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Abstract

Merging-compression start-up in the Mega Ampere Spherical Tokamak provides an
opportunity to investigate the merging of flux ropes through magnetic reconnection, and
the self-organization into a single flux rope, in a low-plasma-g, high-Lundquist-number
plasma. We present an overview of simulations of this process using the compressible
Hall-MHD equations in two dimensions. Preliminary results of an analytical model of the
self-organization, assuming a helicity-conserving relaxation to a minimum energy state,
are also presented. The relevance of these models to solar plasmas is discussed.

Keywords: spherical tokamak, magnetic reconnection, flux ropes, Hall MHD, relaxation

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetic reconnection is a process for re-structuring magnetic
fields and dissipating free magnetic energy which is of impor-
tance in a wide range of space and astrophysical plasmas, as
well as magnetically-confined fusion plasmas in the laboratory
[1-3]. Magnetic flux ropes are a basic building block of mag-
netic fields, and the merging of flux ropes through magnetic
reconnection is a frequently-occurring process. Considerable
understanding of flux-rope merging has been attained through
purpose-built laboratory experiments e.g. [4—10].

Here, we report on the modelling of flux-rope merging
in the Mega Ampere Spherical Tokamak (MAST), which is
in a parameter regime more closely resembling astrophysical
plasmas. MAST [11-13] is a tight-aspect ratio toroidal device,
in which plasmas are created with typical major and minor
radii R = 0.95m, a = 0.60m, plasma current /, = 400-
900 kA, toroidal field at the magnetic axis Br = 0.40-0.58 T,
and peak electron density and temperature 7,9 = 3 x 10! m™3
and T,y = 1keV. The MAST device has demonstrated the
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very promising potential of the spherical tokamak as a fusion
power plant or Component Test Facility, especially in terms of
confinement and high 8 operation, as well as providing insight
into a range of physical processes relevant to conventional
tokamaks. Several alternative plasma start-up methods can
be used to reach these final parameter values, one of which is
the merging-compression technique, whereby two flux ropes
with parallel toroidal current move towards each other and
then merge, forming a plasma torus with a single set of closed
magnetic flux surfaces [2]. In addition to being an attractive
scheme for plasma start-up and current drive without the use
of a central solenoid, merging-compression in MAST also
provides an opportunity to investigate the basic physics of
flux-rope merging and magnetic reconnection in conditions of
higher Lundquist number and lower plasma beta than those
of other laboratory experiments, and in parameter regimes
more closely resembling those of at least some astrophysical
plasmas, such as the flaring solar corona. Moreover MAST is
equipped with a comprehensive set of diagnostics, including
Thomson scattering lasers (see right-hand frame of figure 1)
that make it possible to obtain electron temperature and density
profiles with sufficiently high time resolution to study the
dynamics of reconnection during the merging process.

© 2014 I0P Publishing Ltd  Printed in the UK
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Thomson Scattering lasers

Figure 1. A cartoon of merging-compression formation in

MAST [13, 17], with the flux ropes shown in purple. The poloidal
cross-section is shown (R horizontal, z vertical). The left-hand
panel shows the initial stages, when the flux ropes form around the
P3 poloidal field coils. The right-hand panel displays the flux ropes
on the point of merging, showing also the location of Thomson
scattering line-of-sight where density and temperature
measurements are taken. Reproduced with permission from [17].
Copyright 2013 The American Institute of Physics.

The merging-compression formation scheme was pio-
neered on MAST’s smaller predecessor START [14]. In
this scenario, described more fully by [15-17], two toroidal
flux ropes with parallel toroidal currents are produced around
in-vessel poloidal field coils (the P3 coils shown in figure 1).
Decreasing the current in the coils induces plasma current in the
flux ropes and causes them to separate from the coils, mutually
attracting due to their parallel currents; they eventually merge
through reconnection of the poloidal field at the midplane (see
figure 1). The process presently generates spherical tokamak
plasmas with a current of up to 0.5 MA, which are rapidly
heated (presumably, mainly by processes associated with the
reconnection) to temperatures of up to 1 keV.

In section 2, we present an overview of recent
numerical simulations of merging-compression in MAST
using both resistive magnetohydrodynamic (MHD) and Hall-
MHD equations, with the HiFi modelling framework [18, 19].
These are performed in 2D, both in Cartesian geometry and
in tight-aspect ratio toroidal geometry; for more details, see
[17]. Then, in section 3, we describe initial results from an
analytical model explaining the self-organization of the flux
ropes in terms of a helicity-conserving relaxation to a minimum
energy state. Conclusions are presented, and the relevance for
astrophysical plasmas is discussed, in section 4.

2. Resistive MHD and Hall-MHD simulations

Here, we describe results of simulations using both single-
fluid MHD and Hall-MHD. The Hall terms in Ohm’s law
are included here because, for typical MAST parameters (see
below), the ion skin-depth is comparable with the device size

(normalized d; = 0.145) and is much larger than the width of
the Sweet—Parker current sheet predicted by resistive MHD.
A hyper-resistive term [1] representing anomalous electron
viscosity due to effects of micro-turbulence and 3D instabilities
is also included, which sets a dissipation scale for whistler
and kinetic Alfvén waves and provides a parallel electric
field to allow reconnection in the 2D simulations. Other
terms, such as electron inertia and off-diagonal pressure tensor
terms, are likely to be less significant, but will be included in
future modelling. We solve the nonlinear compressible Hall-
MHD equations in normalized form [1]. The normalization is
with respect to typical MAST start-up plasma values: density
ng = 5 x 10¥m™3, length-scale Ly = 1m, magnetic
field By = 0.5T, and (equal) ion and electron temperatures
Tp = 10eV. Velocities are normalized by the Alfvén speed
vo = Bo(monom;)~/%. The full set of equations is

on+V - (nv) =0, (D
0(nvy)) + V - (nvjv; + pl+ 7)) =3 x B, 2)
E=-0A=-v.xB~— %Vpe +nj — V33, 3
B=-VxE “
(v =D [dp+vi-Vp+ypV - u]

=nj* + (V) =7 Vo — V- q, ®)
where n is the density, 7 = V x B the current density, v;
the ion velocity (with electron velocity v, = v; — djj/n),

B the magnetic field, p = p; + p. the total (sum of the
ion and electron) thermal pressure, E the electric field and
A the magnetic vector potential. The ion stress tensor is
m = —ui(Voy; + VviT), and the heat-flux vector g has
anisotropic form g = —Ke”VHT — VT where V| =
IA)(IA) - V). The coefficients are: normalized ion skin-depth,
di = c(noe?/eom;)~'/2Ly", resistivity in terms of the parallel
Spitzer value n = (MOUOLO)_lnSp,||7 hyper-resistivity ny,
viscosity u; = (ovoLo) ™! /,Ll‘, and the normalized parallel
electron, Ki', and perpendicular ion, Kil, heat conductivities;

here, we set the normalized values to be KeH = 107! and
k- = 1077, The final term in equation (3) is the hyper-
resistive diffusion. On the basis of Braginskii values based on
pre-merging MAST temperatures, = 107> and pu; = 1073;
but the values of 7, u; and ny are also sometimes varied in
order to study the scaling effects of collisions on the merging.
With these standard values, the Lundquist number § = 10°
and the magnetic Prandtl number P, = 100.

The simulations use a grid with Ny = 180, N, = 360
finite elements in the R, z directions, with a polynomial of
order 4 in each element, giving an effective resolution of
720 x 1440. The spacing is non-uniform, with a finer grid
near the current sheet location around z = 0. Convergence
studies have been undertaken.

The initial conditions are taken as two localized
distributions of toroidal current representing the plasma when
the current rings have detached from the in-vessel coils (which
are not modelled). The toroidal field within the flux ropes is
calculated so as to give local force-balance, but an attractive
force between the parallel currents remains and triggers the
merging process.
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Figure 2. A series of snapshots showing poloidal field (contours), toroidal current density (colour scale) and poloidal ion velocity (arrows)
from a resistive MHD simulation. There is also a toroidal (out of plane) field component, so these plots represent slices through twisted flux
ropes. Note the region of flux-rope interaction is shown, which is smaller than the full simulation box.

Figure 2 shows a sequence of fields for a resistive MHD
simulation (d; = 0, ny = 0; n = 1079, n = 1073), in
Cartesian geometry. It can be seen that as the flux ropes
approach, a current sheet initially forms, which becomes
the site of reconnection. The pile-up of the poloidal field
(Bg), associated with a layer of reverse toroidal current (see
second panel of figure 2), opposes the merging and causes
the reconnection to stall. This process continues, leading
to oscillations in the reconnection rate or ‘sloshing’ [20, 21]
which can be seen in some traces on figure 3. The ‘sloshing’
is known to occur for sufficiently small values of 5, and can
be interpreted as being due to the increase in induced current
between approaching magnetic islands, on a timescale more
rapid than resistive decay, leading to a repulsive force [22];
thus, the frequency scales with the Alfven time. Nevertheless,
full merging of the flux ropes is eventually achieved, as shown
in the final panel of figure 2. For the resistive MHD case,
analysis of the scalings with u and 5 [17] shows that the
reconnection rate is consistent with the visco-resistive Sweet—
Parker reconnection [23, 24].

The time dependence of the reconnection rate for Hall-
MHD is shown in figure 3, along with a comparable single-fluid
MHD case in which the hyper-resistivity has been included, in
order to distinguish between the effects of finite ion skin-depth
and hyper-resistive diffusion. Note that the reconnection rate
for the single-fluid case, with hyper-resistivity—performed
largely as a numerical test of the effects of hyper-resistivity—
is very close to that for resistive MHD, since the breaking of
the frozen-in condition is largely provided by the resistivity
n at this low value of 7y = 107!%). Evidently, inclusion
of the Hall terms in Ohm’s law can significantly increase
the reconnection rate. As the hyper-resistivity decreases
from 107 to 107, both peak and average reconnection rates
decrease; as ny approaches 1071, the peak reconnection rate
becomes larger (see below). Note that the contribution to the
reconnection electric field by the hyper-resistivity dominates
over the resistive contribution for the Hall-MHD simulations.

The structure of the reconnection region also changes
significantly as the Hall terms are included: the symmetry
is broken, leading to a tilted current sheet and tilted ion
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Figure 3. The time dependence of reconnection rate for
hyper-resistive Hall-MHD simulations with varying
hyper-resistivity, ng and d; = 0.145. For comparison, a MHD
simulation (d; = 0) with hyper-resistivity is also shown (black line).
In all cases n = 107>, u; = 1073,

outflow jets [17]. The effects of varying collisionality are
explored by changing the hyper-resistivity ny [17], showing
a transition between various reconnection regimes. For higher
collisionality, n = 107, a broad current sheet forms which
does not fragment. Reducing the collisionality leads to break-
up of the sheet due to tearing-type instabilities. At low values
of ny, the thin current sheet becomes unstable to secondary
island formation, and a series of small islands (regions of closed
magnetic flux) are generated, separated by additional X-points;
see figure 4. At the lowest values simulated, ny = 10719,
the current sheet spreads asymmetrically across the separatrix
between open and closed flux, and the outflow region opens,
leading to fast reconnection.

Simulations have also been performed in tight-aspect-ratio
toroidal geometry, with a confining vertical field in addition
to the dominant toroidal field (with 1/r dependence), more
closely representing MAST. The flux-rope merging proceeds
as before, leading to the formation of a single ‘spherical
tokamak’ state with closed flux surfaces and a realistic,
monotonically-increasing profile of the safety factor ¢, with
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Figure 4. Poloidal flux contours and current density (in colour-scale) during reconnection for a Hall-MHD simulation with normalized

nu = 1077, showing the formation and ejection of magnetic islands.

q > leverywhere. There are some differences in the dynamics
from the Cartesian case, especially due to the inboard-outboard
asymmetry; in particular, the islands which form in the current
sheet are more easily ejected. For further details, see [17, 25].

The simulations also predict the plasma density profiles.
It has been shown that, in the case of Hall-MHD simulations
in toroidal geometry, a double-peaked radial density structure
in the midplane is predicted, which agrees with experimental
measurements using Thomson scattering [15,17].  This
is discussed in more detail in [17], where it is shown
that explaining the observed double-peaked density structure
requires both two-fluid and toroidal effects.

3. Relaxation model and self-organization

The concept of helicity-conserving relaxation to a minimum
energy state was pioneered for reverse field pinch plasmas
by Taylor [26] and has subsequently been applied with great
success in a range of a laboratory plasmas (see review [27])
as well as astrophysical plasmas such as the solar corona (e.g.
[28,29]). The basic idea is that a plasma subject to some initial
disturbance or instability relaxes towards the state of lowest
magnetic energy, with the constraint that the total magnetic
helicity is conserved. The latter constraint is appropriate in a
highly-conducting plasma in which dissipation is mostly due
to reconnection within thin current layers; the basic idea is
that reconnection enhances energy dissipation, but not helicity
dissipation (whilst both slowly dissipate due to global resistive
diffusion) [27,30]. In this case, the relaxed state is a linear
force-free field,

V x B =uB, ©6)

where y = 11oB - j/B? is spatially constant.

We propose, following an earlier suggestion for START
(M Bevir and C G Gimblett, private communication), that flux-
rope merging in MAST can be modelled as a Taylor relaxation.
Initial results of such a model are presented here; for
simplicity, a Cartesian geometry is assumed, with a rectangular
cross-section infinite-aspect ratio tokamak ( ‘toroidal’ invariant
direction z). The model could be easily adapted to a tight-
aspect-ratio system in cylindrical geometry, following [31];
but, as demonstrated by the numerical simulations in section 2,
this should not have a major effect on the results. Furthermore,
the aim of the relaxation model is to draw out some essential
underlying physics, and this would not be greatly enhanced by
a more accurate choice of geometry.

3.1. Relaxation model

The initial state, shown in the left-hand panel of figure 5,
consists of two adjacent, twisted flux ropes, with square outer
cross-sections given by x = 0, a (for both flux ropes) and
y = 0, a for one flux-rope and y = a, 2a for the other; hence,
the flux ropes touch along the surface y = a. We assume
each initial flux rope is force-free. The field then undergoes
helicity-conserving relaxation to a single flux rope contained
within the same overall volume (0 < x < a;0 < y < 2a).
The relaxed state is described by (6). For ease of calculation,
we assume that the initial flux ropes are individually linear
force-free fields, also described by (6); there is no particular
reason to assume such a p profile, but as we have no detailed
knowledge of the current distribution, this is not unreasonable
(note therefore that the initial current profile here is somewhat
different from that in section 2). Howeyver, the initial state is not
a minimum energy state, because it contains a current sheet at
the boundary between the two flux ropes (at y = a), due to the
discontinuity in the poloidal field B, which reverses direction.
Hence the model initial state represents the fields at the point
in time at which the flux ropes have been brought together by
the attractive force, but have not yet commenced reconnection
(somewhat later than the initial state of the simulations). Thisis
a force-free equilibrium, since the magnetic pressure balances
(by symmetry) across the interface y = 0; but is not a relaxed
(constant-u) state because w has a negative value, with delta-
function dependence, in the current sheet.

The fields for the general case of a rectangular boundary
a x b are found using a flux function i, where B =

0y /0y, —oyr/dx, ur), so (6) leads to
V2 + puly = 0. (7

The boundary condition is ¢ = 1, = constant on the
boundary, where ,, which is effectively a normalization
constant for the fields, must be non-zero. With the choice
B, = py made above, with the allowable arbitrary constant
set to zero, this is equivalent to requiring non-zero toroidal field
on the boundary. (For ¥, = 0, the only non-trivial solutions to
(7) are spheromak-like solutions for discrete eigenvalues of u,
which are not relevant to spherical tokamaks). Following [32]
and [31], the solution is expressed as

v = wb[l +3 i sin (m;”) sin (?)} 8)
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Figure 5. Poloidal fieldlines for initial and final states for the
relaxation model of merging; distances are normalized with respect
to the width a. The initial field (left) has wja = 1.25. The final field
(right) has pra = 0.782. In both cases, there is also a toroidal field
(Bz = py), so that closed poloidal flux contours correspond to
twisted magnetic flux ropes.

which automatically satisfies the required boundary condition.
Substitution into (7) gives

Z m*n?  nlm? ) a sin (mnx)
az b2 /’L nm a
m,n
nm
X sin (Ty) = —u’ ©)]

using the orthogonality of the eigenfunctions, sin(mmx/a)
sin(nmy/b), within the summation then yields

16>

, , n odd;
mnal[m2(m2ja? +n2 ) — 2] ot

Amn =
(10)
(11)

see also [33]. Results are presented in dimensionless form
with lengths scaled with respect to a. We also normalize so
that the toroidal flux ¢, = [ 4 B dxdy = 1 (thereby ensuring
conservation of flux during the relaxation process described
below), so that v is a function of w. It should be noted
that, with this normalization, ¥, and all related quantities
such as energy and helicity, diverge as u approaches the first
eigenvalue of (7) [32, 34]; however, since we are interested here
in tokamak-like magnetic configurations with strong toroidal
fields, this occurs outside the relevant parameter range.

The fields from (8), (10) are used both to represent the
individual flux ropes in the initial state (with b = a) and the
single relaxed state (with b = 2a). The final value of pu,
WUs, is determined from the initial value by the constraint that
helicity, K, and total toroidal flux are conserved (where the
dimensionless total toroidal flux initially is 2, because of the
two flux ropes). A root-finding process is used to find ¢ so as

amn =0, for m or n even;

to conserve K /®2. The helicity is given by

K:fA~BdV, (12)
v
where we fix A, = 0 on the boundary so that the gauge-
correction term arising from the flux through the torus [35]
vanishes. It can be shown that this is related to the total
magnetic energy, W, by

K =2uoW/n — v @y, 13)

where the energy (per unit length) is obtained by integration
of the fields, as

aby?
W(w; a,b) = Y
210

2 2.2 22 2

) a,, (mm° n°m 2\ | 8amnit

X + +—+ +
# Z 4 ( a? b? M) wimn i|
m,n odd

(14)

where (1, a, b) is given by the normalization &; = 1 (and
o = 1 in dimensionless units).

3.2. Relaxation results

A typical relaxed state is shown in the right-hand panel of
figure 5. Note that this represents the post-merging state,
and is indeed very similar to the final states of the numerical
simulations as shown in figure 2.

The energy released during relaxation is calculated as
AW = W; — W where the initial energy W; = 2W (ui; a, a)
and the final energy is Wy = 4W (uy; a, 2a) (the factors 2 and
4 are to account for, respectively, two flux ropes with &, = 1
initially, and a single flux rope with ®; = 2 finally. In figure 6,
the final value of u is plotted against the initial value, as well
as the non-dimensionalized energy release AW.

Since the toroidal plasma current is Iy = u®, figure 6
may also be interpreted, re-scaling the axes by the appropriate
w values, as showing the dependence of final plasma current
on initial current (in one flux rope). However, the initial
state also includes a current sheet, and in order to calculate
the toral initial plasma current, we must add the (negative)
net current in this sheet, which may be simply obtained as
It,cs = _(2/MO) ngx(xa 0) dx.

It can be shown analytically that for small u;, AW ~ ,uiz,
us ~ pi. Hence the final plasma current depends linearly
on the initial current; whilst the energy release depends
quadratically on ;. The dependence of puf on w; shown
in figure 6 appears as a straight line, but the scaling is in
fact stronger than linear; for larger w;, approaching the first
eigenvalue, the linearity clearly breaks down.

As shown in section 2, the magnetic energy released
by reconnection may both heat the plasma and drive plasma
flows—but the latter may also be dissipated to provide further
heating. We obtain an estimate (strictly an upper bound)
on the temperature increase—here simply within single-fluid
MHD—by assuming that the released magnetic energy is
converted fully into thermal energy. For illustration with
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Figure 6. Final ;© = ¢ (solid curve) and energy released, AW
(dashed curve), as a function of the initial value u; (dimensionless
units), for the relaxation model.

typical MAST parameters, we take ¢ = 0.4m and B, =
05T = & = 0.08Wb. Taking uj = 1.25 gives I =
—0.625 (here, an asterisk denotes dimensionless quantities),
leading to a total initial plasma current of 300 kA, compatible
with experiment and the modelling described above (but with
somewhat larger currents in the plasma rings). The energy
release is AW* = 0.0022, which, equating to the thermal
energy (3/2)(2n)kT(2a2) gives a temperature rise of about
150eV, which is compatible with what is experimentally
observed—of course, the relaxation model cannot predict any
spatial distribution of temperature. Note that the temperature
increase depends (to a very good approximation) quadratically
on y; and hence on the initial plasma current and on the pre-
merger poloidal field, in agreement with experiment [15].

3.3. Comparison of relaxation model with numerical
simulations

As noted above, the relaxation model captures the self-
organization of two flux ropes into a single one, and the
predicted relaxed state is in very good qualitative agreement
with the final state of the simulations (comparing final panels
of figures 2 and 5). As a further test, we calculate the time
evolution of magnetic helicity (see equation (12) as well as
the magnetic, kinetic and internal energies, in the resistive
MHD simulation simialr to that described in section 2. This is
shown in figure 7. The helicity is indeed subject to global
resistive diffusion and decays, as expected; however, the
helicity evolution is seen to be insensitive to the dynamics of the
reconnection and shows no sign of the ‘sloshing’ oscillations
which are evident in the energy traces. The energy traces
show that the reconnection causes an increase in kinetic energy
(associated with reconnection outflows), while the magnetic
energy falls. The semi-oscillatory nature of the reconnection

is clearly seen in all the energy traces, but most clearly in the
kinetic energy. Note also that, in agreement with the relaxation
picture, the kinetic energy eventually falls to a very low value,
so that most of the dissipated magnetic energy is converted into
thermal energy.

The drop in normalized helicity, about 1.2 x 1073, is
somewhat lower than the corresponding drop in magnetic
energy, 6.0 x 1073, This is an indication that the magnetic
energy release due to reconnection is not strongly dominating
over the dissipation due to global Ohmic diffusion. In
simulations with multiple reconnection sites, where dissipation
due to reconnection is dominant, the disparity between energy
and helicity dissipation is much greater [30]. Nevertheless,
the relaxation picture still captures the essential features of the
final state and the energy conversion. We would also expect
the resistive dissipation of helicity to be far lower in more
highly-conducting plasmas such as in the solar corona.

4. Conclusions

We have described two approaches to modelling the merging
of flux ropes in the MAST device. In both cases, the self-
organization through magnetic reconnection of two initial
flux ropes into a single flux rope is predicted. Resistive
MHD and two-fluid simulations using the HiFI framework,
in both 2D Cartesian and toroidal geometries, provide detailed
information about the dynamics of the reconnection process
and its dependence on the collisionality and other parameters.
A simple analytical model based on Taylor relaxation theory
captures some aspects of the self-organization, predicting
the final field state and the plasma heating for given initial
conditions.

The numerical simulations presented here are all in
2D. The relaxation model could in principle account for
a non-axisymmetric relaxed state, but this would only be
attained for far higher values of p than are relevant here
[26,27]. The twisted flux ropes have strong toroidal fields
(typically 5 times the poloidal field), and hence are very
unlikely to be subject to kink instabilities. The final state
of the simulations also has ¢ > 1 everywhere, indicating
stability. (Note that the stability will depend also on the
aspect ratio, which is larger for the initial individual flux ropes
than for the final state.) Nevertheless, there may be some
interest in considering 3D effects in future, particularly on the
post-merger evolution, where experimental results sometimes
indicate the development of non-axisymmetric structure.

One motivation for studying reconnection in MAST is the
relevance to astrophysical and space plasmas. In the solar
corona, reconnection occurs with dramatic consequences in
solar flares, as well as being likely to contribute to the overall
heating of the coronal plasma, and occurring frequently during
emergence of flux ropes from the interior. A comparison
between MAST and coronal parameters is shown in table 1.
Whilst the coronal value of the Lundquist number S, at least on
global scales, is very much larger than the MAST value, MAST
has a higher S than any other currently operating laboratory
reconnection experiment [15]. Coronal reconnection is widely
modelled using single-fluid MHD. However, the predicted
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Figure 7. Time evolution of normalized helicity and energies for the resistive MHD numerical simulation with n = 1073, u; = 1074,
nu = 0. (a) Helicity. (b) Magnetic energy. (c) Thermal energy. (d) Kinetic energy.

Table 1. Table showing comparison of typical values for
magnetohydrodynamic variables, dimensionless parameters,
non-MHD (two-fluid and kinetic) scales, and current-sheet
parameters.

MAST

Quantity Solar flare merging-compression
Typical values
Global length L~10"m L=1Im
Ion species Hydrogen Deuterium
Magnetic B~001T B, =0.1T,Br=05T
Temperature T ~100eV T =10-1000eV
Density n~10"m™ n=>5x108m>3
Dimensionless
Plasma-f B=107*-102 By =10"*-1072,

B, =1073-10""
Lundquist number S =104 S =10+
Non-MHD
Ion skin-depth di=10m di = 14.5cm
Ion gyro-radius pi =0.1-1m pi = 0.15-1.5cm
Current-sheet
Sweet—Parker width  dgp = 1-10m Ssp = 0.03—1 cm
Ssp/d 0.1-1 0.002-0.07

length-scales of reconnecting current sheets in solar flares
are comparable with the ion skin-depth, provided that the
dissipation-scale is not anomalously enhanced: thus, Hall
terms (at least) should be included and the parameter regime
is quite similar to that described here.

Work is currently in progress to extend the two-fluid
simulations to include separate electron and ion temperature
distributions, which may be compared with Thomson

scattering measurements and ion temperature measurements,
where available. It is also planned to explore the effects of
changing the initial flux-rope currents. This modelling may
also be adapted to study other devices with merging flux ropes.

The relaxation-based model will be extended to toroidal
geometry in future. It will also be interesting to investigate
further the comparison between the simulation results and the
relaxation model, for example, by checking the scalings of
heating with plasma current predicted by the latter. It will be
particularly interesting to do this both for the resistive MHD
and the Hall cases. In the latter case, alternatives to the standard
Taylor relaxation approach should also be considered, with
additional invariants [36,37]. The relaxation model may also
be easily applied to astrophysical phenomena; in this context, it
would be interesting to consider merging and self-organization
of multiple flux ropes e.g. [34, 38], with implications for solar
coronal heating.
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