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An ab initio-based magnetic-cluster-expansion treatment developed for body- and face-centered cubic
phases of iron and iron-chromium alloys is applied to modeling the �-� and �-� phase transitions in these
materials. The Curie, Néel, and the structural phase-transition temperatures predicted by the model are in good
agreement with experimental observations, indicating that it is the thermal excitation of magnetic and phonon
degrees of freedom that stabilizes the fcc � phase. The model also describes the occurrence of the � loop in the
phase diagram of Fe-Cr alloys for a realistic interval of temperatures and Cr concentrations.
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I. INTRODUCTION

The occurrence of body-centered cubic �bcc� to face-
centered cubic �fcc� �-� and fcc-bcc �-� structural phase
transitions in pure iron, and the so-called � loop in the phase
diagram of Fe-Cr alloys, are the key physical phenomena
determining the manufacturing and processing routes, the
low- and high-temperature mechanical properties, and the
type of defect structures formed under irradiation in steels
developed for nuclear fission and fusion applications.1 Sur-
prisingly little is known about the microscopic origin of
these transitions, or about the factors determining the stabil-
ity region for the fcc phase �the � loop�, treated as a function
of temperature and Cr concentration. Hasegawa and Pettifor2

explained the transitions between bcc, fcc, and hcp phases of
pure iron by comparing the magnetic free energies evaluated
using the single-site spin-fluctuation theory of band magne-
tism. However, because their model neglected the short-
range magnetic order, the authors of Ref. 2 were unable to
predict correctly the fact that the observed Curie temperature
for bcc � iron is lower than the temperature of the � to �
transition. Other authors3,4 modeled the structural transitions
using semi-empirical interatomic potentials, making no dis-
tinction between the magnetic and vibrational degrees of
freedom. A recent ab initio-based study of bcc iron below
T�-� �Ref. 5� provided estimates for the magnetic, electronic,
and vibrational contributions to the Helmholtz free energy.
Yet no attempt has succeeded so far in developing a self-
consistent first-principles-based treatment for the �-� and
�-� phase transitions in Fe-Cr alloys, which are the main
constituents of many industrial steels.

In this paper we show that an ab initio-parameterized
magnetic-cluster-expansion �MCE� model, combining the
cluster-expansion treatment of configurational alloy disorder
with a multidimensional symmetry-breaking Landau expan-
sion for transverse and longitudinal thermal magnetic fluc-
tuations and including, where necessary, the phonon free en-
ergy derived from experimental data, is able to predict the
characteristic temperatures for magnetic �Curie and Néel�
and structural phase transitions for a broad range of Fe-Cr
alloy compositions.

Predicting the occurrence of a phase transition requires
evaluating the free energies of competing phases and com-
puting their difference. For the case of the �-� bcc-fcc tran-

sition in iron, the difference between the free energies of the
two phases in the region where fcc Fe is stable is very small
�of the order of several meV�. To prove this, we estimate the
fcc-bcc free-energy difference using a three-point parabolic
fit. Noting that the free energies of the two phases coincide at
the �-� and �-� transition temperatures �T�-�=1185 K and
T�-�=1667 K, respectively6�, and estimating the difference
between the energies of the two phases at T=0 K from our
density functional theory �DFT� calculations as �E0
�100 meV /atom, we find that the fcc-bcc free-energy dif-
ference in the middle of the region of stability for the �
phase equals approximately −�E0�T�-�−T�-��2 /4T�-�T�-��
−3 meV /atom. Thermodynamic analysis of experimental
data predicts even smaller values, which are on the order of
−1 meV /atom.6,7

Theoretical studies of fcc �-Fe are mostly limited to ab
initio investigations of the rich variety of its electronic and
magnetic structures. Apart from the low-spin and high-spin
ferromagnetic states,8 fcc �-Fe exhibits a number of antifer-
romagnetically ordered phases. Herper et al.9 identified an
antiferromagnetic double-layer structure as the lowest-
energy collinear magnetic phase. The noncollinear magnetic
structures have the form of complex antiferromagnetic spin
spirals10,11 found experimentally in �-Fe precipitates embed-
ded in a Cu matrix.12 Neutron-diffraction data13 show that
antiferromagnetic order in �-Fe vanishes above 67 K. Fcc
�-Cr does not exist at ambient conditions but ab initio meth-
ods provide means for evaluating the energy difference be-
tween its fcc and bcc phases.14–17 The lowest-energy state of
fcc Cr is antiferromagnetic and the predicted fcc-bcc energy
difference lies in a range between 370 �Ref. 17� and 435
�Ref. 16� meV/atom.

This complexity of electronic and magnetic structures in-
creases further for the fcc Fe-Cr alloys, where ab initio data
are very scarce. Mirzoev et al.17 found that the enthalpy of
mixing is negative for the fcc phase in the entire alloy com-
position range. The available models for the � loop in the
phase diagram of Fe-Cr alloys do not go beyond relatively
simple thermodynamic estimates.17–19

II. MAGNETIC-CLUSTER-EXPANSION HAMILTONIAN

The MCE model20 is a magnetic symmetry-breaking ex-
tension and generalization of the cluster expansion �CE�
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approach.21,22 While CE only treats the configurational dis-
order in an alloy, and hence does not predict the occurrence
of the � phase in iron, an MCE Hamiltonian includes the
magnetic vector variables and describes the magnetic de-
grees of freedom for the atoms forming the alloy. It allows
the ground-state magnetic configuration to self-consistently
adjust, via magnetic symmetry breaking, to an atomic con-
figuration.

The MCE model is fundamentally different to recent
regular non-symmetry-breaking parametrizations for the
magnetic energy, the so-called spin-cluster expansion23 and a
rotationally invariant representation of the magnetic energy
in terms of bilinear products of direction vectors of the
moments.24 The energy of an alloy configuration in the MCE
model depends on the discrete atomic CE occupational vari-
ables �i ��i=+1 for Fe and �i=−1 for Cr� and on the clas-
sical magnetic moments Mi of the constituent atoms. These
magnetic moments have variable direction and magnitude,
enabling MCE to describe the alloy in terms of its atomic
configuration and its corresponding magnetic state. The treat-
ment is also different from the Ising model,25 where mo-
ments have fixed magnitude, but is somewhat similar to the
1983 model by Hasegawa and Pettifor2 where the magnetic
moments also have variable magnitude and direction �up or
down�.

It is easy to see that in order to describe the energies of
atomic configurations in a magnetic alloy, it is essential to
treat magnetic moments as parameters that have variable di-
rection and magnitude. Ab initio calculations show that in
Fe-Cr alloys the magnitude of magnetic moments on Cr sites
varies between 0.2�B and 1.9�B, whereas the range of varia-
tion associated with Fe sites is even broader �the “length” of
the magnetic moments varies from 0.2�B to 2.3�B�, depend-
ing on the alloy composition and short-range atomic order.
Estimates based on the Stoner model26,27 show that the varia-
tion in magnitude of magnetic moments on the scale noted
above gives rise to the variation in magnetic energy on the
scale �200 meV /atom.

An MCE Hamiltonian is a sum of conventional “scalar”
CE terms, the self-energy symmetry-breaking magnetic
terms defining the magnitude of atomic magnetic moments,
and the intersite Heisenberg-type magnetic interaction terms.
The self-energy part of the Hamiltonian is given by a sum of
atomic-configuration-dependent Landau expansion terms
quadratic and quartic in Mi. In general, the Hamiltonian in-
cludes atomic clusters of any size. In the treatment devel-
oped here we retain only the two-atom clusters in both mag-
netic and nonmagnetic expansions

E���i�,�Mi�� = NI�0� + I�1��
i

�i + �
ij

Iij
�2��i� j

+ �
i
�A�0� + A�1��i + �i�

j

Aij
�2�� j	Mi

2

+ �
i
�B�0� + B�1��i + �i�

j

Bij
�2�� j	Mi

4

+ �
ij

�Jij
�0� + Jij

�1���i + � j� + Jij
�2��i� j�Mi · M j .

�1�

In this equation I�i� are the nonmagnetic CE coefficients, A�i�

and B�i� are the configuration-dependent Landau expansion
coefficients for the magnetic self-energy terms, and J�i� are
the magnetic interaction coefficients. Summation over i and j
involves atoms occupying the nearest-neighbor coordination
shells. The functional form of Eq. �1� guarantees that the
magnetic self-energy terms, and hence the directions and
magnitudes of magnetic moments Mi predicted by the
model, depend on the local environment of each atom in the
alloy.

The MCE parameters for pure fcc iron were fitted using
ab initio data on energies and magnetic moments for non-
magnetic, ferromagnetic, and several collinear antiferromag-
netic structures. Ab initio data were generated using Vienna
Ab Initio Simulation Package �VASP� in the generalized gra-
dient approximation with projected augmented wave
pseudopotentials.28 The calculations were performed for
spin-polarized configurations using the generalized gradient
approximations and verified by comparing the energies
found using the exchange-correlation functionals by Perdew
and Wang, and by Perdew, Burke, and Ernzerhof. The set of
MCE parameters for fcc iron includes three magnetic inter-
action coefficients J1NN

fcc �Fe-Fe�=J1NN
�0� +2J1NN

�1� +J1NN
�2� =

−0.650 meV, J2NN
fcc �Fe-Fe�=0.267 meV, and J3NN

fcc �Fe-Fe�
=0.233 meV, as well as the self-energy terms Afcc�Fe�
=A�0�+A�1�+12A1NN

�2� +6A2NN
�2� =−65.022 meV, and Bfcc�Fe�

=6.513 meV. The first nearest-neighbor magnetic interac-
tion coefficient favors ferromagnetic ordering whereas the
second and the third nearest-neighbor coefficients favor an-
tiferromagnetic ordering of moments. The set of MCE pa-
rameters for pure bcc iron20 involves only the first and the
second nearest-neighbor coefficients, both favoring ferro-
magnetic ordering, namely: J1NN

bcc �Fe-Fe�=−3.097 meV and
J2NN

bcc �Fe-Fe�=−2.426 meV, Abcc�Fe�=−148.35 meV, and
Bbcc�Fe�=18.876 meV.

Monte Carlo simulations were performed using bcc and
fcc cells containing in excess of 1.6�104 lattice sites. At
each Monte Carlo step, an attempt is made to vary the mag-
netic moment of a randomly chosen atom. Both the direction
and magnitude of vectors Mi are treated as variables. For the
case of Fe-Cr alloys, random alloy configurations were se-
lected for both bcc and fcc structures to simulate high-
temperature configurational disorder effects. The equilibra-
tion and statistics accumulation stages involved
approximately 4�104 Monte Carlo steps per atom. Despite
the fact that only the collinear magnetic structures were used
for fitting the MCE parameters of expansion in Eq. �1� to ab
initio data, the predicted lowest-energy magnetic structure of
fcc Fe was found to be noncollinear antiferromagnetic. The
energy of this configuration is by 0.5 meV/atom lower than
the energy of a collinear double-layer structure and by 17
meV/atom lower than the energy of a ferromagnetic configu-
ration. We note that it is difficult to derive the experimentally
observed incommensurate spin spiral configuration12 from a
generalized Heisenberg model.11

III. STRUCTURAL PHASE TRANSITIONS IN
Fe AND Fe-Cr

The magnetic part of the specific heat for bcc and fcc iron,
exhibiting peaks corresponding to magnetic order-disorder
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phase transitions, is shown in Fig. 1. In the limit of low
temperatures, our model predicts that the specific heat equals
3kB /2 for both the bcc and fcc phases. For fcc iron, the
magnetic specific heat is maximum at TN�50 K. The occur-
rence of this peak corresponds to vanishing antiferromag-
netic long-range order of magnetic moments at TN. The pre-
dicted TN is close to the observed Néel temperature of fcc
iron TN=67 K.13 The predicted Curie temperature of bcc
�-Fe also agrees with experimental observations. The mag-
netic specific heat is maximum at TC�1075 K,20 which is
only slightly higher than the observed Curie temperature
TC=1043 K. The calculated specific-heat data were fitted for
both systems using the expressions similar to those used by
Chen and Sundman6 in their comprehensive survey of ex-
perimental data, resulting in the following expressions
�shown in Fig. 1 as solid lines�:

Cmag
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T
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 50 K, �3�

where a1=1.1, a2=1.72353, �1=2.22531, �2=9.61649, b1

=0.33149, b2=1.11185, �1=2.1617, and �2=0.70687. Chen
and Sundman6 used for both phases the values of 3 and 7 for
the low- and high-temperature exponents, respectively. Com-
parison shows that our fit gives similar exponents for the bcc
Fe ��1 and �2�. The high-temperature exponent for the �-Fe
��2� in our simulations is much smaller than the one used by
the authors of Ref. 6. It should be noted that experimental
data on the specific heat of fcc Fe are not available and there
is no reason to expect that the exponents noted above should
be equal for the bcc and fcc phases.

The temperatures of the �-� and �-� transitions corre-
spond to the crossover points for the free energies of the
respective phases. The magnetic free energy is given by the
difference between the magnetic energy and entropy terms

Fmag
� − Fmag

� = Emag
� − Emag

� − T�Smag
� − Smag

� � , �4�

where the magnetic-entropy difference is evaluated using the
Nernst integrals for the magnetic specific heat. Numerical
integration was carried out by performing summation over
more than one hundred calculated points in the temperature
range 0–1900 K. The results were verified by integrating the
fitted curves �2–3�. The difference between the values found
using the two methods does not exceed 0.3 meV/atom in the
temperature range T�1200 K.

The phonon contribution to the free energy of bcc �-iron
was derived from experimental elastic constants measured
for the highest available temperature, 1173 K, at which bcc
iron remained mechanically stable.29 From elastic moduli we
deduce the three dominant force constants �1, �1, and �2.30

The resulting dynamical matrix is then diagonalized at 4.2
�107 points in an irreducible wedge of the Brillouin zone.
For fcc � iron we use a force-constants model31 derived from
experimental data on inelastic neutron scattering at 1428 K
and perform diagonalization of the dynamical matrix at 8.4
�107 points in an irreducible wedge of the Brillouin zone.

The �-� free-energy difference derived from MCE simu-
lations, and various terms contributing to it, are shown in
Fig. 2�a� as functions of temperature. We see that both the
magnetic and phonon excitations contribute to the free ener-
gies of the �, �, and � phases. The magnetic �-� energy
difference decreases monotonically in the entire temperature
range. Changes in the slope of the �Emag�T� curve at very
low temperatures and near 1000 K are related to the Néel and
Curie magnetic phase transitions in fcc and bcc Fe, respec-
tively. The difference between the energies of fcc and bcc
phases decreases by more than 100 meV/atom between the
Néel and the Curie temperatures. The magnetic entropy term
is responsible for the minimum of �Fmag�T�, and for its up-
ward trend at high temperatures. The temperature depen-
dence of the vibrational free-energy difference at tempera-
tures that are much higher than the Debye temperatures of
bcc and fcc Fe �473 and 324 K, respectively31,32� is almost
linear. By adding this contribution, we arrive at a function
�Ftot�T� that takes negative values over a certain temperature
range and hence exhibits the occurrence of two structural
phase transitions.

Figure 2�b� gives a magnified view of the high-
temperature part of the MCE free-energy curve. For com-
parison, Fig. 2�b� also shows the data derived from the ther-

FIG. 1. �Color online� The magnetic part of the specific heat for
bcc �black circles� and fcc �red circles� iron. Lines are fits to the
calculated data, see text.
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modynamic analysis of experimental observations.6,7 The
phase-transition temperatures predicted by the MCE model
are within 10% of experimentally observed values. For ex-
ample, we find T��

�MCE�=1315 K and T��
�MCE�=1795 K, com-

pared to T��
�exp�=1185 K and T��

�exp�=1667 K.6 The minimum
value for the fcc-bcc free-energy difference predicted by the
MCE model is close to −1 meV /atom, in agreement with
thermodynamics.

Applying MCE to Fe-Cr alloys requires parameterizing
the model to include Fe-Cr and Cr-Cr interactions. For fcc Cr
ab initio calculations predict almost identical energies for the
nonmagnetic and magnetic structures, and the difference be-
tween the energies of fcc and bcc chromium at T=0 K is
Efcc�Cr�−Ebcc�Cr�=403 meV /atom. Since the � loop only
occurs in the interval of low Cr concentration xCr
11.9 at. %, we fitted the MCE parameters to ab initio data
for three structures with xCr=0.0625 and xCr=0.125, as well
as to pure Cr, with predictive rms error for the energies of
�12 meV /atom. The magnetic interaction coefficients are
given in Table I. The self-energy magnetic terms for pure fcc
chromium are Afcc�Cr�=A�0�−A�1�+12A1NN

�2� +6A2NN
�2�

=0.828 meV, Bfcc�Cr�=5.226 meV, A1NN
�2� =2.884 meV,

A2NN
�2� =0.365 meV, B1NN

�2� =−0.123 meV, and B2NN
�2� =

−0.003 meV. The nonmagnetic-cluster-expansion coeffi-
cients for the first and the second nearest neighbors are
−3.624 and −3.638 meV, respectively.

For bcc Fe-Cr we use an improved MCE parameters fit,
compared to the one reported previously.20 The new fit does
not include the high-energy B2 crystal structure since the
interference effects in the electronic band structure for this
crystal configuration are not well described by a classical

MCE Hamiltonian. The parameters characterizing Fe-Cr
magnetic interactions were amended by using DFT data on
energies and magnetic moments for 14 Fe-Cr structures,
without revising the MCE parameters for pure Fe and Cr.
The rms predictive error for the energies of these structures
is �11 meV /atom. This can be compared, e.g., with the
predictive error of �7 meV /atom achieved for Fe-Cr in the
conventional cluster expansion, using a larger database of 74
input structures.22 The improved magnetic interaction param-
eters set, which predicts the maximum enthalpy of mixing
for a random Fe-Cr solution of 68 meV/atom at T=0 K, is in
agreement with CALPHAD �Ref. 33� and the earlier CE data.34

The numerical values of MCE parameters are given in Table
I. The self-energy magnetic terms for pure bcc chromium are
Abcc�Cr�=−59.898 meV, Bbcc�Cr�=56.694 meV, A1NN

�2� =
−4.652 meV, A2NN

�2� =4.601 meV, B1NN
�2� =0.201 meV, and

B2NN
�2� =−1.738 meV. The nonmagnetic-cluster-expansion co-

efficients for the first and the second nearest neighbors in bcc
Fe-Cr are −1.529 and −2.514 meV, respectively.

The temperature range of stability for � iron is well above
the top of the miscibility gap for bcc Fe-Cr. For fcc Fe-Cr
there is full miscibility at all temperatures. Assuming the
ideal configurational entropy for both phases in the tempera-
ture range corresponding to the occurrence of the � loop, we
write the free-energy difference �F�x�=Ffcc�x�−Fbcc�x� for
Fe1−xCrx alloy as

�F�x� = �1 − x��F�Fe� + x�F�Cr� + �Hmix�x� + �Fvibr�x� .

�5�

The dependence of the phonon free energy on the chro-
mium content for bcc Fe-Cr alloys was estimated from the
variation in the dominant force constants between pure Fe
and Fe0.7Cr0.3 observed in experiments on inelastic neutron
scattering.35 For fcc Fe-Cr, linear regression of experimental
data on elastic constants for several Fe-Cr-Ni alloys36 was
performed in order to estimate the dependence of elastic con-
stants and force constants on the chromium content.

The difference between the free energies of fcc and bcc
phases predicted by the MCE model is shown in Fig. 3. In
the limit of small chromium concentration and high tempera-
tures, the combination of negative �Hmix

fcc and positive �Hmix
bcc

stabilizes the � phase. The region where fcc �-Fe-Cr is more
stable than bcc �-Fe-Cr extends to 10.5% Cr, in agreement

TABLE I. Magnetic interaction parameters for Fe-Cr MCE
Hamiltonian �meV�.

Neighbor J�Fe-Fe� J�Fe-Cr� J�Cr-Cr�

Bcc 1NN −3.097 19.881 5.555

2NN −2.426 12.380 6.890

3NN 0 −0.266 3.432

4NN 0 −2.322 6.984

5NN 0 0 7.374

Fcc 1NN −0.650 1.022 −0.009

2NN 0.267 −0.956 0.065

3NN 0.233 0 0

(b)

(a)

FIG. 2. �Color online� Difference between the free energies of
fcc �-Fe and bcc �-Fe phases �Ftot=F�−F�, and its constituent
parts plotted �a� for the entire temperature range investigated in this
study and �b� for the �-� transition region.

LAVRENTIEV, NGUYEN-MANH, AND DUDAREV PHYSICAL REVIEW B 81, 184202 �2010�

184202-4



with the experimental phase diagram showing that the � loop
extends to 11.9 at. % Cr. For higher Cr concentrations, the
large positive �F�Cr� restabilizes the bcc � phase. The shape
of the � loop predicted by MCE is slightly different from the
shape observed experimentally, where at small Cr concentra-
tions the lower part of the � loop shifts down the temperature
axis. The exact position of the � loop is determined by the
concentration dependence of �Hmix�x�=Hmix

fcc �x�−Hmix
bcc�x� and

�Fvibr�x� �see formula �5�. Further improvement of the
MCE fit, especially for fcc Fe-Cr, and the vibrational free-
energy calculation as a function of alloy concentration, is
necessary to improve the agreement between the calculated
and experimentally observed shape of the �-loop region in
the T-x phase diagram.

IV. CONCLUSION

The MCE model reveals the microscopic physical origin
of structural phase transitions in iron at high temperatures.
The temperature variation of the two magnetic terms contrib-
uting to the free energy and shown in Fig. 2 exhibits oppos-
ing trends: the magnetic-energy difference decreases as a
function of temperature whereas the magnetic-entropy term
increases. When combined together, they result in a magnetic
free-energy curve that has a minimum at a temperature above
the Curie point. Adding the vibrational free-energy differ-
ence, which at these temperatures is an almost linear function
of T, we arrive at a curve that intersects the temperature axis
at two points, indicating the occurrence of �-� and �-� struc-
tural phase transitions. Since the difference between the free
energies of the two phases is very small, further improve-
ment in the numerical accuracy of the calculations is neces-
sary. For example, the model used in this work relies, in
addition to the MCE-based Monte Carlo simulations for the
magnetic part of the free energy, on experimental informa-

tion about the vibrational spectra of competing � and �
phases, which is only available for the nonoverlapping re-
gions of the phase diagram where each individual phase is
mechanically stable. There is a gap of approximately 250 K
between the highest temperature at which experimental mea-
surements of elastic constants for bcc Fe were performed and
the only point for which experimental data are available for
fcc Fe. Also, here we neglected the anharmonic contribution
to the vibrational free energies of both structures. We realize
that, given the small differences between the free energies of
the competing phases, even small changes in the vibrational
free energy could lead to either a large increase in the stabil-
ity region for fcc Fe, or to the complete disappearance of this
region. For example, by varying the elastic constants of ei-
ther of the two phases by one percent we find that the vibra-
tional free energy at T=1500 K changes by 2 meV/atom,
which is greater than the predicted �-� free-energy differ-
ence of 1.2 meV/atom. Future work is required to address
this phase stability problem by treating the vibrational dy-
namics of Fe and Fe-Cr alloy on equal footing with configu-
rational and magnetic properties of the system.

We conclude that the MCE model, which uses ab initio-
derived magnetic interaction and symmetry-breaking param-
eters, and experimentally observed values of elastic moduli,
is able to describe, at a quantitative level of accuracy, various
magnetic and structural phase transitions occurring in Fe-Cr
magnetic alloys. It appears possible, by relying only on the
zero-temperature ab initio data, to evaluate parameters de-
scribing thermal magnetic fluctuations in the alloy.

The model correctly predicts the occurrence of two struc-
tural phase transitions occurring below the melting point and
above the Curie temperature for pure Fe and for a range of
Fe-Cr alloy compositions. An important advantage of the
MCE model described in this paper is that it can be easily
generalized to other magnetic alloys, including alloys of
magnetic and nonmagnetic metals, such as Fe-Cr-V. The
symmetry-breaking Hamiltonian �1� can readily treat ions
with nonzero and zero magnetic moments by simply varying
the sign of the on-site Landau coefficient A. This flexibility
makes it possible to apply the MCE method to a broad range
of alloy compositions involving magnetic and nonmagnetic
atoms.

ACKNOWLEDGMENTS

We are grateful to J.-L. Boutard and D. G. Pettifor for
stimulating discussions. This work was funded partly by the
United Kingdom Engineering and Physical Sciences Re-
search Council under Grant No. EP/G003955 and the Euro-
pean Communities under the contract of Association between
EURATOM and CCFE.

FIG. 3. �Color online� Difference between the free energies of
fcc and bcc Fe1−xCrx alloys plotted as a function of chromium con-
tent xCr. The predicted � loop is shown in the inset.
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