
PAPER • OPEN ACCESS

Macroscopic elastic stress and strain produced by
irradiation
To cite this article: Luca Reali et al 2022 Nucl. Fusion 62 016002

 

View the article online for updates and enhancements.

You may also like
Review—Carbon Electrodes in
Magnesium Sulphur Batteries:
Performance Comparison of Electrodes
and Future Directions
Utkarsh Chadha, Preetam Bhardwaj,
Sanjeevikumar Padmanaban et al.

-

The 2020 magnetism roadmap
E Y Vedmedenko, R K Kawakami, D D
Sheka et al.

-

Radiation damage and abnormal
photoluminescence enhancement of
multilayer MoS2 under neutron irradiation
Guodong Xiong, Huiping Zhu, Lei Wang et
al.

-

This content was downloaded from IP address 194.81.223.66 on 24/02/2022 at 11:35

https://doi.org/10.1088/1741-4326/ac35d4
/article/10.1149/1945-7111/ac4104
/article/10.1149/1945-7111/ac4104
/article/10.1149/1945-7111/ac4104
/article/10.1149/1945-7111/ac4104
/article/10.1088/1361-6463/ab9d98
/article/10.1088/1361-648X/ac31f8
/article/10.1088/1361-648X/ac31f8
/article/10.1088/1361-648X/ac31f8
/article/10.1088/1361-648X/ac31f8
/article/10.1088/1361-648X/ac31f8


International Atomic Energy Agency Nuclear Fusion

Nucl. Fusion 62 (2022) 016002 (25pp) https://doi.org/10.1088/1741-4326/ac35d4

Macroscopic elastic stress and strain
produced by irradiation

Luca Reali∗ , Max Boleininger, Mark R. Gilbert and
Sergei L. Dudarev

UK Atomic Energy Authority, Culham Science Centre, Oxfordshire OX14 3DB, United Kingdom

E-mail: Luca.Reali@ukaea.uk, Max.Boleininger@ukaea.uk, Mark.Gilbert@ukaea.uk and
Sergei.Dudarev@ukaea.uk

Received 17 June 2021, revised 1 October 2021
Accepted for publication 3 November 2021
Published 2 December 2021

Abstract
Using the notion of eigenstrain produced by the defects formed in a material exposed to high
energy neutron irradiation, we develop a method for computing macroscopic elastic stress and
strain arising in components of a fusion power plant during operation. In a microstructurally
isotropic material, the primary cause of macroscopic elastic stress and strain fields is the
spatial variation of neutron exposure. We show that under traction-free boundary conditions,
the volume-average elastic stress always vanishes, signifying the formation of a spatially
heterogeneous stress state, combining compressive and tensile elastic deformations at different
locations in the same component, and resulting solely from the spatial variation of radiation
exposure. Several case studies pertinent to the design of a fusion power plant are analysed
analytically and numerically, showing that a spatially varying distribution of defects produces
significant elastic stresses in ion-irradiated thin films, pressurised cylindrical tubes and
breeding blanket modules.

Keywords: virtual tokamak, irradiation induced stress and strain, radiation effects, multi-scale
modelling, neutron irradiation, ion irradiation, elasticity

(Some figures may appear in colour only in the online journal)

1. Introduction

The accumulation of microscopic defects resulting from the
exposure of materials to neutron irradiation is one of the crit-
ical factors limiting the lifetime of components in a fission
power plant [1] and, by implication, is an issue of fundamen-
tal significance in the context of a comparative assessment of
designs of power-generating fusion reactors [2, 3]. The ambi-
tious timescale for the development of fusion reactors forces
one to rely on virtual engineering [4, 5], hence creating a
strong drive towards the development of the so-called ‘digital
twins’, a relatively new concept in the area of nuclear fusion
[6]. It is important to include in this process the consideration
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of operating conditions, projecting the reactor design beyond
the digital twin concept, to enable the assessment of effects
of neutron irradiation. This point was highlighted by Jumel
et al [7] in relation to the problem of ageing of fission reactors.
The present study and our earlier work [8] are the initial steps
in establishing the fundamental link between the microscopic
effects of exposure of materials to irradiation and macroscopic
component-scale finite element virtual reactor models.

In a fission reactor, cladding materials receive the high-
est exposure to neutron irradiation [9, 10], comparable to
the radiation exposure expected in a fusion power plant.
The accumulation of defects in a zirconium alloy, a material
often used as cladding for uranium oxide fissile nuclear fuel,
gives rise to anisotropic dimensional changes and irradiation-
induced deformations in the limit of high irradiation dose.
Since zirconium alloys have hexagonal close-packed (hcp)
crystal structure, the observed dimensional changes stem pri-
marily from the texture of the cladding material [10, 11] and
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the intrinsic anisotropy of the hcp crystal structure. Not only
the point defects in hcp crystals are anisotropic [12], but the
dynamics of agglomeration of defects into mesoscopic and
macroscopic dislocation loops and dislocation networks is
anisotropic as well [10, 13], resulting in significant macro-
scopic deformations developing in the limit of high irradiation
dose [9, 10].

On the other hand, the candidate materials typically
selected for the structural components of a fusion power plant
all have isotropic cubic crystal structure. It is either the body-
centred cubic structure characterising iron–chromium alloys,
ferritic steels and tungsten, or the face-centred cubic structure
of copper, copper alloys and austenitic steels [2, 14–17]. Expo-
sure of these materials to irradiation gives rise to swelling or,
in other words, to the predominantly isotropic volume expan-
sion resulting from the accumulation of defects in the material
[18–21]. In the absence of applied load or other constraints,
no significant anisotropic dimensional changes are expected
to occur in the crystallographically isotropic materials selected
for the structural components of a fusion power plant.

A remaining source of anisotropy stems from the macro-
scopic spatial variation of the neutron exposure itself. Com-
ponents of a fusion power plant are going to be exposed to
neutron and ion irradiation generated by a localised source,
the fusion plasma. The flux of high energy 14.1 MeV neu-
trons attenuates in the blanket surrounding the plasma on the
length scale of several tens of centimetres [22, 23]. Energetic
ions penetrate into the plasma-facing materials to the depth of
several micrometres [24–26], whereas hydrogen and helium
produced either by transmutation or by a direct exposure to
the fusion plasma, can diffuse deep into the bulk of structural
components, particularly at elevated temperatures [27].

Anisotropic stress in reactor components stems not only
from the formation of radiation defects. Gravitational body
forces act in the direction of g and the magnitude of gravi-
tational stress is appreciable, for example the 54 divertor cas-
settes in ITER weighs approximately 10 tons each [28]. The
magnetic field in a tokamak exerts magnetic body forces on the
ferromagnetic ferritic–martensitic steels in the breeding blan-
ket modules, and these forces are expected to be several times
stronger than gravity. Thermal expansion is also expected to
generate high stresses in reactor components [29]. The dif-
ference between the forces from gravity, magnetic fields and
thermal expansion, and the internal forces from the defects
formed following the exposure of materials to neutron irra-
diation is that irradiation changes the microscopic structure
of a material, and hence the effects of irradiation, including
radiation-induced deformations and stress, are in most cases
irreversible.

The formation of radiation defects [30, 31] and defects
associated with gas impurity atoms [32] give rise to the vol-
umetric expansion of the material [33]. The magnitude of this
volumetric expansion varies depending on the irradiation dose
and temperature [20], whereas the presence of helium and
hydrogen may have a significant additional non-linear effect
on the microstructure and swelling rates [34–36].

Swelling typically increases monotonically with exposure
to irradiation and exhibits a complex pattern of variation as

a function of dose and temperature [20, 37]. It is natural to
expect that in an operating reactor, where different parts of
every component have different temperatures and are exposed
to irradiation at different dose rates, swelling is spatially non-
uniform. In this study, we investigate what effect this spatial
non-uniformity of swelling is going to have on the stress and
strain developing in reactor components during the operation
of the reactor. The non-uniform irradiation, temperature and
loading conditions developing in large-scale reactor compo-
nents are different from the uniform or zero-stress state devel-
oping in test samples of materials employed in the context of
irradiation experiments and tests [15, 38].

In an earlier study [8], we found that the density of relax-
ation volumes of defects represents the fundamental notion
linking microscopic and macroscopic scales in a holistic simu-
lation of radiation-induced deformations. The treatment devel-
oped in [8] was focussed solely on the evaluation of the total
stress and strain fields, which include both the elastic and
defects’ own contributions to deformation.

However, only the elastic stress enters the engineering
structural integrity criteria. Here, we develop an approach that
enables computing the purely elastic stresses and deforma-
tions in an irradiated component on the macroscale, with an
additional emphasis on the effect of boundary conditions.

The central concept that enables separating the purely elas-
tic part of deformation from the total deformation, and at the
same time developing a genuinely multiscale approach to the
problem, is the notion of Mura’s eigenstrain [39], and the fact
that it can be identified uniquely with the tensorial density of
relaxation volumes of defects. This statement and a proof of
its validity is given in the first section of the paper.

We then explore several case studies involving representa-
tive geometries of components or samples exposed to irradia-
tion. They include a specimen of rectangular geometry often
used in the context of ion irradiation experiments. We then
explore the deformations developing in a pressurised cylin-
drical pipe exposed to irradiation from an external source.
This case describes a typical test sample used for investigat-
ing the combined effect of stress and neutron irradiation on
materials. The most accessible to mathematical analysis case
is a spherical shell exposed to a centrally-symmetric source
of irradiation. This case admits an exact analytical solution,
which agrees fully with numerical finite element model (FEM)
simulations. Finally, using a purely numerical FEM approach,
we evaluate elastic stress and strain developing in a cellular
rectangular component exposed to irradiation. Such a cellu-
lar structure resembles a section of a tritium breeding blanket
of a fusion tokamak reactor, and the simulations illustrate a
complex pattern of stress and strain that is expected to develop
in a geometrically complex macroscopic reactor component
exposed to a spatially varying neutron flux—entirely different
from the cases where irradiation is more uniform.

In this work, we adopt the same approximation as in ref-
erence [8], where the density of relaxation volume tensors of
defects is taken as diagonal with respect to its Cartesian com-
ponents. This spatially-varying isotropic volumetric swelling
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approximation is valid if the defects adopt random configura-
tions with respect to their internal directional degrees of free-
dom [8]. There are cases where the applied stress, or the stress
generated by the defects themselves, polarize the relaxation
volume tensor density of defects [25, 40, 41]. This aspect of
microstructural evolution and its effect on the elastic stress
and strain fields, while being accessible to the methodology
developed below, is a non-linear microstructural relaxation
phenomenon that remains outside the scope of this study.

When investigating the various case studies below, we take
the local relaxation volume density of defects at a given loca-
tion as proportional to the radiation exposure of the material at
that location. In a real operating scenario, the density of relax-
ation volumes at a given location is given by a complex convo-
lution of histories of radiation exposure, temperature and stress
at that location, see for example references [25, 42], which
themselves depend in a self-consistent manner on the history of
evolution of these quantities at other locations in a component
and possibly even in the entire reactor structure. Still, irrespec-
tively of the approximations adopted for the evaluation of the
density of relaxation volumes of defects, the fundamental link
between this entity and the elastic strain and stress fields gen-
erated by irradiation remains unique, and it is this link and its
implications that we establish and explore in detail below.

2. Defect eigenstrain theorem

Since the spatial scale of a macroscopic component is many
orders of magnitude larger than the microscopic size of defects
present in the material, the field of displacements u(x) gen-
erated by a defect situated at x′ can be evaluated using the
far-field approximation as

ui(x) = −P jl
∂

∂xl
Gi j(x − x′), (1)

where Pjl is the elastic dipole tensor of the defect [43, 44],
and Gi j(x − x′) is the Green function of elasticity equations
[39, 45]. A general form of equation (1), describing the field of
displacements produced by an ensemble of defects distributed
in the material, is

ui(x) = −
∫

Π jl(x′)
∂

∂xl
Gi j(x − x′)d3x′, (2)

where Π jl(x) =
∑

aP(a)
jl δ(x − Ra) is the density of elastic

dipole tensors of defects. This field is related to another field
ωmn(x), describing the density of relaxation volume tensors of
defects, via

Π jl(x) = Cjlmnωmn(x), (3)

where C jlmn is the fourth-rank tensor of elastic constants. The
density of relaxation volume tensors ωmn(x) is defined as

ωmn(x) =
∑

a

Ω(a)
mnδ(x − Ra), (4)

where Ω(a)
mn is the relaxation volume tensor of a defect situated

at Ra. Relaxation volume tensors of defects can now be rou-
tinely computed using density functional theory [30, 31, 46,

47] or, with lesser accuracy, using molecular dynamics simu-
lations, where interactions between the atoms are described by
semi-empirical potentials [33, 48]. For a particular defect con-
figuration, the tensorial density of relaxation volumes is given
by equation (4), whereas in the general case it can be treated
as an ensemble-averaged quantity [8]

ωmn(x) =

〈∑
a

Ω(a)
mnδ(x − Ra)

〉
, (5)

where 〈· · ·〉 refers to averaging over a statistical ensemble of
representative realisations of microstructure. Function (4) is
singular at locations occupied by the defects, whereas (5) is
non-singular.

In terms of the density of relaxation volume tensors of
defects (4) and (5), the field of displacements can be expressed
as

ui(x) = −
∫

Cjlmnωmn(x′)
∂

∂xl
Gi j(x − x′)d3x′. (6)

Comparing this relation with equation (3.23) by Mura [39]

ui(x) = −
∫

Cjlmnε
∗
mn(x′)

∂

∂xl
Gi j(x − x′)d3x′, (7)

we establish and prove the defect eigenstrain theorem, namely
the statement that Mura’s spatially-varying field of eigen-
strains ε∗mn(x) is identical to the density of relaxation volume
tensors of defects, viz

ε∗mn(x) ≡ ωmn(x). (8)

The recognition of equivalence of eigenstrain ε∗mn(x) to the den-
sity of relaxation volume tensors ωmn(x) enables defining pure
elastic strain and stress following the convention [39]

εi j(x) = ε(tot)
i j (x) − ωi j(x), (9)

and

σi j(x) = Ci jklεkl(x) = σ(tot)
i j (x) −Πi j(x)

= σ(tot)
i j (x) − Ci jklωkl(x), (10)

where σ(tot)
i j (x) = Ci jklε

(tot)
kl (x). The total strain in (9) is taken as

a symmetrised derivative of atomic displacements [49]

ε(tot)
kl (x) =

1
2

(
∂uk(x)
∂xl

+
∂ul(x)
∂xk

)
, (11)

and hence equations (9) and (10) define the purely elastic com-
ponents of spatially varying strain and stress. Equations (9)
and (10) show that at the macroscopic level, elastic strain and
stress fields are defined taking the notion of a material contain-
ing a certain local concentration of defects, corresponding to
eigenstrain ωi j(x), as a reference non-distorted configuration.

Defects can be produced not only by irradiation but also
by processing, for example for the purpose of creating a
microstructurally complex material. A complex microstruc-
ture can be viewed as a highly imperfect material, char-
acterised by a high density of regions where local atomic
structure deviates significantly from ideal crystalline order.
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An example of a microstructurally complex material is steel,
where strongly fluctuating plastic strains and deformations
are introduced during manufacturing by alloying and through
thermo-mechanical treatments.

In the absence of conventional macroscopic body forces,
for example gravity or thermal expansion [49], the condition
of mechanical equilibrium [45] ∂σi j(x)/∂x j = 0, expressed in
terms of elastic stress (10), has the form

Ci jkl
∂ε(tot)

kl (x)
∂x j

− Cipmn
∂ωmn(x)
∂xp

= 0. (12)

Interpreting this as a condition of equilibrium for the total
stress, namely ∂σ(tot)

i j (x)/∂x j + fi(x) = 0, from equation (12)
we see that the spatially varying eigenstrain (4) can be inter-
preted as a source of an effective body force [8]

fi(x) = −Cipmn
∂ωmn(x)
∂xp

= − ∂

∂xp
Πip(x). (13)

This interpretation takes the ideal crystalline state of the mate-
rial as a reference. In this picture, radiation swelling originates
from the internal body forces generated by the distribution of
defects defined by equation (13). These forces act on the ideal
atomic structure of the material, causing it to deform.

A convenient feature of pure elastic strain (9) is that the
integral of the trace of the total strain over the volume V of
the region occupied by the material, subject to traction-free
boundary conditions, equals the sum of relaxation volumes of
all the defects in it [8, 43, 50]∫

V
ε(tot)

ii (x)d3x =

∫
V
ωii(x)d3x. (14)

The trace of pure elastic strain vanishes after integration over
the same region ∫

V
εii(x)d3x = 0. (15)

This condition shows that the trace of pure elastic strain εii(x)
either vanishes identically everywhere inside the material, or
changes sign, varying from compression to tension. A detailed
proof, given in appendix A, shows that εi j(x) in fact satisfies
an even stronger condition∫

V
εi j(x)d3x = 0. (16)

The latter is particularly significant since it shows that it is not
only the elastic strain that averages to zero over the volume of
the material. The elastic stress, which is a linear combination
of elements of the elastic strain tensor, must also vanish after
the integration over the volume of the material, provided that
the traction-free boundary conditions are satisfied; namely∫

V
σi j(x)d3x = 0. (17)

Below, we show that this condition of vanishing mean stress
proves highly significant in applications.

It is the total local strain ε(tot)
i j (x) that is observed in x-

ray diffraction experiments. For example, a negative value of

total strain, signifying lattice contraction, is observed in an
elastically unstrained material containing high spatially homo-
geneous concentration of vacancies [51]. On the other hand,
large positive strain associated with the accumulation of self-
interstitial atom defects is observed in thin near-surface layers
of tungsten implanted with self-ions to a relatively low dose
[25]. The integral of the trace of the total strain ε(tot)

ii (x) over the
geometric volume of the material determines the magnitude of
dimensional changes and the amount of volumetric swelling
occurring following exposure to radiation, see appendix B for
more detail.

We highlight the macroscopic nature of distinction between
the total and pure elastic components of strain. At a micro-
scopic level, where we are interested in the local deformation
of the lattice in the vicinity of a particular defect, there is no
need to separate the total and elastic components of strain.
However, at the macroscale, where the density of relaxation
volumes of defects (4) becomes a meaningful macroscopic
quantity, separating the total and elastic components of strain
is fully warranted and in fact necessary.

In what follows, we explore several examples illustrating
how elastic strain and stress, (9) and (10), vary in reactor com-
ponents exposed to irradiation. We find elastic strain and stress
fields in a rectangular-shape component where the distribu-
tion of defects is either spatially homogeneous or spatially
heterogeneous. This geometry is also commonly used in ion
implantation experiments.

We also investigate the analytically tractable cases of com-
ponents with cylindrical and spherical geometries exposed to
symmetric sources of radiation. Pressurised cylindrical pipes
are used in neutron irradiation tests probing how materials
respond to exposure to neutrons in the presence of external
stress, generated by the internal gas pressure in a pipe. A
spherical shell provides a convenient generic case for explor-
ing radiation effects in materials since the displacement, strain,
and stress fields turn out to depend only on one, radial, vari-
able. This enables finding exact analytical solutions suitable
for comparison with numerical FEM analysis. Abaqus 2021
computer programme was used for this numerical work. The
case studies given below enable exploring the effect of spa-
tial variation of defect densities, stemming from the variation
of neutron flux, on the magnitude of elastic strain and stress
developing in reactor components following their exposure to
irradiation.

We find that in the absence of constraints imposed by other
elements of the reactor structure, a spatially homogeneous dis-
tribution of defects gives rise to volumetric swelling but pro-
duces no elastic stress in a component. On the other hand, a
strongly spatially heterogeneous distribution of defects, stem-
ming from a strongly spatially varying radiation exposure, may
give rise to stress concentrations of significant magnitude, of
both compressive and tensile character.

3. Elastic field of point defects

In this section, we provide the general formulae describing the
elastic field of point defects produced in a material by exposure
to irradiation. We assume the validity of isotropic elasticity
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approximation, and also that the defects adopt statistically ran-
dom orientations [8], resulting is that the individual relaxation
volume tensors acquire the form

Ω(a)
mn =

1
3
Ω(a)δmn, (18)

where δmn is the Dirac delta-symbol, satisfying the condi-
tion δnn = 3. As a result, the spatially-dependent eigenstrain
averaged over all orientations is also diagonal with respect to
indices m and n, namely

ε∗mn(x) = ωmn(x) =
1
3
ω(x)δmn, (19)

where ω(x) is the density of relaxation volumes of defects [8].
Multiplying (19) by the tensor of elastic constants of the mate-
rial, which in the isotropic approximation has the form [39, 45]

Ci jkl = μ
2ν

1 − 2ν
δi jδkl + μ

(
δikδ jl + δilδ jk

)
, (20)

where ν is the Poisson ratio and μ is the shear modulus, we
find the eigenstress [39] generated by the defects

σ∗
i j(x) = Ci jklε

∗
kl(x) = Bω(x)δi j. (21)

In the above equation, B is the bulk modulus of the material
[8, 52]

B =
2μ
3

(
1 + ν

1 − 2ν

)
. (22)

The field of displacements generated by an isotropic
point defect with relaxation volume Ω situated at point x′ is
[50, 53]

ui(x) =
Ω

12π

(
1 + ν

1 − ν

)
xi − x′i
|x − x′|3

= − Ω

12π

(
1 + ν

1 − ν

)
∂

∂xi

1
|x − x′| , (23)

which follows from equation (6) taken in the isotropic elas-
ticity approximation, with the density of relaxation volume
tensors given by ωmn(x) = 1

3Ωδmnδ(x − x′).
Kossevich [50] gives a detailed analysis of the above for-

mula for the field of displacements produced by an isotropic
point defect and discusses the range of its validity. In partic-
ular, [50] highlights the fact that the field of displacements
given by equation (23) does not take into account the bound-
ary conditions at surfaces, and hence an attempt to evaluate the
relaxation volume of a defect directly from (23), neglecting the
boundary conditions, produces an unexpectedly wrong result.

Similarly, the field of displacements generated directly by
a distribution of point defects and not including the effect of
boundary conditions, is

ui(x) =
1

12π

(
1 + ν

1 − ν

) ∫
V
ω(x′)

xi − x′i
|x − x′|3 d3x′. (24)

The total strain can now be computed using equation (11).
Comparing equations (24) and (11), we see that the trace of the
total strain tensor ε(tot)

ii (x), computed directly from (24), equals

ε(tot)
ii (x) =

1
3

(
1 + ν

1 − ν

)
ω(x). (25)

The fact that the right-hand side of the above equation is not
equal to ω(x) illustrates the fact that the total change of volume
of the material due to the presence of defects is only partially
associated with the direct sources of strain, i.e. the local defor-
mations of the lattice produced by the defects, and that partially
it arises from the elastic fields formed as a result of application
of boundary conditions [43, 50].

A common example of eigenstrain is thermal strain.
Equation (1.1) by Mura [39] states that in the isotropic approx-
imation ε∗i j(x) = δi jαT(x), whereα is the linear thermal expan-
sion coefficient and T(x) is the temperature, provided that the
body is in its reference state at T = 0. Applying the condition
of mechanical equilibrium, we see that the above thermal strain
produces an effective body force [49]

fi = −3Bα
∂T
∂xi

. (26)

Inserting (18) and (20) into (13) and comparing it with (26)
shows a way of evaluating stress and strain fields through the
use of a fictitious thermal expansion term in FEM, defined by
α = 1/3 and T(x) = ω(x). A similar approach was followed
by Nguyen et al [54] and Leide et al [55].

Concluding this section, we note that the isotropic formula
for the volume tensor of a defect (18) used in a phenomeno-
logical treatment of swelling [8, 54–56] does not represent a
generally valid approximation. There are documented cases
showing that externally applied stress, or the stress develop-
ing in a material under irradiation, can polarise defects and
generate eigenstrain not diagonal with respect to its Cartesian
components [25, 40, 41, 57]. In this study, we do not explore
the effects of elastic polarization of defects, but note that
equations (9)–(13) enable the evaluation of elastic deforma-
tion, strain and stress for an arbitrary anisotropic distribution
of eigenstrain produced by the defects generated in materials
by irradiation.

4. Elastic stress in an ion-irradiated thin film

Ion irradiation is used as a cost- and time-effective surrogate
for neutron irradiation when studying changes in materials
properties in a reactor environment. High energy ions have a
shorter penetration depth compared to neutrons, and the dam-
aged layer in an ion-irradiated sample is typically only a few
microns in thickness. The implantation profile depends on
the energy of the ions and can be estimated using the SRIM
[58, 59] Monte Carlo simulation code. Figure 1 shows the dis-
placement damage profile (in displacements per atom, or dpa)
for W ions implanted into W. The data points shown were
obtained from SRIM via the so-called Kinchin–Pease ‘quick’
calculation (as recommended in [60, 61]). For ion energies of
10, 20 and 50 MeV, the implantation of 10 000 W ions were
simulated and the resulting vacancies/ion as a function of depth
into the sample were used to calculate the dpa for an incident
ion fluence of 1014 ions cm−2, which is typical of low-dpa
ion-irradiation experiments (see, for example, table S1 in the
supplemental material of [25]). Note that, for these SRIM sim-
ulations, the ASTM standard threshold displacement energy of
90 eV (see, e.g. [62], table II) was assumed for W.
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Figure 1. Displacement damage profile caused by W ions implanted into W, calculated using SRIM and corresponding to an incident ion
fluence of 1014 ions cm−2. The data are fitted using equation (C1). The relaxation volume density used in simulations of elastic stress and
strain fields produced by ion irradiation is assumed to follow the same spatial profile, and is scaled such that the relaxation volume density
curve for the 20 MeV case peaks at 1%. For the definition of depth and the coordinate system used in simulations see section 4.

Because of the short ion implantation range, samples for
ion-irradiation studies are commonly chosen as thin foils,
with micro-mechanical tests subsequently applied to charac-
terize the mechanical properties of the highly stressed dam-
aged layer. For this purpose, it is desirable to be able to fully
quantify the relation between the residual stress, or eigenstress,
and the elastic fields in the sample. In the limit where the foil
thickness is small relative to its width, we are able to find ana-
lytical solutions for the elastic stress and strain fields resulting
from the accumulation of defects in the foil.

The general solution for the field of displacements is
obtained by solving for the condition of mechanical equilib-
rium (12), which is a linear inhomogeneous partial differen-
tial equation. In what follows, we solve the problem using
a standard approach by first finding a particular solution of
equation (24), and then by finding a solution to the homoge-
neous problem, which follows from the condition of mechani-
cal equilibrium (12) for ωmn(x) = 0. The full solution is given
by the sum of the particular and homogeneous solutions, where
the unknown constants entering the homogeneous solution are
identified from the boundary conditions.

Consider a foil with its planar surface parallel to the xy-
plane, irradiated by ions coming from the z-direction, produc-
ing a relaxation volume density profile ω(z). As the foil width
in x- and y-directions is considered to be large relative to its
thickness, and the foil is attached to a substrate such that it is
unable to buckle, we assume that the strain and stress fields
are independent of x and y coordinates. Taking the ensemble-
averaged density of relaxation volume tensors (5) as diagonal
with respect to the Cartesian indices [8], we write

ωmn(x) =
1
3
ω(z)δmn. (27)

The field of displacements is defined on the interval 0 � z �
h, where h is the thickness of the foil. The particular solu-
tion, excluding the effect of boundary conditions, follows
immediately from (25) as

∂

∂z
uz(z) =

1
3

(
1 + ν

1 − ν

)
ω(z), (28)

where we noted that the in-plane displacements vanish in the
thin film limit, as can be confirmed by explicitly integrat-
ing (24). The field of displacements can now be found by
integrating (28) with respect to z, namely

uz(z) =
1
3

(
1 + ν

1 − ν

) ∫ z

0
ω(ζ)dζ. (29)

We now need to find a solution to the homogeneous
problem. Since the strain field does not depend on x or y, the
field of displacements has the form

u(x) = cxex + cyey + uz(z)ez, (30)

where ex , ey and ez are the Cartesian unit vectors, and c is a
constant. Substituting (30) into the homogeneous condition of
mechanical equilibrium, we arrive at an ordinary differential
equation

d2uz(z)
dz2

= 0. (31)

This equation has general solutions of the form

uz(z) = a + bz, (32)

6
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where we are free to set a ≡ 0 as uniform displacements do
not affect elastic fields.

A general solution for u(x), valid in the interval 0 � z � h,
is given by the sum of the homogeneous solution (32) and the
particular solution (29), namely

ux(x) = cx

uy(y) = cy

uz(z) = bz +
1
3

(
1 + ν

1 − ν

) ∫ z

0
ω(ζ)dζ.

(33)

Combining equations (9), (10), (21) with the above expres-
sion (33), we can express the non-vanishing components of
the elastic stress tensor as

σxx(z) = σyy(z) =
2μ(c + bν)

1 − 2ν
− 2μ

3

(
1 + ν

1 − ν

)
ω(z),

σzz(z) =
2μb(1 − ν)

1 − 2ν
+

4μcν
1 − 2ν

.

All the other components of tensor σi j(z) are equal to zero.
Constants b and c depend on the conditions at the top and

bottom surfaces of the foil. In the context of an ion-irradiation
experiment, the surface of the foil at z = h, facing the ion flux,
is free of tractions, therefore the first condition is σzz(h) = 0.
For the second condition, we consider first the case where the
foil is able to relax freely in the xy-plane. While it is not pos-
sible to derive a solution where the foil sides are completely
free of tractions, as that would require buckling of the foil, we
can weaken the condition and instead assert that the average
traction at the sides of the foil vanishes, which corresponds to
a sliding condition. For example, the average traction over the
foil boundaries at x →±∞ is

1
h

∫ h

0
ti dz =

1
h

∫ h

0
σi jn j dz =

1
h

∫ h

0
σxx(z)dz = 0, (34)

where n = ex is the outward surface normal vector to the side
of the foil. Solving for b and c such that conditions σzz(h) = 0
and (34) are met, we arrive at explicit analytical expressions
for the field of displacements

ux(x) =
1
3
ωx

uy(y) =
1
3
ωy

uz(z) = − 2ν
3(1 − ν)

ωz +
1
3

(
1 + ν

1 − ν

) ∫ z

0
ω(ζ)dζ,

(35)

where ω is the mean value of function ω(z) over the thickness
of the foil

ω =
1
h

∫ h

0
ω(ζ)dζ. (36)

The only elastic stress components that do not vanish are the
in-plane stresses, which equal

σxx(z) = σyy(z) = −2μ
3

(
1 + ν

1 − ν

)
[ω(z) − ω] . (37)

Let us now consider the case where the sides of the foil
are fixed such that no in-plane displacements occur. The dis-
placement field of the constrained foil uC

i (x) with the condition
uC

x = uC
y = 0 is obtained from the sliding foil solution (35)

by setting ω = 0, irrespective of its actual value, as then the
in-plane displacements vanish. The field of vertical displace-
ments is now given by

uC
z (z) =

1
3

(
1 + ν

1 − ν

) ∫ z

0
ω(ζ)dζ. (38)

The in-plane components of elastic stress are

σC
xx(z) = σC

yy(z) = −2μ
3

(
1 + ν

1 − ν

)
ω(z). (39)

Incidentally, the same solution is found by taking the limit
h →∞ in the solution for a sliding foil (35), provided that
the damage profile is localised such that limh→∞ ω = 0. This
demonstrates that the in-plane stresses in the solution for a
sliding foil approach those of the constrained foil as the foil
thickness increases.

Solutions found for the constrained and unconstrained cases
show that swelling induces stress only in the plane of the foil,
and there is no stress in the direction normal to the foil sur-
face, either at the surface or in the bulk of the foil. The in-plane
stress can be fairly high, for example swelling of 1% in a con-
strained tungsten foil produces an in-plane stress approaching
−1.9 GPa.

To verify the analytical solutions given above, we compare
them to numerical FEM simulations. We considered a tungsten
foil (μ = 160 GPa and ν = 0.28) with dimensions of 80 μm
in the xy-plane and height of h = 10 μm along z. Two types of
boundary conditions were considered at the bottom surface of
the foil interfacing the substrate: the foil is either completely
constrained (ux(0) = uy(0) = uz(0) = 0) or its displacements
are constrained only in the z direction (uz(0) = 0). The FEM
solutions involved approximately 1.20 × 106 hexahedral lin-
ear elements. The free surface of the foil before irradiation is
at z = h, and the assumed profile ω(z) is shown in figure 1
as a function of the distance from the top surface, or h − z.
Figure 2, where the density of relaxation volumes correspond-
ing to 20 MeV ion irradiation was used as input, shows that
the two analytical solutions derived in this section approach
the two types of boundary conditions considered for the FEM
numerical solutions.

It is desirable to quantify the magnitude of elastic stress
that develops in a foil following ion irradiation. Indeed, the
ion irradiation data can help extrapolate experimental observa-
tions to the neutron irradiated case, where the distribution of
relaxation volume density ω(x) varies on the scale of tens of
centimetres [23]. Figure 3 shows how the in-plane components
of stress vary depending on the energy of the incident ions,
which produce damage at greater depth with higher energy.
The boundary condition at the bottom surface is taken to be
the sliding one, allowing for expansion of the film in the xy-
plane. Theσzz component of stress was found to be vanishingly
small in all cases (lower than 1 MPa), confirming the results

7
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Figure 2. Swelling in an ion-irradiated thin foil only extends over a
few μm. The presence of the unirradiated material results in a high
compressive in-plane stress in the irradiated region. Depending on
the boundary conditions at the bottom of the foil, the unirradiated
material is either unstressed or is under tension. Panel (a) shows
that, by preventing or allowing for motion of the bottom surface in x
and y, the FEM solution approaches the two analytical solutions
derived in this section. Panels (b) and (c) show the contour plots of
σxx(x) and the hydrostatic pressure p(x) = − 1

3σii(x) in the sectioned
view of the film. The initial profile of the foil before deformation is
also outlined. The density of relaxation volumes matches the profile
of 50 MeV W ion implantation shown in figure 1.

of analytical treatment. The in-plane compressive stress com-
ponents are significant, and exceed −1 GPa in the irradiated
layer even if the foil is able to relax and expand sideways.

The development of compressive or dilatational stresses
in the GPa range has been observed in a variety of mate-
rials exposed to ion irradiation, including ceramic oxides
(−2.7 GPa in Gd2TiZrO7 at 0.2 dpa) [63], SiC and SiO2 [64],

Cr [65], Au [66] and W [25] thin films. Davis [67] estimated
the compressive stress in thin films growing on a substrate,
assuming that a steady state is attained when the rate of implan-
tation of new ions is balanced by the rate with which stress
is relaxed by atoms escaping to the surface. Wolfer and Gar-
ner proposed instead that the compressive stress depends on
the competition between swelling and creep [68]. These exam-
ples show that taking into account the effects of stress relax-
ation—whether by thermal or irradiation creep—is required
before comparing theoretical predictions with experimental
results.

A detailed study of strain and stress in ion-irradiated tung-
sten [25, 26] shows that the compressive stress in the ion-
irradiated layer initially reaches ∼320 MPa [69] at 0.3 dpa
before changing sign and equilibrating, at an approximately
similar level in magnitude but dilatational in character, in the
high dose limit. This finding agrees with the earlier observa-
tions by Misra et al [65] and illustrates the highly non-linear
nature of the stress relaxation phenomenon. It appears that
the radiation-driven relaxation still does not fully eliminate
the stress produced by the defects themselves, resulting in the
residual stress in the several 100 MPa range [16, 25].

5. Irradiation-induced elastic stress and strain in a
cylindrical tube

In this section we investigate the distribution of elastic strain
and stress in a sample of cylindrical geometry. Cylindrical
tubes are often used in the context of neutron irradiation exper-
iments not only because of the natural similarity with the
geometry of fission fuel cladding but also because a sample
of cylindrical geometry offers a convenient way of testing the
combined effect of externally applied stress and irradiation. In
practice, the external stress is produced by the pressure of gas
inside the cylinder, whereas the exposure to irradiation is often
external.

Consider a cylindrical tube with the inner radius ρ1 and
outer radius ρ2, and define a cylindrical coordinate system
(ρ,ϕ, z) coaxial with the tube. Pressure of gas P applied to
the inner surface is assumed to be constant, and the density
of relaxation volumes tensor is a function of only the radial
coordinate ρ, namely

ωmn(x) =
ω(ρ)

3
δmn. (40)

Since neither P nor ω(ρ) depend on ϕ or z, the field of
displacements has the form

u(x) = uρ(ρ)eρ + czez, (41)

where c is a constant and eρ and ez are the unit vectors in
the radial and z directions, respectively. The choice of the
above simple form of the field of displacements stems from
the fact that uϕ = 0 from symmetry, and the axial strain must
be translationally invariant with respect to z, implying that
∂uz/∂z = c. For a pipe of finite length, this translational invari-
ance only applies to the central portion of the pipe, far from

8
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Figure 3. σxx(z) = σyy(z) at the centre of a rectangular foil exposed to ion irradiation and plotted as a function of depth h − z. The analytical
solutions and FEM numerical solutions are in full agreement and show that the irradiation-induced stresses follow the variation of the
density of relaxation volumes (cf figure 1), where the profiles generated by ions with higher energy correspond to lower compressive stress
in the irradiated region and higher tensile stress in the unirradiated region underneath. The colour scale is common for all the three plots and
extends between −2000 MPa (blue) and 600 MPa (red). The bottom surface of the foil is free to expand in the in-plane directions.

its two extremities. Below, we explore two different bound-
ary conditions along z, namely that the pipe is either fully
unconstrained or fully constrained. We find that the irradiation-
induced swelling produces different patterns of stress in these
two limits.

If the tube is constrained in the z direction, then c = 0. If the
distribution of ωmn(x) is entirely spatially uniform, the com-
ponents of stress can be found by solving the homogeneous
equation ∂σi j/∂x j = 0. Evaluating the divergence of stress in
the cylindrical system of coordinates in the isotropic elasticity
approximation, the field of radial displacements can be found
by solving the ordinary differential equation

ρ
d2uρ

dρ2
+

duρ

dρ
− uρ

ρ
= 0. (42)

A general solution of this homogeneous equation has the form
[49]

uρ(ρ) = aρ+
b
ρ
. (43)

To find a particular solution describing the effect of relaxation
volumes of defects given by equation (40), we note that the
divergence of the displacement field generated byω(ρ) is given
by equation (25), namely

∂

∂xi
ui(ρ) = ε(tot)

ii (x) =
1
3

(
1 + ν

1 − ν

)
ω(ρ). (44)

Using the divergence theorem, and noting that the field of dis-
placements depends only on the radial variable, equation (44)

gives the particular solution in the form

uρ(ρ) =
1

3ρ

(
1 + ν

1 − ν

) ∫ ρ

ρ1

Rω(R)dR. (45)

The general solution, valid for ρ1 < ρ < ρ2, is given by the
sum of the homogeneous solution (43) and the particular
solution (45), namely

uρ(ρ) = aρ+
b
ρ
+

1
3ρ

(
1 + ν

1 − ν

) ∫ ρ

ρ1

Rω(R)dR. (46)

Combining equations (9), (10), and (21), the components of
the stress tensor can now be expressed as

σρρ(ρ) = 2μερρ(ρ) +
2μν

1 − 2ν
εii(ρ) − Bω(ρ)

σϕϕ(ρ) = 2μεϕϕ(ρ) +
2μν

1 − 2ν
εii(ρ) − Bω(ρ)

σzz(ρ) = 2μεzz +
2μν

1 − 2ν
εii(ρ) − Bω(ρ),

where εii = ερρ + εϕϕ + εzz is the trace of the elastic strain
tensor and εzz is a constant independent of ρ.

In the unconstrained case, we still have to determine the
three constants a, b, and c in expression (41), derived from
equation (46). Two of the three conditions required for deter-
mining the three constants stem from the boundary conditions
σρρ(ρ1) = −P, where P is the pressure applied to the internal
surface, and σρρ(ρ2) = 0. The third condition can be obtained

9
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from the condition of mechanical equilibrium. If a body has
an external surface S loaded by external traction forces ti and
is arbitrarily sectioned, then the cut defines an internal section
Σ with normal vector nj that divides the external surface into
S1 and S2. The equilibrium condition applied to the part of the
volume enclosed by S1 and Σ implies that∫

S1

ti dS1 =

∫
Σ

σi jn j dΣ.

Noting that ti = 0 since the pipe is free of external loads, and
taking a section perpendicular to z, we see that

2π
∫ ρ2

ρ1

σzz(R)dR = 0,

that is, σzz must be self-equilibrated. Combining the three
boundary conditions, we find the radial and axial displace-
ments

uρ(ρ) =
P

2μρ
πρ2

1

A

[
ρ2

2 +

(
1 − ν

1 + ν

)
ρ2

]
+

1
6ρ

(
1 + ν

1 − ν

)

×
[
ρ2

1ω +

(
1 − 3ν
1 + ν

)
ρ2ω + 2

∫ ρ

ρ1

Rω(R)dR

]

uz(z) =

[
ω

3
− P

μ

πρ2
1

A

(
ν

1 + ν

)]
z, (47)

where ω is the mean value of function ω(r) over the cross-
section area of the cylinder A = π

(
ρ2

2 − ρ2
1

)
,

ω =
1
A

∫
S
ω(x)dS =

2π
A

∫ ρ2

ρ1

Rω(R)dR. (48)

Noting that ερρ = ∂uρ/∂ρ, εϕϕ = uρ/ρ, and εzz = ∂uz/∂z, we
find the three non-vanishing components of stress

σρρ(ρ) =
πρ2

1P
A

(
1 − ρ2

2

ρ2

)
+

μ

3

(
1 + ν

1 − ν

)

×
[(

1 − ρ2
1

ρ2

)
ω − 2

ρ2

∫ ρ

ρ1

Rω(R)dR

]
, (49)

σϕϕ(ρ) =
πρ2

1P
A

(
1 +

ρ2
2

ρ2

)
+

μ

3

(
1 + ν

1 − ν

)

×
[(

1 +
ρ2

1

ρ2

)
ω +

2
ρ2

∫ ρ

ρ1

Rω(R)dR − 2ω(ρ)

]
,

(50)

σzz(ρ) =
2μ
3

(
1 + ν

1 − ν

)
[ω − ω(ρ)] . (51)

The above equations show that σρρ(ρ) in (49) vanishes at
ρ = ρ1 and ρ = ρ2 for an arbitrary distribution ω(ρ). Because
of the linear superposition principle, effects of internal pres-
sure and irradiation are completely decoupled. In the absence
of irradiation, the expressions for the components of stress
readily reduce to the Lamé equations for a thick-walled pres-
surised cylinder [70]. If swelling, although present, is spatially
homogeneous, its contribution to all the stress components

vanishes identically, as expected for an unconstrained body
subject to traction-free boundary conditions.

If the tube is constrained along z, so that uz = 0, εzz = 0,
then only two conditions need to be specified to determine
the constants in equation (46). It is sufficient to prescribe the
values of the radial stress at internal and external surfaces,
namely σρρ(ρ1) = −P and σρρ(ρ2) = 0. In fact, the presence
of external forces, required to keep the length of the tube con-
stant, means that σzz need not to self-equilibrate. The radial
displacement function in the constrained (C) case is

uC
ρ (ρ) =

P
2μρ

πρ2
1

A

[
ρ2

2 + (1 − 2ν)ρ2
]
+

1
6ρ

(
1 + ν

1 − ν

)

×
[
ρ2

1ω + (1 − 2ν)ρ2ω + 2
∫ ρ

R1

Rω(R)dR

]
. (52)

We find that the stresses σρρ(ρ) and σϕϕ(ρ) are not affected by
the different boundary conditions and remain the same as in
equations (49) and (50). σzz(ρ) in the constrained case, on the
other hand, has the form

σC
zz(ρ) =

2πνρ2
1P

A
+

2μ
3

(
1 + ν

1 − ν

)
[νω − ω(ρ)] . (53)

A comparison of equations (51) and (53) highlights an impor-
tant point. Spatially homogeneous irradiation generates no σzz

component of elastic stress if the pipe is unconstrained, but if
the extremities are fixed and P = 0, then we have

σC
zz = −2μ

3
(1 + ν)ω. (54)

The above equations shows that the magnitude of elastic stress
generated by irradiation is of the order of ω times the shear
modulus. As the former can be as large as 1% or more, see
[19, 20], internal elastic stress reaching hundreds of MPa can
develop in the absence of any internal gas pressure in a pipe
with constrained ends, even in the limit where irradiation is
spatially homogeneous.

Dimensional stability is an important consideration in the
context of design and operation of a nuclear reactor involving
many interdependent components. As a result of applied pres-
sure and irradiation, the volume of a pipe can change. This
volume change is given by the volume integral of the trace of
the total strain. If the pipe is free then, far from its extremities,
the volume change of the pipe per unit length can be computed
as

ΔV
L

=
1
L

∫
V

∂ui

∂xi
dV = 2π

∫ ρ2

ρ1

(
∂(ρuρ)
∂ρ

+ ρ
∂uz

∂z

)
dρ

=
P
μ

(
1 − 2ν
1 + ν

)
πρ2

1 + Aω. (55)

If the pipe is constrained, the change of volume is given by

ΔVC

L
=

1
L

∫
V

∂uC
i

∂xi
dV

=
P
μ

(1 − 2ν)πρ2
1 +

2
3

(1 + ν)Aω. (56)
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Equation (55) shows that in the limit where P = 0, the vol-
ume change of an unconstrained irradiated pipe equals the
total relaxation volume of all the defects in the material. If
the pipe is constrained, the volume change is smaller than
the total relaxation volume of defects, and the difference
can be attributed to the effect of external constraints. Both
equations (55) and (56) confirm the intuitive conclusion that in
the limit where the material is incompressible (ν = 1/2), the
application of external pressure P does not alter the volume of
the pipe.

Equations (55) and (56) can also be derived by evaluat-
ing, to first order, the change of volume associated with the
transformation of a cylinder from its initial undeformed con-
figuration to the final one with the inner radius of ρ1 + uρ(ρ1),
outer radius of ρ2 + uρ(ρ2) and the length of L + uz(L).

An FEM model was constructed for a pipe made of fer-
ritic steel (μ = 80 GPa, ν = 0.29), with ρ1 = 2.5 mm,
ρ1 = 3.0 mm and pressure of P = 50 MPa acting on its inner
surface. These parameters are close to the experimental condi-
tions for pressurised steel specimens used in irradiation tests
[15]. Function ω(ρ) was selected in such a way so that the den-
sity of relaxation volumes varies from about 1% at the outer
surface, directly exposed to irradiation, to about 0.5% at the
inner surface, see equation (C2). Numerical FEM solutions are
illustrated in figure 4. Simulations were performed assuming
the effect of pressure only, irradiation only, and the combined
effect of both pressure and irradiation. To achieve agreement
between numerical FEM results and exact analytical solutions,
about 9.40 × 105 hexahedral linear elements were used.

If the exposure of a pipe to an external source of irradiation
gives rise to a spatially varying defect density, the maximum
tensile hoop stress, σϕϕ, occurs at the inner surface of the pipe,
which is also where the hoop stress induced by P is maximum.
The axial stress, σzz, is negative throughout the thickness of
the pipe if it is constrained. If the pipe can expand freely along
its length, then the axial stress must change sign to satisfy the
condition of self-equilibrium. A change in the density of relax-
ation volumes of 0.5% produces stresses that are comparable
with those generated by high internal pressure, with potential
implication for the design of experimental tests.

6. Elastic stress and strain in a spherical shell
exposed to irradiation

In this section we evaluate elastic stress and strain develop-
ing in a spherical shell exposed to irradiation. The advantage
offered by the spherical symmetry of the shell is that in the
limit where the source of irradiation is also spherically sym-
metric, the solutions can be found in a closed analytical form.
Some of them, related to the total strain and stress, were inves-
tigated earlier in reference [8], however the pure elastic com-
ponents of stress and strain were not evaluated. Given the sig-
nificance of pure elastic solutions in the context of assessment
of structural integrity of power plant components, we present
the relevant analysis below.

If the source of irradiation is spherically symmetric, the
distribution of defect relaxation volumes depends only on the
distance r to the centre of the shell. It is independent of the

polar and azimuthal angles θ and φ of the spherical system of
coordinates, the origin of which is at the centre of the shell.
The density of relaxation volume tensors now has the form

ωmn(x) =
1
3
ω(r)δmn, (57)

and the field of displacements is defined on the interval
R1 � r � R2, where R1 is the inner radius of the shell and R2

is its outer radius. This field is radially-symmetric and the vec-
tor of displacements can be written as u(r) = ur(r)n, where
n = r/r. The divergence of the field of atomic displacements
has the form (25)

∂

∂r
u(r) =

1
3

(
1 + ν

1 − ν

)
ω(r). (58)

Since the field of displacements is radially symmetric, we
apply the divergence theorem to equation (58) and write

4πr2ur(r) =
4π
3

(
1 + ν

1 − ν

) ∫ r

R1

R2ω(R)dR, (59)

for R1 � r � R2.
Noting that in the absence of radiation defects the diver-

gence of u(x) is a harmonic function of coordinates, we write
the field of displacements as a sum of the particular solution
of heterogeneous equation (58) and a general solution of the
corresponding homogeneous equation, namely

ur(r) = ar +
b
r2

+
1

3r2

(
1 + ν

1 − ν

) ∫ r

R1

R2ω(R)dR. (60)

Here a and b are constants that need to be determined from
the boundary conditions at r = R1 and r = R2. Assuming that
pressure at R1 and R2 is negligible in comparison with the
stresses developing in the material due to the accumulation
of defects, we adopt the traction-free boundary conditions
σi j(r)nj = 0 at r = R1 and r = R2. The total strain can be
found by differentiating (60). It has the form

ε(tot)
i j (r) = aδi j +

b
r3

(
δi j − 3nin j

)
+

1
3r3

(
1 + ν

1 − ν

) (
δi j − 3nin j

) ∫ r

R1

R2ω(R)dR

+
1
3

(
1 + ν

1 − ν

)
nin jω(r). (61)

The find the pure elastic part of strain, we need to subtract
the eigenstrain of defects 1

3ω(r)δi j from the above expression,
resulting in

εi j(r) = aδi j +
b
r3

(
δi j − 3nin j

)
+

1
3r3

(
1 + ν

1 − ν

) (
δi j − 3nin j

) ∫ r

R1

R2ω(R)dR

+
1
3

[(
1 + ν

1 − ν

)
nin j − δi j

]
ω(r). (62)
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Figure 4. Summary of the stress analysis for a pressurised and irradiated tube. In (b) and (c) only pressure is present, in (d) and (e) only
irradiation, in ( f ) and (g) both are acting. Next to the corresponding plot, the von Mises stress is shown on a sectioned view of the component
for the unconstrained case (the deformations are exaggerated for clarity and the undeformed shape is shaded). The assumed profile of ω(ρ) is
shown in (a), the inner pressure is 50 MPa. The analytical solution (solid lines) is in agreement with the FEM model (dots).
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To find the pure elastic stress, we multiply εi j(r) by the forth-
rank tensor of elastic constants (20). The resulting expression
for elastic stress is

σi j(r) = 2μa

(
1 + ν

1 − 2ν

)
δi j +

2μb
r3

(δi j − 3nin j)

+
2μ
3r3

(
1 + ν

1 − ν

) (
δi j − 3nin j

) ∫ r

R1

R2ω(R)dR

+
μ

3

(
1 + ν

1 − ν

)
ω(r)

(
2ν

1 − 2ν
δi j + 2nin j

)

− 2μ
3

(
1 + ν

1 − 2ν

)
ω(r)δi j. (63)

Projecting elastic stress onto the radial unit vector n = r/r, we
find

σi j(r)n j = 2μa

(
1 + ν

1 − 2ν

)
ni −

4μb
r3

ni

− 4μ
3r3

(
1 + ν

1 − ν

)
ni

∫ r

R1

R2ω(R)dR. (64)

Applying the traction-free boundary conditionsσi j(r)nj = 0 at
r = R1 and r = R2 to (63) and (64), we find parameters a and
b, namely

a =
2
9

(
1 − 2ν
1 − ν

)
ω, (65)

and

b =
1
9

(
1 + ν

1 − ν

)
ω, (66)

where ω is the mean density of relaxation volumes of all the
defects accumulated in the shell

ω =
1
V

∫
V
ω(x)dV =

4π
V

∫ R2

R1

R2ω(R)dR, (67)

and V is the geometric volume of the shell

V =
4π
3

(
R3

2 − R3
1

)
. (68)

The above formulae remain valid irrespectively of whether or
not ω(r) vanishes at surfaces r = R1 and r = R2.

The total macroscopic change of volume resulting from the
accumulation of defects in the shell equals the integral of the
trace of the total strain tensor (14) over the volume of the
component

ΔV =

∫
V
εii(r)dV =

∫
V

[
1
3

(
1 + ν

1 − ν

)
ω(r) + 3a

]
dV

=

∫ R2

R1

[
1
3

(
1 + ν

1 − ν

)
ω(R) + 3a

]
4πR2 dR, (69)

where we noted that δii = 3 and nini = 1. The integral equals
Ωtot = Vω, in agreement with equation (14).

Substituting (65) and (66) into (60), we find the radial
displacements of the inner and outer surfaces of the shell

ur(R1) =
1
3

R1ω

ur(R2) =
1
3

R2ω.

(70)

These displacements satisfy the condition

4πR2
2ur(R2) − 4πR2

1ur(R1) = Vω = Ωtot, (71)

which provides an alternative way of evaluating the total volu-
metric swelling of the shell [8]. Figure 5(a) graphically exem-
plifies equation (14) and is in full agreement with (71), for two
functions ω(r) that have the same ω.

To assess the performance of a component under operat-
ing conditions where radiation defects accumulate in the bulk
of its structure, it is convenient to use the spherical system of
coordinates and project the elastic stress tensor (63) onto the
three orthogonal unit vectors (er, eθ, eφ), corresponding to the
radial and angular degrees of freedom and related to the vari-
ous modes of deformation of the shell. These unit vectors are

er = ex sin θ cos φ+ ey sin θ sin φ+ ez cos θ

eθ = ex cos θ cos φ+ ey cos θ sin φ− ez sin θ

eφ = −ex sin φ+ ey cos φ,

(72)

where θ and φ are the polar and azimuthal angles of the spher-
ical system of coordinates. Since er is the same as n, we have
(n · eθ) = (n · eφ) = 0.

The radial diagonal element of the elastic stress tensor is

σrr(r) =
4μ
9

(
1 + ν

1 − ν

) [
ω

(
1 − R3

1

r3

)]

− 4μ
9

(
1 + ν

1 − ν

) [
3
r3

∫ r

R1

R2ω(R)dR

]
. (73)

A direct calculation shows that in the limit where functionω(r)
does not depend on r, ω(r) = const, the radial component of
elastic stress vanishes identically everywhere in the volume of
the shell, σrr(r) = 0 for all R1 < r < R2.

The circumferential (hoop) components σθθ(r) and σφφ(r)
of the elastic stress tensor are

σθθ(r) =
4μ
9

(
1 + ν

1 − ν

)[
ω

(
1 +

R3
1

2r3

)]

+
2μ
3

(
1 + ν

1 − ν

) [
1
r3

∫ r

R1

R2ω(R)dR

]

− 2μ
3

(
1 + ν

1 − ν

)
ω(r). (74)

Due to the symmetry of the problem, we have σφφ(r) = σθθ(r),
as can be readily confirmed by a direct calculation. Similarly
to the radial component of elastic stress, both hoop compo-
nents of stress vanish identically in the limit where ω(r) =
const or, in other words, where defects are distributed spatially
homogeneously throughout the volume of the shell.
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Figure 5. (a) The two profiles of ω(r) used in the analysis of
solutions for the spherical shell (case 1 and 2). Integral
Ω(r) = 4π

∫ r
R1
ω(r)R2 dR equals the total volume of all the defects in

the shell. Cases 1 and 2 were chosen to have the identical values of
Ωtot = Ω(R2). Ωtot also equals the change of volume found by
evaluating the integral of the total strain, ΔV(r) = 4π

∫ r
R1
εiiR2 dR, at

r = R2, compared to the analytical result (71), shown by a black
line. (b) Stresses depend on the shape of the distribution ω(r) and
reach fairly high values. (c) On the other hand, the total deformation
of the shell is given by the integral

∫
ω(x)dV , and for the same value

of this integral, ur(R1) and ur(R2) are the same. The analytical and
FEM solutions are found to be in full agreement.

The hydrostatic pressure developing in the shell as a result
of accumulation of defects is

p(r) = −1
3
σii(r) = −1

3

[
σrr(r) + σφφ(r) + σθθ(r)

]
. (75)

Substituting expressions (73) and (74) in this equation, we find
a surprisingly simple relation

p(r) =
4μ
9

(
1 + ν

1 − ν

)
[ω(r) − ω] . (76)

Equation (76) shows that pressure is positive where the local
density of relaxation volumes is higher than its mean value,
and negative where the local density of relaxation volumes is
lower than the mean. The mean pressure, integrated over the
entire volume of the shell, is zero.

For the purpose of illustrating the effect of different spa-
tial distributions of defects in the volume of a component, as
well as comparing the analytical and FEM solutions, we con-
sider two functions ω(r) plotted in figure 5(a), where case
1 corresponds to equation (C3) and case 2 corresponds to
equation (C4) in the appendix. The shell has the inner radius of
R1 = 3.0 m, the outer radius of R2 = 3.3 m and is assumed to
be made of ferritic steel (μ = 80 GPa, ν = 0.29). This is a sim-
plified representation of the vacuum vessel of a fusion reactor.
The FEM mesh used in simulations involves 1.33 × 106 hex-
ahedral linear elements. No external stress is applied to the
shell.

High energy (14 MeV) fusion neutrons attenuate in steels
over distances of the order of tens of cm [22, 23]. For example,
in experiments [71] only 10% of the dose from a beam of
14 MeV neutrons reached 40 cm into steel and just 1% of that
transmitted dose was comprised of fast (�1 MeV in energy)
neutrons. Case 2 is representative of these conditions and
assumes that ω(r) decays as r−2 and that a proportion of the
neutrons fully penetrate through the 30 cm shell. Case 1, on
the other hand, represents a more extreme example of neu-
trons moving through a highly attenuating material, causing
so much damage that swelling saturates at shallow depths, and
then being completely stopped within a distance of ∼20 cm.
Radiation swelling reaches a dynamic saturation with the den-
sity of relaxation volumes of 2% near the plasma, and drops
to zero over the distance of approximately 20 cm. The two
profiles are chosen so that they have the same total relaxation
volume of defects Ωtot.

The two distributions ofω(r) give rise to very different elas-
tic stress patterns, illustrated in figure 5(b). In both cases, the
elastic hoop stresses are of the order of 1 GPa and are higher
than the radial component of elastic stress. The hoop stresses
are negative close to the inner surface and positive near the
outer surface of the shell. Intuitively this is clear since the part
of the shell more exposed to irradiation attempts to expand, but
is constrained by the less irradiated material, which in turn is
under tension to achieve mechanical equilibrium. The max-
imum value of the von Mises stress is reached at the inner
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Figure 6. Contour plots of the hydrostatic pressure induced by irradiation corresponding to the profiles of densities of relaxation volumes of
defects ω(r) shown in figure 5(a) for case 1 in (a) and for case 2 in (b). The colour scale is the same in both plots, showing that stress is higher
in case 1 than in case 2, despite the fact that the total relaxation volume of defects in the shell Ωtot is the same in both cases (see figure 5(a)).

surface and is of the order of 1015 MPa in case 1 and 745 MPa
in case 2. Radial displacement fields are also different due to
the difference in ω(r), as shown in figure 5(c). However, ur(r)
takes exactly the same values at the inner and at the outer sur-
faces of the shell. This agrees with equation (71) since Ωtot is
the same in case 1 as in case 2.

A comparison between figures 5(b) and (c) illustrates an
important point: a structure that upon a superficial external
examination exhibits exactly the same swelling, at least in
terms of how its external surfaces move, can develop very

different internal stresses. In the examples investigated here,
the maximum hoop stress found in case 2 is less than half of
that found in case 1.

Contour plots of the internal hydrostatic pressure are com-
pared in figure 6. In both cases, pressure is high and posi-
tive close to the inner surface of the shell, vanishes near the
centre of the shell, and becomes negative towards the outer
surface. The latter may have important implications for the
stress-driven diffusion of interstitial elements such as hydro-
gen, helium or carbon, which would deplete the inner region
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Figure 7. Schematic sketch of a breeding blanket module. Neutron flux and the resulting swelling are assumed to depend only on coordinate
x. The face of the component situated at x = 500 mm is facing the plasma.

and segregate towards the outer region of the component. Tak-
ing case 1 as an example, the equilibrium concentration of C
at 300 K would be about 30% higher on the outside and about
25% lower on the inside than in the unstressed condition.

7. Finite element analysis of elastic stress in an
irradiated tritium breeding blanket module

In this section we consider an example where the geometry of
a component is too complex to admit an analytical solution,
but which is not too dissimilar to what might be considered in
the context of a design of a fusion power plant. We analyse,
using FEM, the stress fields in a module of a fusion breeding
blanket, assuming that it is exposed to a spatially varying flux
of neutrons.

The breeding blanket is one of the most significant nuclear
components of a fusion power plant, providing and enabling
power extraction, tritium fuel sustainability, and radiation
shielding [72, 73]. A breeding blanket consists of individual
modules containing tritium breeding materials and provides
channels for coolant circulation. As an example, we consider
a cubic structure with linear dimensions of 500 mm, subdi-
vided into nine submodules. The wall thickness is assumed to
be 15 mm, and all the internal edges are filleted with a radius
of 3 mm. The structural material for the breeding blanket mod-
ule is ferritic–martensitic steel Eurofer [74]. The structure is
exposed to neutron irradiation from one of the sides, with the
direction of the neutron flux being normal to the direction of
flow of coolant. In this geometry, radiation exposure varies as
a function of only one spatial coordinate [23]. We assume that
the maximum value of ω(x) is 2% at the plasma-facing side of
the module, see figure 7 of reference [19], and that it decreases
down to 0.5% across the component. The geometry of the mod-
ule and the distribution of ω(x), represented by equation (C5),
are shown in figure 7.

The component is free of external loads, and is weakly con-
strained at the four corners of the face z = 0. This is done to

prevent its rigid motion but at the same time allows for its
free deformation. 2.01 × 106 quadratic tetrahedral elements
were used in numerical calculations, following the analysis of
convergence given in appendix D.

For the given combination of component geometry and
irradiation profile shown in figure 8, there are two locations
where stresses are particularly high. Close to the points where
internal walls intersect, the local von Mises stress reaches
∼695 MPa. For comparison, the yield point of Eurofer is 530
MPa [75]. At the junction between internal and external walls
on the plasma-facing side, the maximum principal stress is
close to ∼390 MPa, suggesting that under irradiation it is this
location in the breeding blanket module structure that would
be susceptible to the nucleation of cracks.

From this analysis, and the results given in the preceding
sections of this study, we find that the effect of irradiation-
induced swelling should be taken into account already at the
stage of component design. To exemplify this, we start from
the initial design shown in figure 7 and apply two adjustments
illustrated in figure 9. First, the internal walls can be rotated
by 45◦ while keeping their length constant. This reduces the
number of internal junctions near the plasma-facing side of
the component from two to one. Second, the radius of the
fillets can be increased where the stresses due to irradiation
are expected to be higher. To explore the effect of struc-
tural changes, the radius of fillets in the most stressed inter-
nal junction was increased to 20 mm, whereas the radius of
the four fillets near the plasma-facing side of the component
was increased to 30 mm. This produces a modified design,
which we subsequently tested using FEM numerical analysis.
The von Mises and maximum principal stresses developing in
the second design, under the same irradiation conditions, are
shown in figure 9, to be compared with figure 8. The FEM
model involved 2.11 × 106 elements to ensure convergence.
High stresses arise at locations that are similar to those of
the first design, but the local von Mises and maximum prin-
cipal stresses are now lower by 25% and 40%, respectively.
The highest maximum principal stress has now developed at
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Figure 8. Spatially varying exposure of materials to irradiation
gives rise to stresses and distortions in the breeding blanket module,
which in this example is assumed to be free from external geometric
constraints and external load. (a) The local von Mises stress is
maximum at the junction between the internal walls, where it is
expected to exceed the yield stress of the material, whereas the
maximum principal stress (b) is maximum at some of the junctions
between internal and external walls. The structure of the module
before exposure to irradiation is outlined, and the scale of
deformation is enlarged for clarity.

other locations in the structure. Further modifications of the
design can now be explored in the framework of iterative
numerical design optimisation, which is beyond the scope of
this work.

We observe that irradiation gives rise to sizeable deforma-
tions of the component structure. Given the distribution of
relaxation volumes of defects, the module expands by approx-
imately 2.5 mm in the x, 3.3 mm in the y and 3.1 mm
in the z direction. This expansion is the same for the two
design variants considered above, and is close to the deforma-
tion of the same structure not containing any inner walls under
the same irradiation conditions. The modified module expands
by 3.1, 3.4 and 3.3 mm in the x, y and z directions, respectively.

What we find is different from what is known in conven-
tional structural engineering where deformation of a structure
subjected to an external load can be reduced by means of inter-
nal reinforcements. This methodology does not apply here,
since the reinforcements themselves expand following their
exposure to irradiation.

Our final note in this section refers to the distribution
of hydrostatic pressure p(x) in an irradiated component.
Equation (76) shows that in a spherical shell able to expand
freely, where both surfaces are subject to the traction-free
boundary conditions, p(x) vanishes exactly after averaging
over the entire volume of the component. The same applies
to the case of a breeding blanket module, provided that it is
free of external constraints. The volume-average p(x), evalu-
ated numerically using all the integration points of the FEM
model, is of the order of 1 MPa for the design shown in
figure 8 and 2 MPa for the modified design shown in figure 9.
These values are very small in comparison with the maximum
and minimum values of pressure of 285 MPa and −172 MPa
computed for the initial component design, and 208 MPa and
−139 MPa computed for the modified design, respectively.

The above analysis shows that in the breeding blanket as
well as in some other cases that we studied, the yield point of
the material was locally exceeded for an assumed swelling
profile. To model the resulting response of the structure, the
evolution of an irradiated material has to be modelled using
elasto-plastic constitutive rules in addition to the laws describ-
ing the generation of defects by irradiation. In this context,
we expect that the irradiation-driven stress relaxation [76, 77]
is going to occur even at relatively lower stresses, partially
alleviating them but resulting in the even greater deforma-
tion of irradiated components and thus potentially generat-
ing stresses in other parts of the reactor structure. Modelling
the direct stress-induced plasticity and the slower irradiation-
driven stress relaxation, as well as taking into account the tem-
perature and stress dependence of ωi j(x) defines a broad scope
for future work, extending beyond this study. We note that,
irrespectively of the occurrence of stress relaxation, the rela-
tions between the relaxation volume density ωi j(x) and elastic
stress and strain established in this study remain unchanged,
since stress relaxation only affects the form of ωi j(x) and not
the elastic field that it generates.
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Figure 9. Contour plots of (a) the local von Mises stress and (b) the maximum principal stress, computed for the modified blanket module
design, to be compared with the initial design shown figure 8. The colour scale bars are the same in both figures. The number of locations
where the stress is particularly high is reduced as a result of the rotation of the inner walls. Enlarging the radii of some of the fillets also
reduces the magnitude of the local stress. In the zoomed regions, in comparison with the similar regions in figure 8, the von Mises stress is
now lower by 25%, and the maximum principal stress is lower by 40%. The scale of deformation of the structure is magnified for clarity. The
initial undeformed structure is not shown.
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8. Conclusions

In this study, we developed a method for computing elastic
stress and strain fields developing in structural components of
a fusion power plant exposed to irradiation (or indeed any other
nuclear facility where components are exposed to a significant
irradiation fluence). The approach is based on a defect eigen-
strain theorem (equation (8)) that states that the spatially vary-
ing density of relaxation volume tensors of defects produced
by neutron irradiation (equation (5)), which is a quantity that
can be computed from microscopic considerations [30, 31, 33,
47, 48], is identical to the spatially varying field of eigenstrain
[39].

In the absence of external geometric constraints or, equiva-
lently, under the traction-free boundary conditions, the elastic
stress and internal pressure generated by irradiation always
vanish after integration over the entire volume of a compo-
nent. As a result, a spatially varying exposure of a component
to irradiation invariably produces a spatially varying field of
stress, compressive at locations where the density of defects
is higher, and tensile at locations where the density of defects
is lower, see e.g. equation (76). The occurrence of irradiation
embrittlement [78] makes operating critical parts of a compo-
nent under compressive stress preferable to operating under the
tensile, negative pressure, conditions.

The magnitude of elastic stress developing in a component
as a result of irradiation can be fairly high. It can be estimated
as σ(x) ∼ μ[ω − ω(x)], where μ is the shear modulus of the
material and ω − ω(x) is a measure of deviation of the spa-
tially varying density of relaxation volumes of defects from its
average value. The density of relaxation volumes of defects is
a dimensionless quantity and, depending on the experimental
conditions, it varies from a fraction of a percent [25] to sev-
eral percent [19, 20]. Bearing in mind that for structural steels
and tungsten μ is close to a 100 GPa, the irradiation-induced
stress can reach several 100 MPa, as illustrated in figure 9. At
the same time, a spatially homogeneous distribution of defects
does not generate any stress in a free body, although it could
still produce large deformations. High stresses can still develop
if deformations are constrained.

There are now firm indications suggesting that stress devel-
oping in a component as a result of irradiation can elastically
polarise defects, resulting in a highly non-linear response of
microstructure to stress and irradiation. While this does not
alter the fundamental link, equations (9)–(13), between the
eigenstrain of the defects and the elastic stress and strain fields
that they produce, the combined non-linear self-action of stress
and high temperature on the microstructure, already noted in
recent simulations and observations [25, 40, 41, 57], requires
extensive analysis.

Concluding this study, we point out that the link between
the microscopic properties of defects and the macroscopic
stress and strain fields that they produce in reactor compo-
nents, provides an example of a complete multiscale study
involving a full treatment of microscopic and macroscopic
scales and enabling the assessment of performance of mate-
rials and components under realistic operating conditions that

can now be quantitatively modelled using advanced supercom-
puter facilities.
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Appendix A. Deriving the relaxation volume

In the following derivation, subscripts after a comma denote
differentiation ( f,l = ∂ f /∂xl), with primed subscripts refer-
ring to differentiation with respect to the primed variable
( f,l′ = ∂ f /∂x′l).

Consider an elastic body with the volume defined by region
V with a surface S = ∂V free of tractions. Mura [39] defines
the total strain ε(tot)

i j as the sum of elastic strain εi j and eigen-
strain ε∗i j:

ε(tot)
i j = εi j + ε∗i j, (A1)

with the total strain being compatible ε(tot)
i j = 1

2 (ui, j + u j,i).
Similarly, we may introduce the eigenstress σ∗

i j as a quantity
related to eigenstrain ε∗i j through Hooke’s law:

σ∗
i j = Ci jklε

∗
kl. (A2)

The Cauchy stress, or elastic stress, is then given by

σi j = Ci jklεkl = Ci jkl

(
ε(tot)

kl − ε∗kl

)
, (A3)

from which follows the equilibrium condition inside the body
x ∈ V:

σi j, j = Ci jkl

(
ε(tot)

kl, j − ε∗kl, j

)
= 0. (A4)

The above expression yields a relation between the body force
and the eigenstrain:

Ci jklε
(tot)
kl, j = Ci jklε

∗
kl, j = σ∗

i j, j ≡ − fi. (A5)

Equivalently, for a body free of external surface forces, the
equilibrium condition at the surface x ∈ S follows as

Ci jklε
(tot)
kl n j = Ci jklε

∗
kln j = σ∗

i jn j ≡ ti, (A6)
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where nj(x) is the outwards pointing normal vector of surface
S at point x ∈ S.

The displacement field in a body subjected to a body-force
is given by [reference [45], equation (4.12)]

u j(x) =
∫

V
G jk(x − x′) fk(x′)d3x′

+

∫
S
G jk(x − x′)tk(x′)d2x′

−
∫

S
G jk,p′ (x − x′)Ckpmiui(x′)nm d2x′, (A7)

where fk is the body force and tk = Ckpmiui,m′np is the surface
traction.

Now consider a case where the only acting body and surface
forces are caused by eigenstrain. We insert the definitions of
body force (A5) and traction (A6) into (A7), arriving at:

u j(x) = −
∫

V
G jk(x − x′)Ckpmiε

∗
mi,p′ (x

′)d3x′

+

∫
S
G jk(x − x′)Ckpmiε

∗
mi(x

′)np d2x′

−
∫

S
G jk,p′ (x − x′)Ckpmiui(x′)nm d2x′. (A8)

We first apply the product rule for differentiation to the first
term in (A8), noting that G jk,p′ = −Gjk,p,

−
∫

V
G jk(x − x′)Ckpmiε

∗
mi,p′ (x

′)d3x′

= −
∫

V

[
G jk(x − x′)Ckpmiε

∗
mi(x

′)
]

,p′d
3x′

−
∫

V
G jk,p(x − x′)Ckpmiε

∗
mi(x

′)d3x′, (A9)

and then proceed with applying the divergence theorem, to
obtain

−
∫

V
G jk(x − x′)Ckpmiε

∗
mi,p′(x

′)d3x′

= −
∫

S
G jk(x − x′)Ckpmiε

∗
mi(x

′)np d2x′

−
∫

V
G jk,p(x − x′)Ckpmiε

∗
mi(x

′)d3x′. (A10)

Substituting (A10) into (A8), we arrive at

u j(x) = −
∫

V
G jk,p(x − x′)Ckpmiε

∗
mi(x

′)d3x′

+

∫
S
G jk,p(x − x′)Ckpmiui(x′)nm d2x′. (A11)

In preparation of the next step, it is helpful to express the sec-
ond term in (A11) as a volume integral by using the divergence
theorem, noting that G jk,pm′ = −G jk,pm,

∫
S
G jk,p(x − x′)Ckpmiui(x′)nm d2x′

=

∫
V

[
G jk,p(x − x′)Ckpmiui(x′)

]
,m′d

3x′

= −
∫

V
G jk,pm(x − x′)Ckpmiui(x′)d3x′

×
∫

V
G jk,p(x − x′)Ckpmiui,m′(x′)d3x′. (A12)

Substituting (A12) into (A11), we find

u j(x) = −
∫

V
G jk,p(x − x′)Ckpmiε

∗
mi(x

′)d3x′

−
∫

V
G jk,pm(x − x′)Ckpmiui(x′)d3x′

+

∫
V

G jk,p(x − x′)Ckpmiui,m′ (x′)d3x′. (A13)

Defining the volume-averaged distortion tensor u j,l by the
relation

Vuj,l =

∫
V

u j,l(x)d3x, (A14)

we substitute (A13) into (A14) and write the volume integral
over d3x′ as a convolution

Vu j,l = −
∫

V
Ckpmi

(
G jk,pl ∗ ε∗mi

)
(x)d3x

−
∫

V
Ckpmi

(
G jk,pml ∗ ui

)
(x)d3x

+

∫
V

Ckpmi

(
G jk,pl ∗ ui,m′

)
(x)d3x. (A15)

We proceed with simplifying the second line in (A15). From
the definition of the elastic Green’s function, we know that
[Sutton [45], equation (4.8)]

CkpimGi j,mp(x − x′) = −δ jkδ(x − x′), (A16)

which, after manipulation of indices and making use of the
symmetries of the stiffness tensor and the Green’s function, is
equal to

CkpmiG jk,mp(x − x′) = −δ jiδ(x − x′). (A17)

The substitution of (A17) into the second line of (A15) yields

−
∫

V
Ckpmi

(
G jk,pml ∗ ui

)
(x)d3x

= −
∫

V

∫
V

[
−δ jiδ,l(x − x′)

]
ui(x′)d3x′ d3x

=

∫
V

u j,l(x)d3x = Vu j,l, (A18)

where we used ∂x(δ∗ f )(x) = ∂x f (x) = f ′(x). Cancelling out
Vuj,l in (A15) hence leads to
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V

Ckpmi

(
G jk,pl ∗ ε∗mi

)
(x)d3x

=

∫
V

Ckpmi

(
G jk,pl ∗ ui,m′

)
(x)d3x. (A19)

Next, substituting

Ckpmiui,m′ = Ckpmiε
(tot)
im = Ckpmi(εim + ε∗im), (A20)

into the second line of (A19) and simplifying the resulting
expression, we arrive at

0 =

∫
V

Ckpmi

(
G jk,pl ∗ εim

)
(x)d3x. (A21)

The above expression is in effect a volume integral over a con-
volution between two functions f and g, which may also be
expressed as∫

V
( f ∗ g) (x) d3x =

(∫
V

f (x)d3x

) (∫
V

g(x)d3x

)
. (A22)

Applying equation (A22) to equation (A21), we arrive at

0 = Ckpmi

[∫
V

G jk,pl(x)d3x

]
Vεim, (A23)

where eim = V−1
∫
εim(x)d3x is the volume-averaged elastic

strain tensor.
The so-called auxiliary tensor

D jkpl =

∫
V

G jk,pl(x)d3x, (A24)

is not generally zero, enabling us to conclude that the volume-
averaged elastic strain tensor vanishes

εim = V−1
∫

V
εim(x)d3x = 0. (A25)

Note that the same applies to the volume-averaged elastic
stress tensor, σim = 0.

Finally, recalling the definition of the volume relaxation
tensor

Ωi j =

∫
V
ε(tot)

i j (x)d3x = Vε(tot)
i j = Vεi j + Vε∗i j, (A26)

and substituting εi j = 0, we arrive at the central result

Ωi j = Vε∗i j. (A27)

To conclude, the elastic field εi j does not contribute to vol-
ume change in a body with the surface free of tractions. Any
volume change is solely effected by the volume-average eigen-
strain field ε∗i j, as shown by expression (A27). The proof above
is general insofar as the eigenstrain field may be non-zero
across the whole of the body, including the surface.

We can also recover the well known relation between relax-
ation volume tensor and dipole tensor [8, 44]

Ωi j = Vε∗i j = Si jklCklmnVε∗mn = Si jklPkl, (A28)

where Pkl = Vσ∗
kl is the dipole tensor.

Table 1. Parameters used in equation (C1) for fitting the data
plotted in figure 1 and used in FEM simulations described in
section 4.

Ion energy (MeV) 10 20 50

c1 [-] 0.2016 0.1275 0.0705
c2 (μm−1) 0.2177 0.0568 −0.0022
c3 (μm−2) 0.4401 0.0958 0.0253
c4 (μm) 1.1385 2.0470 3.6592
c5 (μm) 0.1967 0.2504 0.2444
c6 [-] 5.6681 4.4973 2.1856

Appendix B. Volume changes in linear elasticity

Consider a body that underwent deformation such that point x
in the initial configuration is at x′ in the deformed configura-
tion. The initial and deformed coordinates are related through
the displacement field

x′ = x + u(x). (B1)

Considering the displacement as a coordinate transformation
from x → x′, the volume of the body is given by the volume
integral

V =

∫
V

det(J)dx dy dz, (B2)

where det(J) is the determinant of the Jacobian matrix

Ji j =
∂x′i
∂x j

= δi j + ui, j(x), (B3)

given by

det(J) = 1 + ui,i +
1
2

(
ui,iu j, j − ui, ju j,i

)
+ u1,iu2, ju3,kεi jk, (B4)

where εi jk is the Levi-Civita tensor.
In the limit of small strain

det(J) ≈ 1 + ui,i, (B5)

leading to the expression for the volume of the body [49]

V =

∫
V

(
1 + ui,i

)
dx dy dz. (B6)

With this in mind, even if the displacement field has been
obtained using linear elasticity theory, expression

Ωtot =

∫
V
ε(tot)

ii (x)dV , (B7)

only captures the volume change of the distorted body to first
order in strain. This is typically a valid approximation as mean
strains in linear elasticity theory are usually limited to a few
percent.
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Figure 10. Variation of the von Mises and maximum principal stresses as functions of the total number of elements in an FEM model for (a)
the initial design and (b) the modified design investigated in section 7. Stresses are evaluated in the regions showed at higher magnification
in figures 8 and 9. FEM mesh in these regions is shown here with a map of (a) the von Mises and (b) the maximum principal stress, to show
the effect of two iterations of the mesh refinement algorithm.

Appendix C. Relaxation volume density profiles

In the treatment of distortions in a rectangular foil considered
in section 4, function ω(z) was taken to be proportional to the
ion implantation profile. Three tungsten ion implantation pro-
files were considered in section 4, corresponding to ion ener-
gies of 10, 20 and 50 MeV. The data points that were generated
using the SRIM package [58, 59] are shown in figure 1. These
three data sets were fitted using the function

f (ζ) =
c1 + c2ζ + c3ζ

2[
1 + exp

(
ζ−c4

c5

)]c6 , (C1)

where ζ = h − z is the depth variable used in figure 1. Using
the least squares regression we determined the fitting parame-
ters given in table 1.

Function ω(ζ) was then assumed to be proportional to
f (ζ). The proportionality constant was set to 0.034 37 so that
the peak of the 20 MeV curve corresponds to the relaxation
volume density of 1%.

For the cylindrical tube case explored in section 5, the
profile of ω(ρ) plotted in figure 4(a) is

ω(ρ) =
0.01

(4.0 − ρ)2
, (C2)

where 2.5 < ρ < 3.0 is in mm.
For the case of a spherical shell described in section 6, the

profiles of ω(r) plotted in figure 5(a) are

ω(r) =
0.02

1 + exp
(

r−3.15
0.01

) , (C3)
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for case 1 and

ω(r) =
0.005

(r − 2.5)2
− 0.002 7843, (C4)

for case 2. Both functions are defined on the interval 3.0 <
r < 3.3, where r is given in metre units. The second term in
equation (C4) ensures that integral

∫
V ω(x)dV has the same

value in both cases.
For the breeding blanket module of section 7, functionω(x)

is defined as

ω(x) =
1069

(x − 731)2
, (C5)

where 0 < x < 500 is expressed in mm units.

Appendix D. FEM convergence analysis

As opposed to the analysis given in the sections preceding
section 7, there is no analytical solution for the breeding blan-
ket module described in section 7 to assess the quality of
the FEM mesh. To obtain the numerical FEM results pre-
sented in section 7, we started from a relatively coarse mesh
of about 5 × 105 tetrahedral elements and applied to the entire
model the adaptive remeshing algorithm of Abaqus, reaching
a final mesh of about 2 × 106 elements. In such a way, the
programme was allowed to decrease the element size down to
about 0.1 mm at locations where the gradients of stress were
relatively high, at the same time coarsening the mesh where
gradients were relatively small.

Figure 10(a) shows the highest values of the von Mises and
maximum principal stresses as a function of the total num-
ber of elements included in the FEM representation of the
first design with horizontal and vertical inner walls. The mesh
refinement procedure was stopped after two iterations as the
change in these highest stresses was considered to be accept-
ably small (3% for the von Mises, 1% for the maximum prin-
cipal stress). A similar mesh refinement process was carried
out for the modified design model with slanted inner walls and
increased fillet radii, as shown in figure 10(b). Since the region
where the maximum principal stress was evaluated (i.e. the
inset of figure 9(b)) was no longer the maximum for the entire
structure, the second iteration caused the value to decrease
slightly. The numerical values of stress converged to within 1%
both for the von Mises and for the maximum principal stress.
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