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Theoretical Interpretation of Alfvén Cascades in Tokamaks with Nonmonotonic q Profiles
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Alfvén spectra in a reversed-shear tokamak plasma with a population of energetic ions exhibit a
quasiperiodic pattern of primarily upward frequency sweeping (Alfvén cascade). Presented here is an
explanation for such asymmetric sweeping behavior which involves finding a new energetic particle mode
localized around the point of zero magnetic shear.
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The presence of energetic particles in a plasma can
alter its behavior from that predicted by conventional
magnetohydrodynamics (MHD) theory in two ways.
First these particles can perturbatively destabilize a basic
MHD mode. Alternatively, a sufficient number of these
particles can nonperturbatively alter the very structure
of the MHD modes. This latter behavior is relevant to
certain shear Alfvénic perturbations often called energetic
particle modes (EPM) [1–3]. In addition, in recent years
there has been a great deal of interest in plasmas with re-
versed magnetic shear profiles, where transport and MHD
stability properties have been shown to improve [4,5].
It is important for fusion experiments in shear reversed
fields to understand the collective properties associated
with energetic particles. Experiments in JT-60U [6] and
JET [7] have investigated reversed shear regimes and have
produced energetic particles with ion cyclotron heating
(ICRH) [8]. Alfvén modes emerge in these experiments
but their spectrum is often puzzling. This paper presents
an example of how a purely MHD description is incom-
patible with the data while a description which accounts
for the nonperturbative energetic particle response explains
a large part of the data. The interpretation suggests a sen-
sitive method to experimentally determine qmin (the mini-
mum safety factor) in reversed magnetic shear tokamaks.

The JET experiments exhibit upward frequency sweep-
ing phenomena, named Alfvén wave cascades (ACs) [9]
(see Fig. 1a). Each cascade consists of several modes with
different toroidal mode numbers and different frequencies.
The toroidal mode numbers vary from n � 1 to n � 6.
The frequency starts from 20 40 kHz and increases up
to 100 120 kHz which is the toroidal Alfvén eigenmode
(TAE) gap frequency. Similar data were obtained some
time ago on JT-60U [6]. In both the JET and JT-60U data,
the modes with higher toroidal mode numbers exhibit a
more rapid frequency sweeping, and the higher n modes
re-occur more often than the lower n modes. It is striking
that downward frequency sweeping either does not appear,
or appears only rarely. In both JET and JT-60U experi-
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ments, the minimum value of q decreases in time and a
population of energetic ions is created by ICRH heating.

ACs resemble the global Alfvén eigenmode [10,11],
whose frequency is close to the local value of the Alfvén
wave frequency at the zero shear point in minor radius,
r � r0, i.e., 2pfAC � vA�r0� � jkk�r0�jVA�r0�, where
VA is Alfvén velocity and kk is the wave-vector compo-
nent along the equilibrium magnetic field B0. To avoid
strong damping, the frequency fAC needs to be somewhat
larger than vA�r0� if vA�r� has a maximum at r � r0 and
smaller than vA�r0� if vA�r� has a minimum there. Oth-
erwise, continuum resonance inhibits mode excitation by
a moderate population of energetic ions.

In the standard theory of the global Alfvén eigenmode,
the mode is associated with a minimum of the local Alfvén
frequency vA�r� [10,11]. However, from both analytic
considerations, and numerical calculations with the use of
ideal MHD CSCAS code [12] we infer that a maximum of
vA�r� is needed to explain the data. This conclusion fol-
lows from the local shear Alfvén wave dispersion relation
which is vA�VA � jkk�r�j � jn 2 m�q�r�j�R, where m is
the poloidal mode number. We impose the convention that
vA and n are positive, and positive m is required to allow
the mode frequency to be smaller than the TAE frequency,
fTAE � VA��4pqR�. It is readily established that vA�r0�
is a maximum at q � qmin when kk�r0� , 0 and a mini-
mum when kk�r0� . 0. We now assume that qmin decreases
in time as it does in the JET and JT-60U experiments.

If the modes in the experiment just trace the Alfvén
dispersion relation at q � qmin, and qmin decreases, the
frequency would increase in time when kk�r0� , 0 and
decrease in time when kk�r0� . 0. This pattern is shown
in Fig. 1b obtained from the CSCAS code that is applied
to a series of JET experimental equilibria. In these CSCAS
runs only the toroidal n number is a precise quantum num-
ber, while the dominant poloidal mode number m changes
in steps as qmin decreases in time. This code automatically
transfers the dominance of the mth poloidal harmonic to
m 2 1 as qmin passes through qTAE � �m 2 1�2��n to
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FIG. 1 (color). (a) Spectrogram of the magnetic perturbations,
measured by the external Mirnov coils in JET plasma with non-
monotonic q�r� (pulse No. 49382). Alfvén cascades of toroidal
mode numbers from n � 1 through n � 6 are observed at fre-
quencies below TAE frequency range, fac � 30 100 kHz ,
fTAE. The vertical legend color codes the quantity n 1 8.
(b) The CSCAS analysis of temporal evolution of the normalized
frequency vA�r0�R�VA at q � qmin as qmin�t� varies. Mode
numbers plotted are n � 1 (green), n � 2 (blue), and n � 3
(red). Solid curves indicate local maxima of the Alfvén con-
tinuum, broken curves indicate local minima of the Alfvén
continuum.
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keep the mode frequency below the gap associated with the
TAE frequency. It is also clear that the Alfvén continuum
modes in Fig. 1b form bunches when qmin takes on integer
values such as 3, 4, and 5. In the experiment the emerging
modes also appear in bunches.

It is important to note that the transition from m to
m 2 1 changes the sign of kk�r0�, which reverses the
direction of frequency sweeping. However, the modes
with downward sweeping are suppressed in the experi-
ment. Thus a mechanism is needed that gives preference
to the waves with negative kk�r0�. The only way we have
found to explain the asymmetry is to describe the fast par-
ticles response in a nonperturbative manner. This means
that the fast particle contribution to the MHD equations
affects the very existence of the mode rather than just the
mode growth rate. We have also examined other candi-
date mechanisms. They all give preference to waves with
positive kk�r0�, which is inconsistent with the experiment.

Technically, the following feature of the deeply reversed
shear discharges in JET is essential for our interpretation:
the fast particle =B drift rate across the mode structure is
faster than the bounce frequency or the mode frequency
v. As a result of fast drift, the hot particle response is
found to be spatially local, which simplifies our analysis
considerably. In this aspect, our theory is substantially
different from past theories for the EPM which deal with
the nonlocal hot particle response [1,2].

For a typical energy of fast ions �500 keV, and with
other plasma parameters chosen to be compatible with the
relevant equilibrium, the fast particle orbits are found to
be nonstandard. Indeed, our numerical calculations with
the particle-following code HAGIS [13] and the CASTOR-K

code [14] show that the toroidal drift frequency exceeds
the poloidal bounce frequency and the orbit width is a
substantial fraction of the plasma radius. These features
make it easy to satisfy the condition that the =B drift
frequency exceeds the eigenmode frequency for high n
values, and marginally for n � 1.

Our formal derivation of the relevant energetic particle
mode is based on the reduced MHD description of shear
Alfvén perturbations and the drift kinetic description of
energetic particles. We consider a low-beta plasma in a
large-aspect-ratio torus, for which the perturbed vector po-
tential dA and the perturbed fields dE and dB for the
shear Alfvén wave can be represented by a single scalar
function in the following forms: dA � =dF 2

B
B2 �B ?
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1
c
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≠t , and dB � = 3 dA, where B is

the equilibrium magnetic field. The equation for dF fol-
lows from a derivation procedure presented in Ref. [15],
from which we find
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where dF is the force density due to the perturbed anisotropic pressure that can be calculated with the use of the kinetic
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guiding center theory [16]. It was shown in Ref. [15] that
the following relation holds for dF in Eq. (1) in the limit
of low beta and large aspect ratio:

2= ?
1
B2 �B 3 dF	 �

e

c

Z
d3y �yD ? =df� . (2)

Here e is the energetic particle charge, yD is the mag-
netic field gradient and curvature drift velocity, and the
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gradient = operates on the perturbed distribution func-
tion df with energy w and magnetic moment m held
fixed. Equation (2) generally involves summation over all
species, but we will keep only the response from the ICRF
heated energetic ions since one can show that the contri-
bution from the background plasma pressure is relatively
small in our ultimate eigenmode equation.

In order to evaluate the right-hand side of Eq. (2) we use
the linearized drift kinetic equation neglecting equilibrium
electric fields,
≠df
≠t
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with w � my
2
k�2 1 mB, yD � b 3 �m=B 1 my

2
k �b ?

=�b	�mV, and yE3B � c
B2 dE 3 B. Further V is the

fast particle gyrofrequency, and the symbol d denotes
a perturbation of a quantity. Note that the integrand in
Eq. (2) is exactly the third term on the left-hand side of
Eq. (3). We will limit our consideration to the case of
sufficiently fast drift velocity yD, as discussed in the in-
troduction. Then the third term in Eq. (3) is the only term
involving df that need be retained. This simplification
will lead to a differential equation rather than an integral
equation for determining dF. For the JET experiment un-
der consideration this approximation is marginally good at
n � 1 and improves for larger values of n. Further simpli-
fications occur when we use b ? dB � 0 and b ? dE � 0
for shear Alfvén perturbations. We also take into ac-
count that

yk
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≠dB
≠t 	 ? =f ø

yk

B dB ? =f since
the mode frequency is much smaller than the gyrofre-
quency. In addition, we neglect dyD ? =f. Then, with
the elimination of some other small terms Eqs. (2) and
(3) yield
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where we have transformed independent variables in the distribution function from r, m, and w to r, yk, and y�.
Equations (1) and (4), together with dE and dB lead to a single equation of a form, bLdF � 0, where bL is a linear
differential operator. In a torus, this operator is a periodic function of poloidal angle u. Therefore, poloidal Fourier
components of dF are generally coupled in the solution of this equation. However, in the case of nonmonotonic q profile
in the presence of energetic particles the construction of essentially “cylindrical” modes is allowable if their frequencies
are not too close to the TAE gap frequency. Formally, this means that we average all coefficients in bL over u. We then
seek a cylindrical solution of the form dF � c�r� exp�2ivt 1 inw 2 imu�, where w is the toroidal angle and c�r� is
the radial eigenfunction. A straightforward averaging procedure with the added assumptions of m ¿ 1 and large aspect
ratio equilibrium with circular flux surfaces, gives the following equation for c�r�:
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where the subscript “h” denotes fast particles and the an-
gular brackets denote flux surface averaging. The parallel
wave number, kk �

1
R �n 2

m
q�r� �, can be expanded about

the point r � r0 where q � qmin (the point of zero shear).
In the vicinity of r0, we have
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We assume that this expression for kk is accurate over
a region Dr where the mode is localized. Thus we
require �Dr�2 , jnqmin 2 mj
qmin

mq00
min

. We can then re-
place v and kk on the right-hand side of Eq. (5) by the
lowest order expressions, v � vA � VA

R jn 2
m
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j and

kk �
1
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�, respectively. Then defining the dimen-
sionless radial independent variable x � m�r 2 r0��r0
and a new dependent variable C�x� � c�x� �S 1 x2�1�2,
we obtain,
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It should be noted that the eigenvalue S has to be positive
to avoid singularity in C�x� that would induce strong con-
tinuum damping. However, with Q neglected, a positive
S does not give a radially localized eigenmode. To obtain
one, a positive Q is required that exceeds a certain critical
value Qcr. Indeed, if Q is negative or zero, a “Schrödinger
potential well” does not exist in Eq. (7).

An analysis of Eq. (7) establishes that Qcr � 1�4 and
that there is an infinite number of modes for Q . Qcr.
Approximate analytic solutions can be obtained for
Q 2 Qcr ø 1 and Q ¿ 1 and in between Eq. (7) has
been solved numerically. The detailed analysis and
results will be presented in a later publication. Here
we note that if Q 2 Qcr ø 1, the value of S is given
by S � exp�22lp��Q 2 1�4�1�2	 where l is a positive
integer, while if Q ¿ 1, we find S � Q 2 �2l 1 1�Q1�2

(assuming the second term much less than the first term).
For Q � 1, the numerically evaluated eigenvalue is
S � 0.1003 for the longest wavelength mode. Note that
S is relatively small even for Q � 1. The scale length
of the longest wavelength mode is Dr � S1�2r0�m for
S ø 1 and Dr � Q1�4r0�m for Q ¿ 1. We expect that
dissipative processes will suppress the short wavelength
modes with Q 2 Qcr ø Qcr, which may require Q * 1
to allow the energetic particle drive to excite these modes
in the experiment.

We now make additional remarks about experimental
implications of our calculations. We have concluded that
in order for the frequency to sweep upward we need m .

nqmin and that to have the mode we need Q . 1�4 (though
in practice a larger Q value is required). There is strong
bias in the expression for Q that favors ≠
nh��≠r , 0
near r � r0 in order to meet the above two requirements.
Then the frequencies of the allowed modes �m . nqmin�
increase as qmin decreases in time, whereas the condition
for frequency decrease �m , nqmin� is incompatible with
mode existence. Further, we note that Qcr is independent
of m and n, a very satisfying result as many modes are
characteristic for Alfvén cascades.

Once the existence of a mode is established, the mode
growth rate, associated with resonant energetic particles,
can be calculated with the use of straightforward pertur-
bation theory. Also, the weakly nonlinear regime of mode
saturation can be straightforwardly analyzed.

In summary the energetic particle mechanism described
here is the only viable option we find to explain the
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observed Alfvén cascades. We conclude that the emerging
bunches at times t � 2.2 s, 2.8 s, and 3.7 s arise when
qmin is 5, 4, and 3, respectively. One can see the n � 1
mode emerging at these times together with higher n
modes. The n � 2 mode has an extra appearance between
the n � 1 bursts, and the n � 3 mode has two addi-
tional appearances between the n � 1 bursts, etc. Our
identification of qmin correlates with the time behavior of
the upper cascade frequency, which is close to the TAE
frequency VA�4pRqmin.
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