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ABSTRACT Wide-spread availability of low-cost digital sensors has made the acquisition of full-field
experimental measurements less challenging, with modern measurement systems, such as X-ray computed
tomography, capable of obtaining three-dimensional (3D) data fields. This presents difficulties when
comparing computational and corresponding experimental data that often do not share the same, coordinate
system or data pitch. This paper presents a method of orthogonally decomposing 3D data arrays into feature
vectors using a pre-defined set of basis vectors, which are based on discrete Chebyshev polynomials. This
allows one-to-one quantitative comparisons of 3D data fields with the same orientation but differing data
pitch and coordinate system, irrespective of the source from which they are acquired. Two case-studies,
each involving a pair of finite element (FE) model and experimental datasets, were used in this paper to
demonstrate the capability of the method. The first case study represented the internal 3D strain fields in a
reinforced-rubber matrix specimen under tensile load, measured using digital volume correlation, whilst the
second study involved time-varying, surface displacements of an aerospace panel under resonance, which
were measured using digital image correlation. From the two case studies, it was demonstrated that the
decomposition method can be successfully employed to perform quantitative validation of 3D FE-predicted
data using a validation metric, which was previously developed for two-dimensional data fields.

INDEX TERMS Image decomposition, digital images, volume measurement, pattern matching, finite
element analysis, data correlation, model validation.

I. INTRODUCTION
The emergence of relatively low-cost digital sensors has
revolutionized experimental measurements by allowing
information-rich data fields to be acquired in real-time,
in a wide range of environments with adjustable spatial
and temporal resolutions. The relative ease of acquiring
information-rich data from full-field measurement tech-
niques has allowed researchers to make significant advances
over the last two decades in the areas of data fusion in both
non-destructive evaluation [1] and finite element (FE) model
updating [2]. Moreover, there has been a paradigm shift in
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the design and life cycle management processes for large-
scale structures. Integrated digital environments are being
developed to link computational data from multi-physics and
multi-scale simulations to experimental data from full-field
and point sensors to cut down operational and maintenance
costs and reduce conservatism in traditional design standards,
whilst maintaining the highest standards of safety and relia-
bility. In this context, a major computational challenge which
researchers have faced is the difficulty in comparing datasets
from different experimental and computational sources con-
taining thousands of point values that often do not share the
same, coordinate system or data pitch.

A predominant approach to comparison of full-field
datasets in industry and academia still relies on visual
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TABLE 1. Limitations and strengths of key existing methods for full-field data comparison (with exemplar references).

similarity between datasets, which is qualitatively established
by visualizing the datasets using colour maps [3], line pro-
files [4] or scatter plots [5], [6]. For instance, Zauel et al.
[5] established similarity between FE model predictions and
digital volume correlation (DVC) measurements of inter-
nal three-dimensional (3D) deformation fields in human
cancellous bone under load by applying linear regression
to the scatter plot of FE and experiment data points and
evaluating the coefficient of determination and slope of
the best-fit line. More recently, Oliviero et al. [6] used an
identical approach to validate FE predictions of deforma-
tion fields in mouse tibia bone under compression with
DVC measurements. Germaneau et al. [3] used colour maps
for qualitative comparison of FE-predicted displacements
fields of a spherical plane bearing with DVC measurements,
whereas Ksvayee et al. [4] utilized line plots to compare the
strain distribution in a ductile iron microstructure predicted
using FE with digital image correlation (DIC) measurements.

In general, a more quantitative analysis of large datasets
involves discovering the dominant patterns or features in
the raw data by employing feature extraction methods [7].
Proper orthogonal decomposition, which is also referred to
as principal component analysis (PCA) depending on the
field of application, is one of the most common approaches
to feature extraction used by researchers to analyze large
amounts of experimental data [8], [9]. PCA is mainly based
on the mathematical technique of matrix diagonalization,
or more specifically, singular value decomposition. It linearly
transforms or decomposes the original dataset into an opti-
mal set of basis vectors thereby giving singular values or
principal components which represent the most significant
features of the original data. PCA is predominantly used in
the fields of fluid mechanics and structural dynamics to study
complex flow fields [10], [11] and the dynamic response of
structures [12], [13], respectively. The use of PCA has also
been explored in the optimization of manufacturing process
parameters of automobile parts [14]. In the past decade,

an image decomposition method based on discrete orthog-
onal polynomials [15], [16], [17] has gained popularity in
the field of experimental solid mechanics. In this method,
surface deformation fields of displacement, stress or strain,
acquired from optical techniques such as DIC, electronic
speckle pattern interferometry (ESPI) or thermoelastic stress
analysis (TSA), are treated as digital images and subsequently
decomposed using a set of pre-defined two-dimensional
(2D) shape descriptors or kernels, which are formed from
one-dimensional (1D) discrete orthogonal polynomials. The
coefficients of the fitted kernels are collated into a vector.
This vector, which is referred to as a feature vector, provides
a unique and accurate representation of the original data,
but typically using less than a hundred coefficients instead
of >103 data values. These feature vectors allow one-to-one
comparison of the data fields within the feature vector space
regardless of whether the original data fields share the same
coordinate system or data pitch. This one-to-one comparison
is usually not possible with PCA since it essentially trans-
forms the original dataset into an optimal set of basis vectors,
which are not necessarily the same for the given datasets to be
compared. The development of the image-based orthogonal
decomposition method has led to new approaches for finite
element (FE) model updating [16] and quantitative valida-
tion of computational mechanics models [18], [19] using
displacement or strain fields on the surface of structures. The
Euclidean distance between feature vectors describing the
strain fields has also been used to develop novel approaches
for detecting and monitoring damage in both metallic [20]
and composite [21] components.

Alternate methods to orthogonal decomposition have also
been proposed for quantitative comparison of full-field
datasets from different sources [22], [23]. However, these
methods are either suited to a specific source of dataset [22]
or are encountered with similar issues to PCAwhere the basis
vectors are not necessarily identical for the given datasets
to allow one-to-one comparison in the feature space [23].
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For instance, Lava et al. [22] proposed a framework for
quantitative validation of FE data using DIC. In this method,
FE-predicted displacement fields are used to numerically
deform the digital images of the speckle pattern, which was
created on the specimen’s surface for DICmeasurements. The
sets of numerically-deformed and original images are then
processed separately using the same DIC algorithm for strain
measurements. The resulting FE-based and the experimental
DIC-based strain fields, by default, shared the same grid size
and data pitch for one-to-one comparison. Salloum et al. [23]
proposed a method based on Alpert multi-wavelets capa-
ble of decomposing both 2D and 3D datasets into spectral
space. However, their decomposition approach does not result
in identical basis vectors for given datasets and thus slight
inconsistencies in the basis vector directions do not allow for
one-to-one comparison of the datasets in the feature space.
The strengths and the limitations of the key existing methods
for full-field data comparisons, discussed above, are summa-
rized in Table 1.

This paper extends the image-based orthogonal decom-
position method to three dimensions [24]. This allows any
volumetric data array to be orthogonally decomposed and
uniquely described as feature vectors using a predefined set of
basis vectors. This enables volumetric data arrays with same
orientation but differing data pitch and coordinate system
to be quantitatively compared in the feature vector space,
thereby addressing the major limitations of the previously
published methods listed in Table 1.
Major sources of volumetric datasets include tomography

[25], [26] and serial sectioning [27] techniques, which are
used extensively for determining the internal 3D structure of
components. The proposed volume decomposition algorithm
is equally capable of decomposing temporally-varying 2D
fields of data, which are typically acquired from techniques
such as high-speed DIC [28] and infra-red thermography
[29]. The proposed algorithm decomposes the volumetric
data arrays into feature vectors in exactly the same manner as
the image decomposition method does for the 2D data fields.
It is, therefore, envisaged that the methodologies [19], [30]
developed for quantitative comparison of 2D data fields in
feature vector space are applicable to volumetric datasets as
well. Hence, one of the objectives of this paper is to establish
the applicability of these quantitative comparison method-
ologies to volumetric datasets by employing the proposed
volume decomposition algorithm.

This paper is structured in the following manner: the
next section (Sect. II) describes the orthogonal decom-
position algorithm for volumetric datasets. Two pairs of
measured and predicted datasets were analyzed in this study,
which are described in Sect. III. The process of decompos-
ing a volumetric array into its feature vector is described
in Sect. IV using experimentally measured data arrays.
In Sect. V, FE model validation is performed by quantita-
tively comparing the FE-predicted volumetric arrays with the
experimentally measured ones after transforming them into
feature vectors. The results are discussed in Sect. VI with

concluding remarks provided in Sect. VII. Data on which
this study is based was analyzed using Matlab (version:
R2020a) and can be accessed from Dryad Digital Repository
at: https://doi.org/10.5061/dryad.5dv41ns76

II. ORTHOGONAL VOLUME DECOMPOSITION
ALGORITHM
3D kernel functions are required to decompose a 3D array of
data. These kernels are formed from 1D Chebyshev polyno-
mials, which are defined using the recursive formula [15]:

tk (a) =
(2k − 1)t1(a)tk−1(a) − (k − 1)(1 −

(k−1)2

K2 )tk−2(a)

k
,

k = 2, 3, · · · ,K − 1 (1)

t0 (a) = 1 (2)

t1 (a) =
2a+ 1 − K

K
(3)

where k , is the order of the polynomial, K , is the number of
sampling points and a is the sample location. These discrete
polynomials can be combined to obtain three-dimensional
orthogonal kernels, of dimensionsM × N × O, using:

Jm,n,o (x, y, z) = tm (x) tn (y) to (z) (4)

where m, n and o are the order of the 1D polynomials. When
combined, the order of the 3D kernel is calculated as:

ωm,n,o = m+ n+ o (5)

To use the orthogonal kernels for decomposition they must
first be normalized by dividing each kernel by its associated
norm. To obtain the norm with minimal computational errors
it can be calculated analytically as:

Pm,n,o = ρmρnρo (6)

where [16]:

ρm =

M
(
1 −

1
M2

) (
1 −

22

M2

)
· · ·

(
1 −

m2

M2

)
2m+ 1

(7)

The data array I can then be decomposed into coefficients,
Tm,n,o, using:

Tm,n,o =

∑M ,N ,O

x,y,z=0
I (x, y, z)

1
√
MNO

Tm,n,o (x, y, z)√
Pm,n,o

(8)

The reconstruction of the data array is calculated as:

Î (x, y, z) =

∑M ,N ,O

m,n,o=0
Tm,n,o

√
MNO

Tm,n,o (x, y, z)√
Pm,n,o

(9)

The coefficients are arranged as a 3D array, these can be
permuted using the ordering system described by Bateman
[31] which has been extended here to three dimensions. Using
this system, the coefficient Tm,n,o comes before Tp,q,r in the
feature vector if either of the following conditions are true:

ωm,n,o < ωp,q,r (10)

(ωm,n,o = ωp,q,r )∧ (m+ nN + oNO < p+ qN + rNO)

(11)
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where∧, is the mathematical notation for ‘‘logical and’’. This
results in a feature vector f , ordered as follows:

f =



T0,0,0
T1,0,0
T0,1,0
T0,0,1
T2,0,0
T1,1,0

...

TM−1,N−1,O−1


(12)

This permutation scheme ensures that the feature vector is
ordered so that coefficients corresponding with the same
order of 3D kernel appear together in the feature vector,
with the order increasing when moving down the vector.
The choice of permutation scheme only affects where values
appear within the vector, and any other scheme could be
used resulting in no change to the findings of this study. The
number of coefficients in the feature vector f , when using all
the kernels up to a maximum order of ωmax is a tetrahedral
number, and thus can be calculated as:

� =
1
6
ω3
max + ω2

max +
11
6

ωmax + 1 (13)

This equation has two imaginary roots and a single real root
equal to the order of the polynomials required to populate
a feature vector of any arbitrary length. For this study, the
roots were found using the ‘‘roots’’ function built intoMatlab,
which works by calculating the eigenvalues of the companion
matrix of equation (13).

A. REPRESENTATION ERROR
The representation error is the difference between the origi-
nal data volume and its reconstruction. When reconstructing
real-valued data, a common technique for quantifying the
representation error is to use the root mean squared error,
calculated as:

urms =

√
1

MNO

∑M ,N ,O

x,y,z=0
(I (x, y, z) − Î (x, y, z))

2
(14)

This measure can also be used for assessing the reconstruc-
tion of binary volumes of data. However, in this situation,
the mean absolute error is more effective as it calculates the
proportion of incorrect voxels in the reconstruction. Themean
absolute error is given as:

umae =
1

MNO

∑M ,N ,O

x,y,z=0

∣∣∣I (x, y, z) − Îbin (x, y, z)
∣∣∣ (15)

The feature vectors can be processed to minimize the
number of non-zero coefficients by truncating them at a
particular length or setting all coefficients to zero that have
an absolute value less than a pre-specified threshold, i.e.,
filtering. When filtering a feature vector, it is necessary to
calculate the representation error to assess whether additional
filtering can be undertaken to further reduce the number of
non-zero elements in the vector while satisfying requirements

for the quality of the representation. This requires repetitive
calculations using equations (9) and (14), greatly increasing
the computation time. The kernels used to represent the data
volume are orthogonal and thus the representation error can
be calculated without actually reconstructing the data using
Parseval’s theorem as [31]:

urms =

√
1

MNO

∑M ,N ,O

x,y,z=0
I (x, y, z)2 −

∑
i
f̌
2
i (16)

where f̌ denotes the filtered feature vector. Using this
equation, it is possible to decompose a volume into a fea-
ture vector containing a high number of coefficients and
then rapidly determine the minimum number of coefficients
required to just achieve an arbitrary representation error.

B. DECOMPOSITION USING MATRIX OPERATIONS
Decomposition and reconstruction using equations (8) and
(9) are computationally-intensive tasks as they require many
iterations and substantial amounts of computer memory. The
computation of the coefficients can be performed more effi-
ciently using matrix operations, which can be calculated
using concurrent computation. If the data is considered as a
3D array, the zth slice through the array Ix,y,z, can be denoted
as:

Sx,y = Ix,y,(z) (17)

where the bracketed term specifies the index for the slice
location. These slices are then decomposed along both dimen-
sions and then combined to form a new 3D array Em,n,z,
by performing [32]:

Em,n,(z) = txSx,yt∗y (18)

where ∗ indicates the matrix transpose and tx and ty are
orthogonal matrices with rows equal to the 1D Chebyshev
polynomials:

tx =



t0(x)√
ρ0

t1(x)√
ρ1
...

tM−1(x)√
ρM−1


, , x = {0, 1, 2, . . . ,M − 1} (19)

ty =



t0(y)√
ρ0

t1(y)√
ρ1
...

tN−1(y)√
ρN−1


, y = {0, 1, 2, . . . ,N − 1} (20)

The 3D array Em,n,z, is then decomposed in the z-direction
by performing:

Tm,n,(o) =
1

√
MNO

(
tzE∗

m,(n),z

)∗

(21)
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FIGURE 1. Schematic of the aerospace panel (top) and the volumetric arrays (bottom)
constructed from measured (left) and predicted (right) out-of-plane displacement data
over the common region of interest. This figure is best interpreted in colour.

where,

tz =



t0(z)√
ρ0

t1(z)√
ρ1
...

tO−1(z)√
ρO−1


, z = {0, 1, 2, . . . ,O− 1} (22)

3D array T contains the same coefficients as obtained using
equation (8) and can be permuted to a feature vector using
the same conditions as described by equations (10) and (11).
This results in a significant decrease in computation time.
For example, when decomposing a cube of data of dimension
200 pixels into a feature vector containing 200 coefficients
the matrix-based algorithm was found to be 150 times faster
than using equation (8) and gave the same result. The number
of rows in the matrices tx , ty and tz can be reduced to
calculate a smaller number of coefficients. This is useful for
orthogonal decomposition of experimental mechanics data,
as typically only polynomials up to a maximum order of
twenty are required for an accurate reconstruction due to the
inherent properties of data fields constrained by continuum
mechanics. The data volume can be reconstructed in a similar

manner but in reverse:

Em, (n), z =
√
MNOTm,(n),otz (23)

with the reconstructed volume given by:

Îx,y,(z) = t∗xEm,n,(z)t∗y (24)

III. EXEMPLAR VOLUMETRIC DATASETS
Two types of volumetric datasets are briefly described here,
which were used as exemplars to demonstrate the application
of orthogonal decomposition in quantitative validation of
computational mechanics models.

A. DATASET 1: MODAL ANALYSIS OF AN AEROSPACE
PANEL
A schematic of the panel is shown in Fig. 1. The surface
of the panel was sprayed with a random black and white
speckle pattern and the panel was suspended using string from
a rigid frame, which was affixed to an optical table. The panel
was excited at its third resonant frequency of 59 Hz using
an electromagnetic shaker (V100, DataPhysics, CA). Dur-
ing excitation, images of the painted surface were captured
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FIGURE 2. Schematic of the reinforced-rubber matrix specimen (top) and the volumetric
arrays of measured (left) and predicted (right) data. This figure is best interpreted in
colour.

using a stereoscopic pulsed-laser DIC system [33], which
was designed to acquire full-field periodic displacements
of the panel by phase shifting the image acquisition with
respect to the excitation signal. The optical setup comprised
of two identical digital cameras (Stingray F-201B, AVT,
Germany) with 1624 × 1234 pixel resolutions, mounted with
an identical pair of 8 mm focal length lenses (Cinegon 1.4/8,
Schneider, Germany). The two cameras were positioned at
a working distance of about 1500 mm from the panel at
a stereo angle of 25◦, providing an image magnification
of approximately of 3.1 pixels/mm. A 532 nm laser (Nano
L-200-10, Litron, England) with a pulse duration of 4 ns was
used to illuminate and consequently ‘‘freeze’’ the motion of
the vibrating panel in order to acquire images of the panel’s

surface. A total of 41 pairs of images were acquired with
the commercial DIC software, Istra4D (Dantec Dynamics,
Germany) using an incremental phase shift of 9◦ to cover
a complete (360◦) loading cycle of the panel. The image
correlation was performed with Istra4D using a subset size
of 49 pixels and a pitch of 20 pixels. The out-of-plane dis-
placement maps from Istra4D were stacked in the z-direction
at fixed intervals of 9◦ to construct a 3D array comprising of
1.18 × 105 data points, shown in Fig 1.

A FE model was created using 170,000 first-order hex-
ahederal elements using a commercial FE package (Altair,
Optistruct, USA). An eigenvalue analysis was first performed
to identify the resonant frequencies of the panel, followed
by a modal frequency response analysis to acquire full-field
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out-of-plane displacements at its third resonant frequency
of 59 Hz. Further information about the experimental setup
and FE model can be found in the paper by Sebastian et al.
[33]. The simulation data from the modal frequency response
analysis was available in the form of 21 grey-scale images,
representing the contour maps of the out-of-plane displace-
ment of the panel at uniform phase intervals of 18◦. The
images were imported into Matlab and were subsequently
cropped after identifying a rectangular region, corresponding
to the region of interest from which the measured displace-
ment data was acquired, using the Matlab image registration
function. A 3D array comprising of 7.96 × 106 data points
was constructed from the predicted data by stacking rectan-
gular segments from each of the 21 grey-scale images in the
z-direction at regular phase intervals of 18◦. The constructed
volumes for both the measured and predicted data are shown
in Fig. 1. Normalization was performed on both datasets to
transform them such that their values ranged between−1 and
1. This was to enable comparisons between the predicted and
experimental data.

B. DATASET 2: REINFORCED-RUBBER MATRIX SPECIMEN
UNDER TENSILE LOAD
A cuboid-shaped tensile test specimen was fabricated from
silicone (RTV-664, Momentive, USA) with the dimensions
of 139.7 × 38.1 × 19.6 mm. The rubber matrix was rein-
forced using three layers of three-strand twist nylon cord with
a nominal diameter of 2.3 mm. The cords in the bottom,
middle and top layers were orientated at 90◦, 45◦ and 90◦

from the longitudinal (y) axis of the specimen and were
located at heights of 5.6, 9.9 and 13.3 mm from the bottom
surface, respectively. During fabrication, glass micro-beads
with a nominal diameter of 200 µmwere added to the rubber
mix. Upon curing, the combined distribution of matrix voids
and glass beads provided a sufficiently high-contrast random
pattern to perform DVC. The specimen was mounted in a
custom-built loading frame, which was in turn mounted onto
the rotation stage of an X-ray micro-computed tomography
system (X-TEK HMX 160). CT scans were obtained prior
to and after the application of a tensile load of 150 N along
the longitudinal (y) direction. The cuboid scan region within
the specimen was 4.7 mm ≤ x ≤ 34.9 mm, −20.5mm ≤

y ≤ 18.4 mm and 1.96 mm ≤ z ≤ 15.16 mm, this region is
marked in the specimen schematic in Fig 2. The acquired CT
images with a voxel resolution of 57.7 µm were processed
using a commercial DVC package, VIC-Volume (Correlated
Solutions, USA). The displacements were computed using
a cubic subset size of 13 voxels and a pitch of 7 voxels.
Strains were evaluated using VIC-Volume by locally smooth-
ing the displacements using a grid of 5 × 5 × 5 data points
The evaluated displacement and strain data, exported from
VIC-Volume, was in the form of 3D arrays with each array
comprising of 7.78 × 105 data points.

A FE model of the rubber matrix specimen was devel-
oped using a custom modelling tool based on the Virtual
Textile Morphology Suite (VTMS) and the B-spline Analysis

Method (BSAM), which were developed by the Air Force
Research Lab (AFRL). Further details about the specimen
preparation, experimental setup and FEmodel can be found in
the paper by Mollenhauer et al. [33]. The simulation data was
made available by the AFRL in the form of a text file contain-
ing Cartesian coordinates for all 4.94 ×105 nodes of the FE
model along with the corresponding predicted displacement
and strain values at those nodes. The data was imported
into a Matlab algorithm which constructed 3D arrays from
the simulation data. The comparison between normalized
measured and FE predicted arrays of strain components along
three orthogonal directions is shown in Fig. 2.

IV. DECOMPOSING VOLUMETRIC ARRAYS INTO
FEATURE VECTORS
Two approaches to decomposing volumes of data using
Chebyshev polynomials are introduced in Sect. II. Whilst
both approaches yield the same coefficients when applied to
a dataset, they differ substantially in terms of the computing
time required. When decomposing the data for the reinforced
rubber matrix on a PC with an Intel® CoreTM i5-8400 CPU
and 8GB of RAM, the approach based on equation (8) took
1004s whereas the matrix-based approach using equations
(17) to (21) took less than 0.1s. This disparity stems from
two factors. Firstly, equation (8) requires each kernel to
be calculated separately for each coefficient, whereas the
matrix-based approach does not. The second factor is that
the matrix-based approach ensures that the large numbers
of multiplications and additions necessary for decomposi-
tion can be performed using the computationally efficient
vector processing instructions built into modern computer
processors.

When an array of acquired data, for example experimen-
tal measurements or simulation predictions, is orthogonally
decomposed into a feature vector, it is important to determine
whether the feature vector provides an acceptable represen-
tation of the original data. The CEN CWA-16799 workshop
agreement [30], which is essentially a guide for the valida-
tion of computational mechanics models, recommends two
criteria to ensure that a feature vector accurately represents
both the global and local features in an original data array.
The first criterion states that a feature vector is considered to
be an acceptable representation of the measured data array if
the representation error, urms does not exceed the minimum
measurement uncertainty, ucal of the measurement system.
The representation error can be evaluated by calculating the
root-mean-square of the difference between the original and
the reconstructed array from equation (14) or directly using
the feature vector from equation (16). According to second
criterion, there should be no clusters of data points in the
reconstructed array where the difference or the residual is
greater than three times the representation error. A cluster is
defined in the CEN guide as a region of adjacent data points
representing at least 0.3% of the total number of points in
the array. To perform orthogonal decomposition based on
the CEN guide recommendations, it was essential to first
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FIGURE 3. Plot showing the decrease in representation error, defined as a ratio of
the minimum measurement uncertainty, with the increasing number of coefficients
in unprocessed feature vectors, stated as a ratio of the data array size, for the four
measured data arrays shown in Fig. 1 and 2. The array sizes for z-displacement in
Dataset 1 (panel) and the three strain components in Dataset 2 (reinforced rubber
matrix) are 1.18 × 10 5 and 7.78 × 10 5, respectively. The shaded segment of the plot
highlights those feature vectors with a representation error equal to or lower
than ucal .

establish ucal for the measured data arrays. For Dataset 1,
ucal had been previously evaluated to be 4 µm or 1% of the
measured data range based on the DIC calibration procedure
proposed by Sebastian and Patterson [35]. A reliable estimate
of ucal was not available for the arrays measured using digital
volume correlation in Dataset 2; therefore, it was assumed to
be 1% of the median of the data ranges for the three measured
strain arrays. The plots in figure 3 show the consistent trend of
decreasing representation error with an increase in the num-
ber of coefficients in the feature vector for the four measured
data arrays in Datasets 1 and 2. In these plots, the number of
coefficients in a feature vector has been presented as a ratio
of the measured data array size and the representation error,
urms has been stated as a ratio of the minimum measurement
uncertainty, ucal . The shaded region in Fig. 3 represents the
segment of the plots with feature vectors conforming to the
requirement in the CEN guide for urms to not exceed ucal .
For 2D data fields, it has been a common practice [36] to

perform decomposition using a large number of kernels such
that urms is significantly lower than ucal . A threshold level
is then defined to set those coefficients in the feature vector
to zero whose absolute magnitude is lower than the thresh-
old. This results in a relatively small number of significant
coefficients in the refined feature vector. In this approach, the
threshold value needs to be identified such that urms of the
reconstruction from the refined feature vector is equal to
the measurement uncertainty (ucal) to confirm with the CEN

guide recommendation. This is done by choosing an initial
value of the threshold to determine the resulting urms of the
reconstruction from the refined feature vector, which is then
adjusted in an iterative manner to make urms equal to ucal .

An alternate approach, to identifying the smallest set of
significant coefficients from an unprocessed feature vector,
is used in this work which ensures that urms of the refined
feature vector remains less than ucal . In this approach, coeffi-
cients are selected one by one from the original (unprocessed)
feature vector based on their absolute magnitudes, such that
the coefficients with the highest absolute magnitude are
selected first. After each selection, urms is evaluated using
equation (16) and compared with ucal . The selection process
is stopped when urms becomes less than ucal .
The feature vectors for the four measured data arrays,

with urms less than or almost equal to ucal , i.e., the ones
belonging to the shaded region in Fig. 3, were processed
using the proposed feature vector refinement approach. The
shaded segment of the plots in Fig. 3 are replotted as bar
charts in Fig. 4 in which the height of the bar represents
the number of coefficients in the unprocessed feature vector,
defined as the ratio of the data array size. The fill level in
the bars, highlighted in dark grey, represents the proportion
of coefficients retained in a feature vector after the refine-
ment process. It can be observed from the fill levels in these
bar charts that retained coefficients converged to a constant
number of significant coefficients. It is difficult to establish
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FIGURE 4. Bar charts showing the number of coefficients in the
unprocessed feature vectors, defined as ratios of the data array size, with
representation errors conforming to the CEN guide recommendation, i.e.,
within the shaded segment of Fig. 3. The fill level in the bars, shaded in
dark grey, indicates the proportion of significant coefficients retained in a
feature vector after refinement. Dataset 1 is from the panel and Dataset
2 from the reinforced rubber matrix.

this convergence with the threshold-based approach [36] pri-
marily because the threshold level at which urms ≈ ucal is

a function of the number of coefficients in the unprocessed
feature vector. The size of the converged set of most signifi-
cant coefficients for the fourmeasured datasets are reported in
Table 2. The ratios of the size of these converged sets of coef-
ficients to the original array size are also provided in Table 2,
which provide a measure of the reduction in dimensionality
offered by this volumetric decomposition process. The arrays
reconstructed from the refined feature vectors are compared
with the original arrays in Fig. 5.

To inspect the cluster residuals in the reconstructed data
arrays shown in Fig. 5, a spherical element was first defined
such that the number of adjacent points lying within this
spherical element are 0.3% of the total number of points in the
array. The spherical element was moved to every location in
the array grid and the cluster residual was evaluated by taking
the root-mean-square of the difference between the original
and the reconstructed array using the data points lying within
the spherical element. Fig. 6 shows the locations of the five
clusters with the highest residuals for the four reconstructed
data arrays presented in Fig. 5. For the arrays of strain com-
ponents, a single cluster of adjacent data points was identified
where the residual slightly exceeded the CEN recommended
maximum limit of 3ucal . This cluster was found to be located
where a highly localized feature in the strain distributions
was present, which is encircled by the dashed-red line in
Fig. 5 and 6. As described in Sect II, the proposed decom-
position algorithm is based on the discrete Chebyshev
polynomials, which is more suited to representing the global
features in the dataset. If there is a significant number of
highly localized features with sharp edges in a dataset, such
as the ones highlighted in Fig. 5, then there are other discrete
polynomials in the literature e.g. Krawtchouk moments [27],
which are more suited to defining such localized features.

V. COMPARISON OF MEASURED AND PREDICTED
VOLUMETRIC DATA
The applicability of methodologies [19], [30], which were
developed for quantitative comparison of 2D data fields uti-
lizing orthogonal decomposition, are analyzed in this section
for the volume data arrays. The CEN CWA-16799 guide [30]
has outlined a method for making a comparison between
the measured and predicted 2D data fields for the pur-
pose of validation of computational solid mechanics models.
In this method, the measured and predicted data fields are
first represented as feature vectors by performing orthogonal
decomposition. The coefficients of the two feature vectors are
then plotted against one another for a simple graphical com-
parison. The CEN guide recommends that the computational
model is considered acceptable if all of the pairs of coeffi-
cients in the two feature vectors fall within the uncertainty
zone defined by:

fPi = fSi±2uexp, i = 1, 2, . . . , l (25)

where fPi and fSi are the ith coefficients in the feature vec-
tors representing the predicted and the measured data fields,
respectively, and l is the total number of coefficients in the
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TABLE 2. Number of significant coefficients in the refined feature vectors with urms ≈ ucal and the corresponding ratios of reduction in data size for the
four measured arrays in the exemplar datasets.

FIGURE 5. Measured (left) and reconstructed (right) data arrays from the refined featured
vectors with urms≈ucal . The region encircled by the dashed-red line in the strain arrays
highlights the presence of a highly localized feature in the strain distributions. This figure is
best interpreted in colour. The displacement data (top) is from the panel and the strain data
from the reinforced rubber matrix.

feature vector. uexp is the total uncertainty which can be
determined by:

uexp =

√
u2cal + u2rms (26)

where ucal is the minimum uncertainty in the measured data
field and urms is the representation error in the reconstructed
data field.

To illustrate this method for volumetric datasets, the coef-
ficients of the feature vectors representing the measured and
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FE predicted displacement arrays in Dataset 1 are plotted
against one another in Fig. 7. It can be observed from the plot
in Fig. 7 that some of the points are outside the uncertainty
zone, defined by the two dashed lines, which, according to the
CEN guide criterion, makes the predictions of the FE model
unacceptable. This approach does not provide any informa-
tion about the degree to which the prediction results represent
the measured data or in this case, how bad is the FE model.
To fill this gap, a probabilistic validation approach [19] has
been developed which evaluates a validation metric, VM
representing the probability that the prediction results belong
to the same population as the measured data. Four steps are
involved in determining VM , which are briefly described
here. In the first step, the normalized relative error, ei for
each pair of coefficients in the feature vectors representing
the measured and predicted data are calculated using:

ei =

∣∣∣∣∣ fPi − fSi
max j

∣∣fSj ∣∣
∣∣∣∣∣ (27)

The weight,wi for each of the normalised error terms are then
determined using:

wi =
ei∑n
i=1 ei

×100 (28)

In the third step, an error threshold, ethresh is defined by divid-
ing the expanded total uncertainty, 2uexp by the coefficient in
the feature vector for the measured data with the maximum
absolute magnitude,

ethresh =
2uexp

max j
∣∣fSj ∣∣ (29)

In the last step,VM is determined by summing the weights for
all of the normalized errors terms that are found to be below
the defined error threshold:

VM =

∑
i
(wi∥ei < ethresh) (30)

where ∥ is an indicator function which takes the value 1 when
ei < ethresh and otherwise has a value zero.
From experience with historical 2D data, acquired from

full-field techniques such as DIC and TSA, it has been
established that 2D displacement and strain fields can be
decomposed into feature vectors with low representation
errors using, typically, less than a hundred Chebyshev
polynomials-based kernels. The feature vectors representing
volumetric data arrays can have more than a thousand coef-
ficients (see Table 2), which is consistent with the increased
number of grid points in a volume with addition of the third
dimension. In order to correctly apply the above-described
probabilistic validation approach to volumetric arrays, it is
important to first analyze the sensitivity of VM to the number
of coefficients in the feature vector pair of measured and
predicted data.

The four predicted data arrays shown in Fig. 1 and 2 were
decomposed into feature vectors with the same of number
of kernels as the ones for the measured data arrays plotted
within the shaded segment of Fig. 3. VM was then evaluated

FIGURE 6. Plots showing the location of five clusters of adjacent data
points, represented by spheres, comprising 0.3% of the total number of
points in the array with the highest residual. The cluster residual is
defined as a ratio of the average representation error, urms for the
reconstructed arrays shown in Fig. 5. For the strain arrays, the location of
the cluster with the highest residual error corresponds with the location
of the highly localized feature in the strain distribution, encircled by the
dashed-red line in Fig. 5. The displacement data (top) is from the panel
and the strain data from the reinforced rubber matrix. This figure is best
interpreted in colour.

for each corresponding feature vector pair representing the
pair of measured and predicted data arrays. The plot in Fig. 8
shows the sensitivity ofVM to the total number of coefficients
in the feature vectors representing themeasured and predicted
data. The number of normalized error terms (ei) that are
found to be below the error threshold (ethresh) increases with
the inclusion of more coefficients in the unprocessed feature
vector. This causes the accumulative weight of the error terms
below the error threshold to increase as well, which is defined
as the validation metric, VM according to equation (30).
Hence, in order to acquire unbiased values for VM , it is
imperative to exclude those coefficients in the feature vector
pairs representing the measured and predicted arrays, whose
associated kernels do not make a significant contribution in
defining the inherent distribution in the original arrays.

It was established in the previous section that with the
proposed approach for feature vector refinement, a smallest
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FIGURE 7. Graph of coefficients of the refined feature vectors
representing the measured and predicted displacement arrays for the
aerospace panel, shown in Fig. 1, plotted against one another. The dashed
lines represent the total expanded uncertainty, 2uexp.

set of significant coefficients can be identified for an arbitrary
representation error. With this set of significant coefficients,
an unbiased, converged value for VM can be obtained. The
values for VM obtained using the unprocessed pair of feature
vectors are replotted in Fig. 9 as bars. The fill level of the
bars, highlighted in dark grey colour, represents the values for
VM which were determined after excluding the insignificant
coefficients from the feature vectors. It can be observed from
the fill levels in bar charts of Fig. 4 and 9 that VM con-
verges to a constant value as the retained coefficients in the
refined feature vector converge to a constant set of significant
coefficients. The converged values of VM are not dependent
on the feature vector length and hence provide an unbiased
quantitative measure of the confidence associated with the
agreement between the predicted and measured results. The
converged values of VM for the four predicted data arrays in
Datasets 1 and 2 are provided in Table 3.

VI. DISCUSSION
The quantitative comparison of large datasets has been a
challenging task for researchers primarily because datasets
from different sources often do not share the same grid size,
data pitch or coordinate system. A rudimentary approach
for data comparison, which is still predominant in industry
and academia, involves identifying critical locations in the
measured datasets and qualitatively establishing the agree-
ment between the predicted and measured data points at these
critical locations. This paper reports the development of an
algorithm which decomposes a volumetric array into a set of
coefficients by fitting a predefined set of 3D kernels, which
are formed from 1D discrete Chebyshev polynomials. The set
of coefficients are collated into a column vector, referred to
as the feature vector, based on the ordering system defined by
Bateman [30], which has been extended to three dimensions

TABLE 3. Validation metric for the four predicted data arrays in exemplar
datasets.

in this work. Since this arrangement of coefficients in a
feature vector is fixed, this allows one-to-one comparison
of the volumetric arrays within the feature vector space,
irrespective of whether they share the same grid size, data
pitch or coordinate system.

The number of coefficients required in a feature vector to
accurately represent the original data array depends on the
‘shape’ of the distribution in an array. In general, the distri-
bution in a strain array, being derived from partial derivatives
of displacements, tends to have a higher spatial variation
compared to that in a displacement array. Hence, strain arrays
are typically represented using a set of coefficients associated
with relatively high order kernels. To illustrate this with an
example, the order of the kernels associatedwith the fivemost
significant coefficients in the refined feature vector represent-
ing the displacement array (dz) and the strain array (eyy) are
shown in Tables 4 and 5, respectively. The order of the kernel
for the fifth most significant kernel was found to be 4 and
17 for the out-of-plane displacement (dz) and the in-plane
strain (eyy), respectively. The arrays in the second dataset,
shown in Fig. 2, contain localized strains around the nylon
cord reinforcements. In order to accurately represent these
strain localizations, the strain arrays in Dataset 2 required up
to nine times as many kernels as required by the displacement
array in Dataset 1.

The plots in Fig. 3 show that the representation error
(urms) decreases in an exponential manner with the increase
in the number of kernels used for decomposition. It can be
observed in Fig. 3 that these plots, particularly for dz, exhibit
a jagged profile. This jaggedness is caused by the inclusion
of coefficients whose associated kernel makes a significant
contribution to representing the inherent distribution in the
original data array, thereby causing a significant drop in
urms when those coefficients are included. The refinement
approach described in the section IV identifies the smallest
set of significant coefficients that results in an arbitrary urms,
maximizing the reduction in the dimensionality of the data
within the feature vector space. In this study, refinement of the
unprocessed feature vector was performed so that urms was
just less than the minimummeasurement uncertainty (ucal) of
the measurement system, as per the recommendations of the
CEN CWA-16799 guide [30], which states that urms should
not exceed ucal . The reduction in the number of coefficients
in the refined feature vector, after removal of the redundant
coefficients, has been illustrated using the bar charts in Fig. 4.
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FIGURE 8. Plot showing the values of validation metric at feature vector length to
data array size ratios within the shaded segment of Fig. 3 for the four pairs of
measured and predicted data arrays shown in Figures 1 and 2. Dataset 1 is from the
panel and Dataset 2 from the reinforced rubber matrix.

TABLE 4. Visualization of the discrete Chebyshev-based 3D kernels belonging to the five most dominant coefficients in the refined feature vector
representing the out-of-plane displacement array, dz in the aerospace panel. The absolute magnitudes of the coefficients listed in the table are
normalized by the coefficient in the feature vector with the maximum absolute magnitude. This table is best interpreted in colour.

As mentioned earlier, one of the primary applications
of the decomposition method lies in making meaningful

comparisons of datasets. This has led to a recently-developed
approach for quantitative validation of computational solid
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FIGURE 9. Bar charts showing the validation metric, VM determined from
unprocessed feature vector pairs, representing the measured and
predicted data arrays, at feature vector length to array size ratios within
the shaded segment of Fig. 3. The fill level in the bars, shaded in dark
grey, indicates the values of VM determined after removing the
insignificant coefficients from the feature vector pairs by employing the
refinement approach described in the fourth section. Dataset 1 is from
the panel and Dataset 2 from the reinforced rubber matrix.

mechanics models [19]. In this approach, the measured and
predicted data arrays are first represented by a pair of feature

vectors obtained using orthogonal decomposition. The cumu-
lative weight of the normalized differences between the
individual coefficients of the two feature vectors, which are
found to be below an error threshold based on the total mea-
surement uncertainty, is then computed to obtain a validation
metric, VM . The magnitude of VM represents the probability
that the predicted data belong to the same population as the
measured data; and hence, provide a quantitative measure of
the quality of the predicted data. In this study, the applica-
bility of this validation approach to volumetric data arrays
was assessed. The validation metric, VM was found to be
sensitive to the number of coefficients in the unprocessed
feature vector, which can be seen in the plot in Fig. 8. It was
demonstrated in Fig. 9 that a stable and unbiased value of
the validation metric, VM can be acquired by using the set of
most significant coefficients in a feature vector.

The proposed orthogonal decomposition algorithm was
developed with the aim of decomposing volumetric datasets
which contain spatial variation in all three dimensions. Such
datasets are typically produced by techniques such as auto-
mated serial-sectioning and X-ray computed tomography.
However, the algorithm is equally applicable to 2D data fields
which vary in the temporal domain and, for the purpose of
orthogonal decomposition, can be treated as a volumetric
array. In Dataset 1, a series of 41 2D out-of-plane surface
displacement fields, acquired using DIC, of an aerospace
panel excited at its third resonant frequency, were stacked in
the z-direction to construct a volumetric data array shown in
Fig. 1. The constructed array was orthogonally decomposed
into a feature vector with 758 significant coefficients giv-
ing a representation error (urms) of the reconstructed array
equivalent to the minimum measurement (ucal) of the DIC
system. The potential advantage of employing 3D orthogo-
nal decomposition over its 2D counterpart was explored by
individually decomposing each of the 41 slices in the x-y
plane of the data array in Fig. 1 into feature vectors, with
urms≈ 0.25ucal , using the image decomposition algorithm
based on the same 1D discrete Chebyshev polynomials which
were used in the development of the volume decomposition
algorithm. The unprocessed feature vectors for each slice
were refined using the method reported in the section IV to
achieve urms≈ucal . Each of the 41 refined feature vectors,
representing the individual slices of the volume, contained
on average 100 coefficients. Hence, the whole data array was
represented by a total of 4100 coefficients in 41 feature vec-
tors, which are five timesmore than the coefficients in a single
feature vector resulting from volume decomposition. The 3D
kernels in volume decomposition can represent distributions
along all three dimensions of data array. This is primarily the
reason why volume decomposition required a relatively small
set of kernels to represent the data array compared to its 2D
counterpart.

The volume decomposition algorithm offers great poten-
tial for increasing efficiency in analyzing large volumes of
experimental data, such as that produced by experiments con-
ducted on the dynamic response of components. High-speed
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TABLE 5. Visualization of the discrete Chebyshev-based 3D kernels belonging to the five most dominant coefficients in the refined feature vector
representing the out-of-plane displacement array, dz in the aerospace panel the strain array, eyy in the reinforced rubber matrix. The absolute magnitudes
of the coefficients listed in the table are normalized by the coefficient in the feature vector with the maximum absolute magnitude. This table is best
interpreted in colour.

cameras, which are capable of acquiring tens of thousands
of images in a matter of seconds, are typically employed in
such experiments. A set of deformation fields from images
acquired over an arbitrary time interval can be constructed
into volumetric segments, which can then be decomposed
into feature vectors using orthogonal decomposition. This
would not only allow significant data reduction but also
reduce the time and effort required to interpret experimental
data.

VII. CONCLUSION
This paper reports the development of an orthogonal decom-
position algorithm based on discrete Chebyshev polynomials
which can decompose volumetric data arrays into feature
vectors. This allows for straightforward quantitative com-
parison of information-rich three-dimensional (3D) datasets
within feature vector space, irrespective of whether they share
the same grid size, data pitch or coordinate system. The
quantitative data comparison capability of the decomposition
algorithm was demonstrated using two pairs of exemplar

measured and finite element (FE) predicted datasets. The
experimental data in first pair of datasets comprised of time-
varying out-of-plane surface displacement fields of a panel
subjected to excitation at one of its resonant frequencies,
which were acquired using digital image correlation. The
experimental data in the second pair of datasets represented
the internal 3D strain fields in a nylon cord reinforced-rubber
matrix specimen subjected to a tensile load, which were
measured using digital volume correlation technique. The
decomposition algorithm was successfully employed to per-
form quantitative validation of FE-predicted data using
a validation metric, which was previously developed for
two-dimensional data fields. Future work will focus on the
use of volume decomposition on X-ray micro-computed
tomography data for characterizing damage in composite
microstructures.
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