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Magnetic and thermodynamic properties of
face-centered cubic Fe–Ni alloys

M. Yu. Lavrentiev,* J. S. Wróbel, D. Nguyen-Manh and S. L. Dudarev

A model lattice ab initio parameterized Heisenberg–Landau magnetic cluster expansion Hamiltonian span-

ning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has

been developed for face-centered cubic Fe–Ni alloys. The thermodynamic and magnetic properties of the

alloys are explored using configuration and magnetic Monte Carlo simulations over a temperature range

extending well over 1000 K. The predicted face-centered cubic–body-centered cubic coexistence curve,

the phase stability of ordered Fe3Ni, FeNi, and FeNi3 intermetallic compounds, and the predicted

temperatures of magnetic transitions simulated as functions of alloy composition agree well with

experimental observations. Simulations show that magnetic interactions stabilize the face-centered cubic

phase of Fe–Ni alloys. Both the model Hamiltonian simulations and ab initio data exhibit a particularly

large number of magnetic configurations in a relatively narrow range of alloy compositions corresponding

to the occurrence of the Invar effect.

1. Introduction

Developing structural materials that retain their engineering proper-
ties over extended periods of time at high temperatures and high
radiation dose is one of the major challenges for fusion and fission
materials science and technology. Developing simulation algo-
rithms for modelling such materials, particularly steels, is one of
the objectives of the European fusion programme.1 Face-centered
cubic (fcc) Fe–Ni–Cr based austenitic steels retain good engineering
strength at high temperatures, making them attractive candidate
materials for fusion and advanced fission technology. In particular,
austenitic 304 and 316 steels are used as structural materials for
light water and fast breeder fission reactors. These steels contain
about 10 at% Ni and 20 at% Cr,2,3 so that any methodology for
modelling such steels should in the first place be able to model
ternary Fe–Ni–Cr alloys in the composition range where neither of
the constituent elements can be treated as impurity. An extra factor
that must be taken into account when modelling iron-based alloys
and steels is the fact that the phase stability of iron-based alloys is
controlled by magnetism, for example, magnetism stabilizes the
ferritic body-centered cubic (bcc) phase of pure iron under ambient
conditions. The existing theoretical treatments of the phase diagram
of the Fe–Ni system are based on interatomic interaction poten-
tials4–7 and so are unable to describe magnetic phase transitions in
that system.

Magnetic Cluster Expansion (MCE) simulations of Fe–Cr
alloys8–11 showed that a model based on an ab initio parameterized

Heisenberg–Landau MCE Hamiltonian was able to describe a
broad range of magnetic and structural transformation effects
in bcc iron-based magnetic alloys. This has prompted us to
develop an MCE parameterization for fcc Fe–Ni alloys as a step
towards the treatment of ternary Fe–Ni–Cr alloys. The phase
diagram of binary Fe–Ni alloys12 shows that the solubility of Ni
in bcc iron is very low, as opposite to the high solubility of Ni
in fcc Fe, where the two species are fully soluble in the entire
range of concentrations at high temperature. Hence a realistic
MCE Hamiltonian should be expected to be able to describe
the miscibility gap between fcc Fe–Ni, bcc Fe and bcc Fe–Ni.
Another important feature of the phase diagram is the
presence of an ordered L12 structure with FeNi3 composition.
Also, the possible occurrence of ordered FeNi and Fe3Ni
compounds (the first of which was found in meteorites13–15)
should be explored.

This paper is organized as follows. In Section 2, we para-
meterize the Heisenberg–Landau MCE Hamiltonian for the
fcc Fe–Ni alloy. The magnetic properties of pure fcc iron and
nickel and their solid solutions are investigated in Section 3,
and the phase diagram of the system is explored in Section 4.
We summarize the results of our study and conclude in
Section 5.

2. Parameterization of magnetic
cluster expansion

The main principles of MCE are described in ref. 8, 9 and 16.
The complete functional form of the Heisenberg–Landau
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Hamiltonian used for MCE simulations is:
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Here, spin-like variables si refer to the chemical nature of an
atom occupying lattice site i and take values +1 for Fe and �1
for Ni. The Is are the non-magnetic cluster expansion coeffi-
cients; parameters As and Bs represent Landau coefficients for
the quadratic and quartic magnetic self-energy terms, respec-
tively, which depend on the local environment of each atom;
and Cs and Ds are, respectively, the 6th and 8th order coeffi-
cients which we have chosen to be independent of the environ-
ment. A reason for extending the on-site Landau expansion to
the 8th order in magnetic moment is discussed below. The Js
are the inter-lattice-site Heisenberg magnetic interaction para-
meters. The functional form of the MCE Heisenberg–Landau
Hamiltonian (1) guarantees that the magnetic self-energy
terms, and hence the directions and magnitudes of atomic
magnetic moments Mi predicted by the model, depend on the
local environment of each atom in the alloy. Hamiltonian (1) is
based on the undistorted rigid lattice approximation, which is
valid for Fe–Ni alloys where the atomic radii of the two
elements are similar (see, e.g., Table 1 in ref. 17). We note that
the functional form of Hamiltonian (1) involves the Landau
expansion for magnetic self-energy that is extended beyond the

quadratic and quartic terms. Below we show that such an
extension is actually necessary for the treatment of magnetic
properties of fcc Fe–Ni alloys.

Whereas Hamiltonian (1) can be parameterized in several
different ways, still the search for a suitable set of Landau and
Heisenberg parameters always begins by selecting a set of
ordered structures, the energies and magnetic moments of which
are calculated ab initio. In the fcc Fe–Ni alloy case, a set of
29 binary configurations was investigated by ab initio density
functional theory (DFT) calculations, together with the two limiting
cases of pure fcc iron and fcc nickel. Spin-polarized DFT calculations
were performed using the projector augmented wave (PAW)
method18 implemented in the VASP package.19–21 Exchange–
correlation was treated within the generalized gradient approxi-
mation GGA-PBE.22 The total energies and magnetic moments
were calculated assuming the plane-wave cutoff energy of
400 eV and a k-point mesh with spacing of 0.26 Å�1.

An ab initio investigation of ferromagnetic fcc iron shows the
occurrence of two, so-called high-spin and low-spin magnetic
states. The high-spin configuration is slightly more energetically
favourable than the low-spin one. However the difference is of
the order of B10 meV per atom, with the result that both
configurations contribute equally significantly to finite tempera-
ture magnetic properties. The occurrence of high- and low-spin
magnetic configurations in the ground state of the alloy cannot
be accounted for by a Landau-type Hamiltonian involving only
the quadratic and quartic terms, since such a functional form of
the Hamiltonian exhibits only one minimum as a function of the
magnitude of the magnetic moment vector. In order to describe
both the high- and low-spin magnetic configurations of fcc Fe, it
is necessary to include terms up to the 8th order in magnetic
moment in the Landau expansion. We use DFT data to fit the
energy of pure fcc ferromagnetic Fe as a function of magnetic
moment. Fig. 1 shows that an 8th order magnetic moment
Landau expansion agrees well with ab initio results, replicating
the correct difference between the energies of low-spin and high-
spin magnetic configurations. For consistency, the Landau
expansion (see Hamiltonian (1)) was extended to the 8th order
term also for the nickel atoms.

Before discussing how to fit interaction parameters I and J, it is
important to note that in our implementation of the MCE they are
independent of the volume of the system. It is well established
that the magnetic properties of Fe–Ni alloys strongly depend on
both volume and alloy composition.23,24 The parameters of the
cluster expansion method developed by Sanchez et al.25 either can
be concentration- and volume-dependent, or can be fitted to the
equilibrium (volume-relaxed) quantum-mechanical energy and be

Table 1 Magnetic Heisenberg interaction parameters Jsi sj
and non-magnetic interaction parameters I (in meV) fitted to ab initio data and used in MCE

simulations

JFe–Fe JFe–Ni JNi–Ni I

1st nearest neighbour �0.793072 1.515864 �13.153009 �13.30043
2nd nearest neighbour �10.827175 �2.709532 7.227536 6.902392
3rd nearest neighbour 0.546719 �2.500082 �5.604799 0.208886
4th nearest neighbour 2.305911 1.649425 �6.744045 �1.160406
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volume-independent. The two approaches are equivalent and
their choice is a matter of convenience.25,26 For example, a recent
non-magnetic cluster expansion study of Fe–Ni, Fe–Pd, and Fe–Pt
by Barabash et al.,27 based on volume- and concentration-
independent parameters, resulted in a successful prediction of
several previously unknown stable structures of those com-
pounds. One of those structures, the Z1 Fe3Ni superlattice, was
found to be more stable than the L12 structure, as was noted
previously (we discuss those phases below, see Section 3.3). In our
work, we use volume-independent interaction parameters
obtained from fully relaxed ab initio calculations. Also, the
concentration dependence of our MCE implementation is partly
described by the on-site Landau terms A and B in Hamiltonian (1),
since these terms depend on the local environment of each atom.

In an earlier MCE study of bcc–fcc transitions in Fe and Fe–Cr
alloys, we showed that extending the range of Heisenberg inter-
action parameters to the third nearest neighbour was sufficient
for modelling magnetic configurations in pure fcc iron.9 When
fitting the Heisenberg parameters to the Fe–Ni system, we found
that it was necessary to extend the range up to the fourth nearest
neighbour in order to describe the Ni–Ni and Ni–Fe interactions.
Hence, to retain consistency, we decided to extend the range of
magnetic and non-magnetic parameters to the 4th nearest neigh-
bour for the Fe–Fe interactions as well. For each of the 29 ordered
configurations, as well as for pure nickel and iron, the ab initio
energy data (including, for pure iron, several ferro- and antiferro-
magnetic configurations) were used to evaluate a trial set of MCE
parameters. Also, the derivatives of the MCE energy with respect
to magnetic moments were calculated numerically. The sum of
squares of deviations of MCE predictions from the DFT data,

S ¼
X
m

am EDFT
m � EMCE

m

� �2 þX
m

bm
X
n

@EMCE
m

@Mn

� �2
(2)

was taken as a measure of goodness of an MCE fit. Here, the index
m numbers structures, and the index n runs through all the atoms

in an ordered structure m. The above equation includes both the
differences between the MCE and DFT energies, and also a measure
of deviation of the position of the energy minimum predicted by
MCE from its DFT minimum value, characterized by the sum of
squares of derivatives of the MCE energy with respect to atomic
magnetic moments. The coefficients am and bm were adjusted during
the fitting procedure to reflect contributions of various configura-
tions to the fit and are, in general, chosen to be larger for the lower
energy configurations. The values of magnetic Heisenberg inter-
action parameters J and the non-magnetic interaction parameters I
derived using eqn (2) are given in Table 1, and the on-site Landau
expansion coefficients A, B, C, and D are given in Table 2. DFT and
MCE energies of mixing for the structures included in the fit are
compared in Fig. 2. The mean square deviation of ab initio energies
from those predicted by MCE is 12 meV.

Monte Carlo simulations of pure Fe and Ni and Fe–Ni alloys
were performed as follows. The simulation box contained 16 384
atoms (16 � 16 � 16 fcc unit cells, each containing 4 atoms). For
the chemically ordered structures, at each Monte Carlo step a
trial random change in magnetic moment of a randomly chosen
atom was attempted and accepted or rejected according to the
Metropolis criterion. Both the thermalization and accumulation
stages included 40 000 attempts per atom. For the low tempera-
ture cases and complex magnetic structures of pure iron, simu-
lations involving 130 000 attempts per atom were also performed
to ensure that the system has reached equilibrium. For the case of

Fig. 1 Comparison of DFT (points) energies of ferromagnetic fcc Fe plotted
as a function of magnetic moment and the MCE Landau expansion (line),
which includes terms up to the 8th order in atomic magnetic moment.

Table 2 On-site Landau expansion terms (in meV) used in MCE simula-
tions. Numbers 0, 1, and 2 stand for the lower index; (1NN), (2NN), and
(3NN) stand for the upper index in the Hamiltonian (1)

0 1

2

(1NN) (2NN) (3NN)

A �66.931806 �15.682389 3.38505 3.656047 0.794464
B 245.865553 �213.470278 0.10439 �0.2039 �0.140469
C �10.149505 3.655495
D 9.614085 �9.185915

Fig. 2 Comparison of DFT and MCE energies of mixing for the alloy
configurations used for fitting the MCE Hamiltonian.
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random structures, we used two types of simulations. The first was
similar to the one used for the ordered alloys, but with random
configurations corresponding to a given Fe and Ni content. In
comparison with ab initio calculations, where the relatively small
size of the simulation cell requires using special quasi-random
structures (SQS) (see, e.g., ref. 28), large-scale Monte Carlo simula-
tions can be performed by choosing random configurations for the
two types of atoms. In order to verify the results, several compar-
isons with other random structures were made by changing the
seed of the random number generator. Thermodynamic data
obtained in this way correspond to a completely random system
and are hence characterized by the known value of configurational
entropy.

Sconf = kB(xFe ln(xFe) + (1 � xFe)ln(1 � xFe)) (3)

Another approach is the exchange Monte Carlo, in which trial
changes in magnetic moment are combined with attempts to
exchange two randomly chosen atoms of different species. This
approach was previously successfully used in Monte Carlo
simulations based on interatomic interaction potentials,29–32 as
well as on the non-magnetic cluster expansion.33 It gives reliable
results for the enthalpy of mixing, but the configurational
entropy and thus the free energy of mixing is difficult to evaluate.
By comparing the enthalpies of mixing obtained using the two
approaches, we estimate how significantly a given configuration
of the alloy deviates from a completely random mixture.

3. Magnetic and thermodynamic
properties
3.1 Magnetism of pure Fe and Ni

For pure fcc iron, the first and second nearest-neighbour Heisenberg
magnetic interaction parameters favour ferromagnetic ordering
of moments, whereas the third and the fourth favour antiferro-
magnetic ordering (see Table 1). An interplay between these
interactions results in that the lowest-energy magnetic configu-
ration is non-collinear antiferromagnetic. The energies of
several magnetic configurations of fcc iron are shown and
compared with DFT results in Table 3. The predicted non-
collinear magnetic ground state agrees with the findings
derived from our MCE study of bcc–fcc transitions in Fe and
Fe–Cr alloys,9 even though the set of MCE parameters used here
is different from that used in ref. 9. Non-collinear antiferro-
magnetic ordering of magnetic moments was experimentally

discovered at low temperatures in fcc Fe precipitates embedded
in a Cu matrix.34,35 Non-collinear magnetism is realised in magnetic
materials with competing magnetic coupling parameters, where
magnetic interactions are comparable in terms of their magnitude
and change sign as a function of interatomic distance. In earlier
studies of fcc Fe–Cr, the nearest neighbour Fe–Fe interaction was
taken as ferromagnetic, whereas the second and third nearest
neighbour Fe–Fe interaction parameters were antiferromagnetic
(ref. 9, Table 1). In the MCE Hamiltonian used here, extending the
Landau expansion to the 8th order in magnetic moment to model
the high-spin and low-spin magnetic states resulted in the increase
of the magnitude of the (negative, ferromagnetic) second order
magnetic term. In our fit this corresponds to the strongly ferro-
magnetic second nearest neighbour interactions. Although the
antiferromagnetic 3rd and 4th nearest neighbour interaction para-
meters are smaller in terms of their magnitude (see Table 1), the
relatively large number of the third (24 atoms) and fourth (12 atoms)
nearest neighbours in the fcc lattice is sufficient to overwhelm the
effect of ferromagnetic interactions involving only six second
nearest neighbours. As a result, the antiferromagnetically ordered
single and double layer structures have energies lower than that of
the ferromagnetic configuration. Still, the ground state antiferro-
magnetic collinear configuration of fcc Fe turns out to be magne-
tically frustrated, and the frustration is partially resolved by rotating
the magnetic moments away from collinearity. We observed similar
behaviour of magnetic moments in both ab initio and MCE studies
of Fe–Cr interfaces in the bcc lattice.36

While the total magnetic moment of the alloy is zero due to
averaging over all the possible directions of atomic magnetic
moments, the average magnitude of the magnetic moment

vector of an individual Fe atom hjMji ¼ 1

N

PN
i¼1

Mij j does not

vanish. The slightly lower energy of the high-spin state compared
to the low-spin one ensures that at low temperatures the average
magnitude of atomic magnetic moment is of the order of
2.648 mB. As temperature increases, the slope of energy variation
as a function of temperature changes at about 450 K (Fig. 3),

Table 3 Energies of several magnetic configurations of fcc iron (meV per
atom) found in MCE and DFT calculations. The values of the energies are
given with respect to the energy of a non-magnetic state

MCE DFT

Non-magnetic 0 0
Low-spin ferromagnetic �12 �5
High-spin ferromagnetic �19 �14
Single layer antiferromagnetic �51 �39
Double layer antiferromagnetic �51 �60
Non-collinear antiferromagnetic �53

Fig. 3 Temperature dependence of the energy (blue, left Y-axis) and the
average length of atomic magnetic moment (red, right Y-axis) of pure fcc iron.
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indicating a transition from an antiferromagnetic to a paramag-
netic state. This temperature is higher than that found using the
parameterization given in ref. 9, though the Néel temperature is
still very low compared to the temperature range of stability of
fcc iron (1185–1667 K37). Below the magnetic transition the
average magnitude of an atomic magnetic moment decreases
as a function of temperature due to the mixing of high-spin and
low-spin magnetic states, eventually decreasing to 2 mB. Above
the transition, where the moments are completely disordered,
the average length of the magnetic moment h|M|i increases
slowly as a function of temperature, see Fig. 3.

For pure fcc nickel, Monte Carlo simulations predict strong
collinear ferromagnetic ordering at low temperatures, in agree-
ment with experiment and ab initio calculations. This can also be
deduced from the set of MCE parameters given in Table 1, where
for almost all the neighbours the Heisenberg interaction para-
meters are ferromagnetic. The low-temperature value of atomic
magnetic moment found in MCE simulations, 0.575 mB, is within
5% of the experimentally observed value of 0.605 mB.38 Thermal
fluctuations destroy magnetic order at 550–600 K according to the
magnetic moment data shown in Fig. 4. This agrees well with the
experimental Curie temperature of nickel of 631 K,38 confirming
the good accuracy of our MCE parameter set. For comparison,
recent theoretical studies of the Curie temperature of Ni39,40

predicted temperatures which are much farther away from the
experiment: 300 K deduced from Monte Carlo simulations, 369 K
found using the random-phase approximation, and 413 K found
using a mean-field approximation (see ref. 39, Table 1). Only the
renormalized random-phase approximation39 predicted the Curie
temperature of 686 K comparable with our results. The occurrence
of a magnetic phase transition just below 600 K is also confirmed
by the clearly pronounced maximum in the temperature depen-
dent magnetic part of the specific heat shown in Fig. 4.

3.2 Magnetism and the enthalpy of mixing of Fe–Ni alloys

Experimental and theoretical data on the enthalpy of mixing of
Fe–Ni alloys are relatively scarce. A recent study by Idczak
et al.41 was performed using alloy samples with iron content

below 10 at% where the data were subsequently extrapolated to
the entire range of alloy compositions. Their results exhibit
negative enthalpy of mixing with a minimum of approximately
70 meV per atom, whereas in the interatomic potential studies6

a much smaller minimum value of about 40 meV per atom
was found. Our results regarding the enthalpies of mixing,
computed assuming random alloy configurations, are shown in
Fig. 5. The reference energies at the limits of the composition
range (pure Fe and pure Ni) were taken as those of ground state
magnetic configurations, i.e. non-collinear antiferromagnetic
for Fe and ferromagnetic for Ni. The minimum value of the
enthalpy of mixing is close to �100 meV per atom, which is
lower than what is found in ref. 41. However, this prediction is
in good agreement with our own DFT calculations, which
exhibit even lower enthalpies of mixing for several ordered
structures (see Fig. 2). With increasing temperature the abso-
lute value of the enthalpy of mixing increases slightly, as shown
in Fig. 5. Even lower negative enthalpies of mixing are found in
simulations, where exchanges between atoms are allowed upon
decreasing the temperature, thus allowing the system to find
the lowest-energy chemical and magnetic configurations. Fig. 6
shows the result of such a simulation, where the minimum
value of the enthalpy of mixing is as low as �130 meV per atom.
Enthalpies of formation acquire much higher values at the Fe
end of the concentration range, because bcc iron has lower
energy than fcc Fe. Our DFT calculations predict that the
formation energy of ferromagnetic bcc Fe is 107 meV per atom
lower than the lowest energy antiferromagnetic double layer
configuration of fcc Fe.

When exploring the magnetic moment of a randomly mixed
system, we found that magnetic structures differ strongly
between high- and low-Ni concentration limits. As shown in
Section 3.1, the ground state of pure fcc Fe is non-collinear
antiferromagnetic. At small nickel content, the system remains
non-collinear antiferromagnetic. Emergence of a non-zero
total magnetic moment marking the transition from antiferro-
magnetism to non-collinear ferromagnetism in our model takes

Fig. 4 Temperature dependence of magnetic moment (blue, left Y-axis)
and the magnetic part of the specific heat of pure fcc nickel (red, right
Y-axis).

Fig. 5 Enthalpy of mixing computed for random fcc Fe–Ni alloy configu-
rations at low and high temperatures T = 1 K and T = 500 K.
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place at around 25 at% Ni, as shown in Fig. 7. This result is in
good agreement with the magnetic phase diagrams of the Fe–Ni
system recently constructed by Cacciamani et al.42 and Xiong
et al.,43 who used extensive experimental data and ab initio
calculations, supplemented by CALPHAD modelling. This transi-
tion is not accompanied by large changes in the energy of the
system, hence several very different magnetic configurations
compete within a narrow range of energies. In order to find
the magnetic ground state of the random configurations in the
25–50 at% interval of Ni concentrations, we performed three-
stage quenching for each concentration studied, namely (1) from
1000 K to 1 K, (2) from 1 K to 0.001 K, and (3) from 0.001 K to
10�6 K. It is also worth mentioning that the magnetic behaviour
of the alloy changes from antiferromagnetic to non-collinear
ferromagnetic at concentrations close to those of the Invar alloy
(B35 at% Ni), confirming the applicability of the MCE model to

simulating even fairly subtle details of magnetic properties of
this alloy system.

With increasing Ni content, the relatively strong ferromagnetic
interactions between Fe and Ni atoms result in the magnetic
configuration of random Fe–Ni alloys approaching collinearity at
the nickel content above 50 at%. The system becomes ferromag-
netic and almost completely collinear at 75 at% Ni and above.
Because the magnetic moment of Fe is much larger than that of
Ni, at some intermediate concentration value the total magnetic
moment of the system becomes larger than that of pure Ni,
resulting in a maximum magnetic moment as a function of Fe
content, as shown in Fig. 7. This concentration dependence of
magnetic moment of random fcc Fe–Ni alloys agrees with experi-
mental data.44 At elevated temperatures, magnetic disorder rapidly
destroys ferromagnetism for almost all the iron concentrations
(Fig. 7), except for the low Fe alloys, where non-vanishing magnetic
moment survives up until the Curie transition temperature.

3.3 Magnetism of ordered Fe–Ni compounds

The ordered alloy compounds that we investigated in this paper
are FeNi3 with Z1 and L12 structures, FeNi with L10 structure,
and Fe3Ni with Z1 and L12 structures. The L12 FeNi3 structure
plays an important role in the phase diagram of Fe–Ni, being
ferromagnetic up to 940 K according to experiment.45 FeNi with
L10 structure (tetrataenite) is found in meteorites13–15 and,
according to DFT calculations, has the lowest energy of all
the alloy configurations with the same stoichiometry. For
Fe3Ni, until recently the L12 superlattice was believed to have
the lowest energy among ordered structures.46 However, it was
found recently by Barabash et al.27 that the Z1 superlattice is
more stable than the L12 structure. In any case, the energies of
these structures are fairly close and this prompted us to
investigate both of them.

In the absence of constraints on the directions of magnetic
moments, four out of the five ordered structures studied here
(L10 FeNi, Z1 Fe3Ni and both FeNi3 and Fe3Ni with L12 structure)
are ferromagnetic at low temperatures. The magnetic moments
of these structures are shown in Fig. 7. We note here that
agreement between magnetic moments predicted for these
ordered structures and the experimental observations by Crangle
and Hallam44 is even better than that found for the random
structures. The total magnetic moment increases in the Ni-rich
part of the concentration range almost linearly as a function of
Fe concentration.

In the L12 Fe3Ni alloy structure, ferromagnetism is non-
collinear, while in other structures the magnetic order is almost
exactly collinear. It is important to mention that the energies of
collinear and non-collinear magnetic structures of Fe3Ni are very
close, and the two-stage quenching (from 1000 K to 1 K and from
1 K to 0.001 K), with 130 000 attempts per atom at each stage,
was necessary to reach the ground state. We did not study the
temperature dependence of magnetic properties of the Z1 FeNi3

superlattice, because its energy is about 22 meV per atom higher
than that of the L12 FeNi3 structure. In Fig. 8a we show the
temperature dependence of magnetic moment found for the
other three ferromagnetic compounds. Similarly to the case of

Fig. 6 Enthalpy of mixing of fcc Fe–Ni alloys plotted as a function of Fe
content for configurations obtained by allowing atom exchanges.

Fig. 7 The total magnetic moment of a random fcc Fe–Ni mixture plotted
as a function of Fe content at a very low temperature and at T = 500 K.
Also, magnetic moments of several ordered structures are shown, as
described in the text.
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random Fe–Ni mixtures, the total magnetic moment is the
highest in FeNi, although it is still close to that of Fe3Ni. The
fact that the energies of collinear and non-collinear magnetic
structures are similar in the low Ni concentration range results
in relatively strong thermal fluctuations of the overall magnetic
moment in L12 Fe3Ni structure, as seen in Fig. 8a.

In our simulations the energy of the Z1 Fe3Ni structure is
found to be approximately 9 meV per atom higher than the
energy of the L12 structure. This value is within the error-bar of
values predicted by MCE simulations. The Z1 Fe3Ni superlattice
is non-collinear antiferromagnetic, which indicates that its
magnetic structure is related to that of the ground state of
pure fcc Fe. The main structural difference between the Z1 and
L12 structures is that in Z1 iron and nickel atoms are packed in
planes, with a Ni plane followed by three Fe planes. In the L12

structure, there are alternating Fe and Fe–Ni planes, so that the
Z1 superlattice is more segregated, and contains larger volumes
of pure Fe. In our opinion, this segregation of Fe and Ni is the
main reason explaining the occurrence of non-collinear anti-
ferromagnetism in Z1, whereas in the more mixed L12, as well

as in a random Fe–Ni mixture with the same composition,
ferromagnetic non-collinear order is prevalent. It is worth noting
that if Monte Carlo simulations are restricted to collinear
magnetism, the Z1 structure is also found to be ferromagnetic
at low temperatures, with the moments of Fe and Ni atoms being
parallel. The energy of a collinear ferromagnetic Z1 structure is
6.5 meV per atom higher than the energy of a non-collinear
antiferromagnetic configuration. The average magnitude of
magnetic moment of Fe equals 2.645 mB, which is very close to
that of pure fcc Fe. This agrees with our DFT results, which also
predict the magnetic moment of iron in ferromagnetic Z1
structure to be greater than 2.5 mB. We believe that antiferro-
magnetic order can be destroyed more easily by the relatively
small additions of Ni in the case of collinear magnetism because
the nearly collinear antiferromagnetic fcc Fe structures have
energies closer to ferromagnetic fcc Fe than the non-collinear
antiferromagnetic fcc Fe configurations.

Of the three ferromagnetic structures studied, temperature
fluctuations destroy magnetic order first in L12 Fe3Ni, where it
vanishes at 450 K (Fig. 8a). FeNi and FeNi3 remain magnetically
ordered up to fairly high temperatures of B1000 K and B1200 K,
respectively. In FeNi3 the predicted Curie temperature is higher
than the experimentally observed one. However, as was noted in
ref. 47, the experimental Curie point at these high temperatures
is an underestimation because of fast self-diffusion and the
resulting difficulties associated with maintaining chemical order.
For comparison, in a random mixture with FeNi3 composition
magnetic order vanishes at 500–550 K whereas in a random
mixture with FeNi composition the corresponding temperature
is 400–450 K.

The magnetic interaction between Fe and Ni results in both
elements retaining magnetic order until the Curie point, as can
be observed for ordered FeNi in Fig. 8b. Magnetic order is
retained at temperatures much higher than the Curie point in
pure Ni for both nickel and iron constituents. This behaviour is
similar to that characterizing the magnetization of layers of
chromium at the interface with Fe, where the magnetic
moment of several atomic layers remains non-zero well above
the Néel temperature of Cr.36

4. Phase diagram of Fe–Ni alloys

Using the parameters described above, we performed Monte
Carlo simulations to establish the equilibrium phase diagram
at the interface between bcc and fcc phases. The solubility of Ni
in bcc iron is extremely low, with the experimental phase
diagram predicting an approximately 5 at% Ni solubility limit
at about 800 K, and even smaller values at lower temperatures.
Hence the free energy of the bcc Fe–Ni system can be approxi-
mated by the free energy of pure bcc iron. Calculations of the
free energy of bcc Fe and the difference between bcc and fcc Fe
free energies were performed in our previous work, where we
predicted the occurrence of bcc–fcc phase transitions in Fe and
Fe–Cr, corresponding to the g-loop in the phase diagram.9

Using those results and the new data for fcc Fe–Ni, the usual

Fig. 8 (a) Temperature dependence of magnetic moments predicted for
several ordered fcc Fe–Ni compounds. (b) Magnetic moments of Fe and Ni
sublattices in an ordered fcc L10 FeNi alloy plotted as a function of
temperature.
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tangent construction can be applied to evaluate the coexistence
curve. An example of such construction for T = 600 K is given in
Fig. 9. As discussed in Section 2, we performed two separate
calculations for the Fe–Ni system: one for a random mixture and
another for a case where atomic exchanges were included. We
found that the free energy of a random mixture was always lower
than the enthalpy of mixing of a system where atoms were
allowed to exchange. This was observed for all the temperatures
and concentrations studied here. In order to provide the lower
estimate for the free energy, we added the ideal configuration
entropy (3) to the enthalpy of the alloy system where exchanges
were permitted. The two tangent constructions gave almost
identical results for the bcc–fcc coexistence curve, as can be
seen in Fig. 9 and 10. The predicted coexistence curve (Fig. 10)
shows that the area of the phase diagram where fcc Fe–Ni alloys
are stable, is very broad, in agreement with experimental data.12

Note that our calculations do not take into account lattice

vibrations. This approximation is well justified for the case of
Fe–Ni alloys, where the atomic radii of the two elements are
similar and the vibrational entropy of alloying is very low. In a
study by Bogdanoff and Fultz,48 based on the experimental
information about the phonon density of states, the vibrational
entropy of alloying was found to be DSalloy

vib = 0.02 kB per atom for
the FeNi3 compound with L12 structure, which is smaller than
the error-bar of �0.03 kB per atom, and much smaller than the
ideal configurational entropy, which is 0.562 kB per atom at that
composition. It is interesting to note here that a recent ab initio
study found that despite quite large individual ionic displace-
ments in the Invar concentration range (Fe65Ni35),49 the influ-
ence of local lattice relaxation on the energy of Fe–Ni alloy
configurations was small. One of the authors of ref. 49 specifi-
cally relates this to the small mismatch between the sizes of Fe
and Ni atoms in a subsequent study,50 in agreement with our
findings. In other words, the lattice contribution to the free
energy can indeed be neglected over a broad range of alloy
compositions.

In the high-Ni part of the phase diagram, it is necessary to
compare the energies of ordered structures (L12 for the case of
FeNi3 and L10 for the case of FeNi) with the free energies of
random mixtures computed for the same alloy compositions.
For the ordered structures, the configuration entropy is zero.
For the random mixtures, we again used expression (3) for the
ideal configuration entropy. The free energies of ordered and
random systems are compared in Fig. 11. For FeNi, random
structures become more energetically favourable at about
520 K, whereas for the FeNi3 compound, at about 730 K. These
numbers should be compared with experimental temperatures
of 593 K and 770 K, respectively.51,52 The small underestima-
tion of the order–disorder transition temperatures compared to
experiment can be related to the fact that the actual configuration
entropy is slightly higher than the ideal one because of the
remaining order in the structures at low temperatures. Summar-
izing these results, we conclude that while the ordered FeNi3

system is certainly stable until high enough temperatures, for the
FeNi L10 structure the temperature of the order–disorder trans-
formation is relatively low, meaning that it might take a very long
time for the alloy of that composition to reach the ordered state
during cooling. Combining transition temperatures for the
ordered ferromagnetic and disordered antiferromagnetic systems
(520 K and 730 K) with the Curie temperature of Ni, which our
simulations predict to be 550–600 K, we are able to explain the
experimentally observed maximum of magnetic transformation
temperature found as a function of nickel content.

5. Discussion

The effect of magnetism on the thermodynamic properties of
solids and structural phase transitions has long been recog-
nized. For example, the ferromagnetic–paramagnetic transition
in iron at 1043 K is responsible for the bcc–fcc transition at
1185 K.9,53,54 Recent advances in simulation algorithms
expanded the range of systems accessible to simulation from

Fig. 9 Tangent construction defining the coexistence curve between bcc
Fe and fcc Fe–Ni alloys at temperature T = 600 K.

Fig. 10 Coexistence curves between bcc Fe and fcc Fe–Ni alloys. The
blue line corresponds to random alloys, the red line was computed using
exchange Monte Carlo simulations.
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pure metals to binary alloy solutions with different degrees of
chemical disorder. In this paper, we show how magnetic cluster
expansion can be applied to magnetic fcc Fe–Ni alloys.

The main difference between the phase diagram of Fe–Cr
studied earlier and Fe–Ni alloys is the fact that the area of
the phase diagram, where fcc structure is stable, is very large.
The so-called g-loop in the Fe–Cr phase diagram extends up to
B14 at% Cr, while in Fe–Ni the fcc structure is more stable
than bcc for almost all the concentrations and temperatures.
This is the consequence of strong ferromagnetic interactions
between iron and nickel in the fcc phase resulting in large
negative energies of mixing seen in ab initio calculations. Our
parameterization of MCE Hamiltonian also predicts a strong
ferromagnetic exchange coupling between the second and third
nearest Fe–Ni neighbours and negative enthalpy of mixing, in
excess of �100 meV per atom, even for the random alloy
configurations. The magnetic behaviour of random alloy con-
figurations is characterized by a transition from non-collinear
antiferromagnetism on the iron-rich side to collinear ferromag-
netism on the nickel-rich side of the concentration range. The
large magnetic moment of Fe, compared to Ni, results in a
maximum total magnetic moment of the system as a function
of concentration. At elevated temperatures, magnetic order
vanishes first at the Fe-rich side of the concentration range.
At the nickel-rich side, our calculations predict collinear ferro-
magnetism for the high-Ni random structures and for several
ordered superlattices with Ni content of 50 at% and higher. The
magnetic moment of the system increases linearly as a function
of Fe content and has a maximum, in full agreement with
experimental data,44 particularly for the ordered structures.

The temperature dependence of magnetism in several ferro-
magnetically ordered intermetallic compounds was also studied.
While the magnetic order in the L12 superlattice of Fe3Ni
vanishes at relatively low temperatures, FeNi and FeNi3 remain
ferromagnetic even above 1000 K. In fact this is the main reason
why they become unstable with respect to transformation into
chemically disordered configurations. The Curie temperatures

for random alloy mixtures are much lower than those for the
ordered structures, and above the corresponding Curie tempera-
tures the disordered configurations are paramagnetic. It is well
known that in the paramagnetic state the magnetic energy
increases with temperature much more slowly than in a ferro-
magnetic state (Fig. 11), hence at higher temperatures an
ordered compound becomes less energetically favourable than
a random alloy mixture. It is worth noting here that one previous
theoretical study of order–disorder phenomena in Fe3Ni, FeNi,
and FeNi3

47 found magnetic order even in chemically disordered
alloys at temperatures where they are more stable than the
ordered ones. The study was based on an Ising Hamiltonian,
which appears to be unrealistic for the fairly magnetically
directionally isotropic Fe–Ni alloys. Our calculations also show
that in the limit of a strongly magnetically anisotropic MCE
Hamiltonian, a chemically disordered system remain ferromag-
netic until higher temperatures. However, an experimental study55

found only small magnetic crystal anisotropy in iron–nickel alloys.
Recent work by Ekholm et al.56 successfully explained the exis-
tence of magnetic order in chemically disordered FeNi3 using
cluster expansion Hamiltonian with parameters depending on
alloy composition and the total magnetization of the system. Still,
in their approach magnetic and chemical degrees of freedom were
treated separately, and the cluster expansion parameters obtained
from a completely disordered system were used for modelling a
system just above the order–disorder transition, which inevitably
has significant short-range order. We believe that a realistic
Hamiltonian for that system should be almost entirely isotropic,
and includes chemical and magnetic degrees of freedom on equal
footing as in the present approach. The question of interplay
between chemical and magnetic order–disorder transitions is
very complicated, and the possibility that some magnetic order
above the chemical order–disorder transition may be related to
precipitates of ordered phases or to short-range chemical order
remaining at temperatures where long-range chemical order is
already absent deserves further attention.

For the Z1 Fe3Ni superlattice, non-collinear antiferromag-
netic order is predicted. It is reasonable to expect that other
antiferromagnetic ordered structures may also exist in the
region of high Fe concentration, with their magnetic structures
similar to those of pure fcc iron. The energies of Z1 and L12

structures in Fe3Ni are found to be close to each other. Also,
DFT calculations performed for several different structures with
25 at% Ni content predict fairly similar energies. These struc-
tures can be either completely ferromagnetic or partially anti-
ferromagnetic (ferrimagnetic), with some of the Fe atoms
having magnetic moment directions opposite to the rest of
the moments, without involving a large penalty in energy. The
volumes of these structures as calculated by DFT differ by 2–3%
(with ferrimagnetically ordered systems having a smaller
volume) – an effect which cannot be modelled using the current
rigid lattice MCE approach. This abundance of superlattices
and magnetic structures within a narrow energy range is in
agreement with previous calculations24 that relate the occur-
rence of the ferrimagnetic phase to the Invar effect at around
35 at% Ni. Our MCE calculations exploring several superlattices

Fig. 11 Comparison of free energies of ordered and random structures
simulated using MCE for stoichiometric compositions of fcc FeNi and FeNi3.
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with Fe2Ni composition found ferromagnetic as well as ferri-
magnetic ground states, but the energy of the antiferromag-
netic configuration seems too high and cannot be obtained
without constraining the total magnetic moment of the system.
Another possible reason explaining the Invar effect, the non-
collinearity of magnetic structures,57 has also been observed in
our simulations for both the ordered (Z1) and random Fe–Ni
mixtures with Ni content not exceeding that of Fe.

The model developed above is limited to the classic Heisenberg–
Landau-like Hamiltonians. Recent studies on pure Fe and Cr58,59

showed the significance of taking quantum corrections and lattice
anharmonicity into account at high temperatures, to achieve fully
quantitative description of the phase diagram. Still, the methodo-
logy proposed in ref. 58 and 59 is yet to be extended to solid
solutions of metals. In our previous work,9 by taking into account
vibrational contributions to the free energy, we correctly estimated
the size of the g-loop in Fe–Cr, but were only able to do that in a
narrow range of Cr concentrations not exceeding 15 at% Cr. For the
fcc Fe–Ni alloy studied here, the vibrational contribution to the free
energy is small,48,50 and the current parameterization of the MCE
Hamiltonian without quantum and vibrational corrections made it
possible to undertake a realistic study of magnetic and thermo-
dynamic properties of the alloy in a broad range of temperatures
and concentrations. Good agreement with experiment was found
for the fcc–bcc coexistence curve in the phase diagram and for the
temperatures of order–disorder transitions in FeNi and FeNi3
compounds. This confirms that the MCE model is now ready to
be extended to the ternary Fe–Ni–Cr alloy.

Acknowledgements

This work was part-funded by the RCUK Energy Programme (Grant
Number EP/I501045) and by the European Union’s Horizon
2020 research and innovation programme under grant agreement
number 633053. To obtain further information on the data and
models underlying this paper please contact PublicationsManager@
ccfe.ac.uk. The views and opinions expressed herein do not neces-
sarily reflect those of the European Commission. This work was also
part-funded by the United Kingdom Engineering and Physical
Sciences Research Council via a programme grant EP/G050031.
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