.



Comparison of MHD-induced rotation damping with NTV predictions on MAST 13

Appendix A. Hamada coordinates

The Hamada coordinates (v, ζ, θ) [57] have the following properties:

Property 1 The first coordinate is the volume enclosed by the flux surfaces.

Property 2 They are straight field line coordinates, meaning that (B · ∇ζ) (B · ∇θ)−1 =

q (v) and this ratio is equal to the usual safety factor, which in usual geometrical flux

coordinates is q (v) = (2π)−1 ∮ (B · ∇φ) (B · ∇θg)−1 dθg.

Property 3 All the contravariant components of the magnetic field are flux functions.

Property 4 Their Jacobian is constant and unity.

These properties uniquely define the Hamada covariant basis, hence the full

coordinates, since: ∇v is fully determined by property 1, properties 2 and 3 set the

relative angles and magnitudes of ∇ζ and ∇θ, and lastly, property 4 sets the relative

angles and magnitudes of ∇v on the one hand and (∇ζ,∇θ) on the other hand. It is

shown in this section that the coordinates (v, ζ, θ), given by equations 2a-2c, satisfy

these four properties and therefore are the Hamada coordinates.

It should first be mentioned that the integral
∮

X
(

B · ∇θ′g
)−1

dθ′g is left unchanged

by any monotonic periodic variable change:

θ′g = (η) ⇒
{

dθ′g = f ′ (η) dη

∇θ′g = f ′ (η)∇η ⇒
∮

X
dθ′g

B · ∇θ′g
=
∮

X
dη

B · ∇η (A.1)

While not directly relevant to this demonstration, this property interestingly shows

that any monotonic periodic poloidal coordinate can be used in place of θg to build the

(v, ζ, θ) coordinates.

Property 1 is a simple matter of definition. To prove the validity of properties 2-4,

it is useful to note a few points beforehand. To begin with, the definition of the volume

in equation 2a comes from the basic properties of the magnetic field, allowing one to

express it as B = F (ψ)∇φ+ ∇ψ ×∇φ. Since ∇θg · ∇φ = 0, this gives:

dV =
dψ dφ dθg

∇ψ · (∇φ×∇θg)
(A.2)

=
dψ dφ dθg

∇θg · (∇ψ ×∇φ)
(A.3)

=
dψ dφ dθg
B · ∇θg

(A.4)

and therefore:

v (ψ) = 2π
∫ ψ

0
dψ′

∮ dθ′g
B · ∇θ′g

(A.5)

In addition, the third covariant vector of the (v, ζ, θ) coordinates is:

∇θ =
∂θ

∂ψ
∇ψ +

∂θ

∂θg
∇θg (A.6)

=
∂θ

∂ψ
∇ψ +

(

∮ dθg
B · ∇θg

)−1 ∇θg
B · ∇θg

(A.7)
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Hence:

B · ∇θ =
∂θ

∂ψ
B · ∇ψ +

(

∮ dθg
B · ∇θg

)−1
B · ∇θg
B · ∇θg

(A.8)

=

(

∮ dθg
B · ∇θg

)−1

(A.9)

Note that this equation also shows that B·∇θ is a derivative of the volume. Additionally,

it follows from equation A.6 that:

B · ∇θ =
∂θ

∂θg
B · ∇θg (A.10)

This means successively:

∇θg
B · ∇θg

=
∇θ

B · ∇θ +
∂θg
∂ψ

∇ψ
B · ∇θg

(A.11)

∇ψ ×∇θg
B · ∇θg

=
∇ψ ×∇θ
B · ∇θ (A.12)

Lastly, the covariant vectors of the (v, ζ, θ) coordinates are given by simple

differentiation, and use of equation A.9:

∇v =
2π

B · ∇θ∇ψ (A.13)

∇ζ =
∂ζ

∂ψ
∇ψ +

1

2π
∇φ+

F (ψ)

2π

(〈

1

R2

〉

− 1

R2

) ∇θg
B · θg

(A.14)

∇θ =
∂θ

∂ψ
∇ψ + B · ∇θ ∇θg

B · ∇θg
(A.15)

With these remarks in mind, it is possible to easily prove properties 2 to 4.

By definition, B ·∇v = 0, and equation A.9 indicates that B ·∇θ is a flux function.

Taking the scalar product of B with equation A.14 results in:

B · ∇ζ =
1

2π
B · ∇φ+

F (ψ)

2π

B · ∇θg
B · ∇θg

(〈

1

R2

〉

− 1

R2

)

(A.16)

Since by definition of F (ψ) and φ, B · ∇φ = F (ψ)R−2, we have:

B · ∇ζ =
F (ψ)

2π

〈

1

R2

〉

(A.17)

This equation guarantees that B ·∇ζ is the flux surface average of B ·∇φ. Consequently,

all contravariant components of the magnetic field are flux functions and property 3 is

verified.

Substituting for B · ∇φ = R−2F (ψ) in the safety factor definition gives:

q (v) =
1

2π

∮ F (ψ) / (2πR2)

B · ∇θg
dθg (A.18)

=
F (ψ)

2π

∮ dθg/R
2

B · ∇θg
(A.19)
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Now using the the definition of the flux surface average (equation 3) together with

equations A.17 and A.9:

q (v) =

(

∮ dθg
B · ∇θg

)

B · ∇ζ (A.20)

=
B · ∇ζ
B · ∇θ (A.21)

This demonstrates that property 2 is verified.

There only remains to prove property 4. This is done by calculating the Jacobian

of the coordinates (v, ζ, θ). Taking the cross-product of equations A.13 and A.14 gives:

∇v ×∇ζ =
1

B · ∇θ

(

∇ψ ×∇φ+ F (ψ)
(〈

1

R2

〉

− 1

R2

) ∇ψ ×∇θg
B · ∇θg

)

(A.22)

Using equation A.12 to transform the second term on the right hand side:

∇v ×∇ζ =
1

B · ∇θ

(

∇ψ ×∇φ+ F (ψ)
(〈

1

R2

〉

− 1

R2

) ∇ψ ×∇θ
B · ∇θ

)

(A.23)

Taking the scalar product of equations A.23 with ∇θ, the second term on the right hand

side vanishes leaving:

(∇v ×∇ζ) · ∇θ =
1

B · ∇θ ((∇ψ ×∇φ) · ∇θ) (A.24)

Substituting for ∇θ on the right hand side using equation A.15 then yields:

(∇v ×∇ζ) · ∇θ =
1

B · ∇θ

(

(∇ψ ×∇φ)

(

∂θ

∂ψ
∇ψ + B · ∇θ ∇θg

B · ∇θg

))

(A.25)

= (∇ψ ×∇φ) · ∇θg
B · ∇θg

(A.26)

Using equations A.4 and A.26 eventually proves property 4:

(∇v ×∇ζ) · ∇θ =
(∇ψ ×∇φ) · ∇θg

B · ∇θg
(A.27)

=
B · ∇θg
B · ∇θg

(A.28)

= 1 (A.29)

The (v, ζ, θ) coordinates built using equations 2a-2c therefore verify properties 1-

4, and thus are the Hamada coordinates. Their construction is closely linked to the

expression of the volume given by equation A.4 and the flux surface average defined in

equation 3.
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Appendix B. Calculation of (ξ · ∇) B

NTV theory requires the magnetic perturbation to be expressed in the Lagrangian

form. The Lagrangian term to be added to the Eulerian form of δB is simply the

contribution of the displacement of the fluid cell to the perturbation, (ξ · ∇) B =

B0 (X + ξ)−B0 (X)+O
(

|ξ|2
)

. To carry out this calculation, the equilibrium magnetic

field is most conveniently decomposed on the usual cylindrical local basis (eR,eφ,eZ),

but with the use of the (ψ, φ, θg) coordinates to locate a point in space:

B0 (X) = B0,R (ψ, θg) eR +B0,φ (ψ, θg) eφ +B0,Z (ψ, θg) eZ (B.1)

According to basic differential geometry, the equilibrium field at X + ξ is:

B0 (X + ξ) = B0 (X) +
∂B0

∂ψ
(∇ψ · ξ) +

∂B0

∂φ
(∇φ · ξ) +

∂B0

∂θg
(∇θg · ξ) +O

(

|ξ|2
)

(B.2)

Therefore:

(ξ · ∇) B =
∂B0

∂ψ
ξψ +

∂B0

∂φ
ξφ +

∂B0

∂θg
ξθg +O

(

|ξ|2
)

(B.3)

The differential forms of B0 must be calculated taking into account that the field is

axisymmetric and that the chosen basis vectors are not constant in space but depend

on the toroidal angle. This gives, for α ∈ (ψ, θg):

∂B0

∂α
=
∂B0,R

∂α
eR +

∂B0,φ

∂α
eφ +

∂B0,Z

∂α
eZ (B.4)

and:

∂B0

∂φ
= B0,R

∂eR
∂φ

+B0,φ
∂eφ
∂φ

+B0,Z
∂eZ
∂φ

= B0,Reφ −B0,φeR (B.5)

Equations B.3, B.4, B.5 allow a simple calculation of the Lagrangian term of the

magnetic perturbation, avoiding the intricate, although widespread, use of the ∇ ×
(ξ × B) and ∇ (ξ · B) operators. Each of these individually diverge, but their diverging

parts cancel each other in the combination involved in (ξ · ∇) B. The Lagragian term

is given in its simple form by:

(ξ · ∇) B = ξψ
(

∂B0,R

∂ψ
eR +

∂B0,φ

∂ψ
eφ +

∂B0,Z

∂ψ
eZ

)

+ ξφ
(

∂B0,R

∂θg
eR +

∂B0,φ

∂θg
eφ +

∂B0,Z

∂θg
eZ

)

+ ξθg (B0,Reφ −B0,φeR)

+O
(

|ξ|2
)

(B.6)
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Figure 1. Top: plasma current, auxiliary heating power and line-integrated density.

Middle: spectrogram of the mode from the outboard Mirnov coils. Bottom: Toroidal

rotation measured by CXRS at different radial locations of the plasma, showing the

damping of core rotation concurrent with the MHD mode onset. The magnetic axis is

located at R = 0.95m and the outboard edge at R = 1.40m.
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Figure 2. Rationale of the theory-experiment comparison carried out in this study.
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Figure 3. q profile for MAST shot 21508 at mode onset (255ms), calculated by EFIT

constrained to magnetic field pitch-angle data from MSE and total pressure data from

TS and CXRS.

0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4

R [m]


1.0


0.5


0.0


0.5


1.0


Z
 [m

]


Figure 4. Poloidal cross-section of a MAST plasma showing the lines of sight of the

horizontal SXR array. The nested contours are flux surfaces with normalised poloidal

flux lower than 0.95, the curves converging towards the magnetic axis represent lines

of constant poloidal coordinates used in the HELENA and CASTOR codes.
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Figure 5. Top view of MAST showing the horizontal SXR array position and a

schematic of an MHD mode moving past the SXR lines of sight.
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Figure 6. Heuristic mechanism of magnetic pumping. The top panel represents a

distorted flux tube cut open and straightened. The bottom panel shows the modulation

of the parallel (plain line) and perpendicular (dashed line) pressures caused by the

shape modulation. The effect of collisions not being instantaneous, the modulation

of pressures lag that of shape. As the fluid cell moves toroidally, the work of the

perpendicular pressure during the first half of the cycle, which is in the direction of

the motion, (left) is less than that during the second half of the cycle, which opposes

the motion (right). Estimating the work of parallel pressure is more difficult since it

needs to take into account the pressure gradient, the variation of the cross section and

the length of the fluid element. Nevertheless, it also opposes the motion.
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Figure 7. The two competing angular frequency profiles in a rotating plasma with

an MHD mode: that of the plasma (plain line) and that of the mode (dotted line).

These profiles are brought in agreement by the damping of the plasma rotation, with

a departure of the plasma angular frequency from that of the MHD of order the

diamagnetic frequency, ω∗

NC (dashed line). This process is described by equation 5.
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Figure 8. Validity of the 1/ν regime for MAST shot 21508 at t = 255ms. This regime

is characterised by qωE×B < νi/ǫ <
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ǫωt,i, where qωE×B is represented by the dotted

line, νi/ǫ by the solid line, and
√
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for MAST shot 21508 at t = 255ms.
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Figure 10. The experimental fluctuations caused by the MHD mode on MAST SXR

horizontal array for shot 21508 at t = 255ms, and the simulated signal based on a

radial mode amplitude of 1.2cm.
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Figure 11. Relative phases of the simulated SXR chords (plain line) and the

experimental ones (dashed line). Chords U9 to L1 observe from the bottom of the

plasma to the mid-plane, while chords L9 to L2 observe from the top of the plasma

to the mid-plane. Chord pairs (L3, U3) to (L7, U7) show a constant phase, which is

consistent with the kink eigenstructure predicted by CASTOR.
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Figure 12. Residuals from the comparison between the SXR experimental

measurements and the simulations for a range of perturbation amplitudes. The graph

clearly shows optimal agreement for a radial amplitude of ξr = 1.2cm.
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of change of angular momentum density (dashed line) as a function of major radius

for shot 21508 at t = 255ms.


