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Abstract
Ion cyclotron emission (ICE) driven by perpendicular neutral beam-injected (NBI) deuterons,
together with the distinctive ICE driven by tangential NBI, have been observed from
heliotron–stellarator plasmas in the large helical device (LHD). Radio frequency radiation in
the lower hybrid range has also been observed Saito K. et al (2018 Plasma Fusion Res. 13
3402043), with frequency dependent on plasma density. Here we focus on recent
measurements of ICE from deuterium plasmas in LHD, which show substantial variation in
spectral character, between otherwise similar plasmas that have different local density in the
emitting region. We analyse this variation by means of first principles simulations, carried out
using a particle-in-cell (PIC) kinetic approach. We show, first, that this ICE is driven by
perpendicular NBI deuterons, freshly ionised near their injection point in the outer midplane
edge of LHD. We find that these NBI deuterons undergo collective sub-Alfvénic relaxation,
which we follow deep into the nonlinear phase of the magnetoacoustic cyclotron instability
(MCI). The frequency and wavenumber dependence of the saturated amplitudes of the excited
fields determine our simulated ICE spectra, and these spectra are obtained for different local
densities corresponding to the different LHD ICE-emitting plasmas. The variation with density
of the spectral character of the simulated ICE corresponds well with that of the observed ICE
from LHD. These results from heliotron–stellarator plasmas complement recent studies of
density-dependent ICE from tokamak plasmas in KSTAR Thatipamula S.G. et al (2016
Plasma Phys. Control. Fusion 58 065003); Chapman B. et al (2017 Nucl. Fusion 57 124004),
where the spectra vary on sub-microsecond timescales after an ELM crash. Taken together,
these results confirm the strongly spatially localised character of ICE physics, and reinforce
the potential of ICE as a diagnostic of energetic ion populations and of the ambient plasma.
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1. Introduction

Ion cyclotron emission (ICE) is widely observed from magnet-
ically confined fusion (MCF) plasmas [4]. In addition to his-
torical observations from deuterium–tritium plasmas in JET
[5, 6] and TFTR [7], since 2017 ICE has been reported
and analysed from the KSTAR [8, 9], DIII-D [10], ASDEX-
Upgrade [11–13], TUMAN-3M [14] and EAST [15] toka-
maks, and the large helical device (LHD) heliotron–stellarator
[16–18]. ICE spectra typically comprise a succession of nar-
row, strongly suprathermal, peaks at sequential cyclotron har-
monics of an energetic ion species. These species include
fusion-born ions [5], neutral beam injected (NBI) ions [19],
and ions energised by ion cyclotron resonant heating [20]. The
emitting region is identified by matching spectral peak fre-
quencies to local magnetic field strength. While in most cases
it corresponds to the outer midplane edge plasma, ICE from
the plasma core has recently been reported from the TUMAN-
3M [14], ASDEX-Upgrade [12] and DIII-D [21] tokamaks.
ICE has also been observed in NSTX and NSTX-U where
it was found to be spatially collocated with internal trans-
port barriers [22]. It is clear that the plasma physics process
responsible for ICE is the magnetoacoustic cyclotron instabil-
ity (MCI) [23]. This excites waves on the fast Alfvén-cyclotron
harmonic branch, by drawing on the free energy of fast ions
whose distribution in velocity-space incorporates a popula-
tion inversion. The linkage between ICE and the MCI was
established by early analytical studies [24–27], and reinforced
in the past decade by first principles computational studies
using the particle-in-cell (PIC) approach [3, 8, 9, 20, 28–31].
In outline, the MCI involves the excitation, through wave-
particle cyclotron resonance, of quasi-perpendicular propagat-
ing waves on the fast Alfvén-cyclotron harmonic branches.
For these waves, the perpendicular phase velocityω/k⊥ � VA,
with VA the Alfvén speed, implying that energetic ions with
v⊥ � VA will dominate any wave-particle resonant instabil-
ity drive. Such drive is, of course, only possible at spatial
locations where the energetic ion velocity-space distribu-
tion near v⊥ � VA exhibits a population inversion, that is,
∂ f/∂v⊥ > 0 locally. This intuitively attractive physics was
identified in the pioneering formulation of the MCI by Belikov
and Kolesnichenko [23] and in subsequent analytical stud-
ies [24–27]. It also emerges naturally from PIC-based stud-
ies of the relaxation of energetic ion distributions in majority
thermal plasmas [3, 8, 9, 20, 28–31]. In these, the collec-
tive instability, and indeed the normal modes themselves, are
not prior assumptions; instead they emerge from the summa-
tion, over tens of millions of macroparticles, of self-consistent
gyro-resolved kinetics and field evolution.

Figure 1. Schematic diagram of LHD plasma showing locations and
directions of NBI beams.

The notion that the strongest drive comes from v⊥ ≈ VA

originates in the mathematical analysis of the linear MCI.
Specifically the kinetic dielectric tensor elements are rich in
Bessel functions whose arguments k⊥v⊥/Ω, see for example
equations (11) to (13) of reference [26], become k⊥v⊥,0/Ω
for the driving energetic ion population, with Ω and v⊥,0 its
cyclotron frequency and speed respectively.

SinceΩ also approximates to k⊥VA for the fast Alfvén wave
at its fundamental cyclotron resonance, the Bessel function
argument approximates to v⊥,0/VA. In addition, since the most
significant contributions (involving sign reversals, etc) from
the Bessel functions and their derivatives concentrate around
where their argument equals unity, linear theory implies in
broad terms that the dominant contribution to driving the MCI
comes from energetic ions that have v⊥ close to VA, irre-
spective of their v‖. This line of reasoning, first developed by
Belikov and Kolesnichenko [23] in the 1970s, also works for
nth cyclotron harmonics and corresponding nth order Bessel
functions and derivatives, hence the broadly comparable linear
growth rates calculated across a range of low cyclotron har-
monics shown in e.g. figure 3 of reference [26]. The central
role of Bessel functions in linear MCI theory carries over into
the sub-Alfvénic regime, see for example equations (9), (10)
and (16) of reference [32]. The analytical theory of the MCI,
which contributes to explaining many aspects of ICE observa-
tions, has recently undergone a renaissance, see for example
references [33, 34]. The supposition, derived from linear MCI
theory, that ICE observations at proton cyclotron harmonics
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Figure 2. Measured time traces for: (left panel) LHD plasmas 138 439 (black traces) and 138 458 (red), to which NBI #4 and NBI #5 were
applied in separate brief bursts; (right panel) LHD plasma 138 433 during which NBI #5 was operated continuously. From top to bottom, the
five vertically arranged panels are: (a) neutron flux; emission intensity detected by RF spectrometer for frequency channels at (b) 30 MHz
and (c) 60 MHz; (d) NBI port through power; (e) line averaged density.

in KSTAR deuterium plasma is mainly driven by energetic
ions with v⊥ ∼ VA turned out to have predictive power, see
reference [3].

The NBI ions driving ICE are not necessarily super-
Alfvénic, even marginally. An early example of sub-Alfvénic
ICE arose in TFTR DT supershots [35]. In the LHD cases con-
sidered here, v⊥,0 = vNBI is less than VA by factors of around
two, with vNBI the speed of the NBI ions. This deeply sub-
Alfvénic ICE regime is underexplored in terms of published
experimental data. Here we report three instances from LHD,
which we examine using first principles studies of the nonlin-
ear regime of the MCI, using PIC-type approaches. In addition,
the path taken here differs from that of reference [18] for which
both the density and magnetic field were changed in order to
vary vNBI/VA, whereas only the density was changed here.
For example, if one adjusts the value of vNBI/VA by changing
the injection energy of the fast ions (hence the value of vNBI),
in principle the bulk plasma parameters could remain invari-
ant. Whereas if one adjusts the value of vNBI/VA by chang-
ing the plasma density (hence the value of VA), this results
also in a change of the value of key bulk plasma ratios such
as plasma frequency to cyclotron frequency, and in the value
of the lower hybrid cutoff. These are, of course, important
for fast wave physics in plasmas. PIC code algorithms [36]
solve the Maxwell–Lorentz system of equations, typically for
tens or hundreds of millions of interacting charged macropar-
ticles—energetic ions, thermal ions, and electrons—together
with the self-consistent electric and magnetic fields. Collec-
tive instabilities thus emerge at the level of particle kinet-
ics and field dynamics. The PIC approach can retain full
gyro-orbit resolution, and is thus particularly suitable for phe-
nomena that incorporate gyroresonance, such as the MCI. In
PIC studies for ICE interpretation, a minority energetic ion
population is initialised with a distinct, physically motivated,
velocity-space inversion. This population then relaxes under

the Maxwell–Lorentz system, while coupled to the thermal
ions and electrons, and interacting with, and generating, self-
consistent fields. Typically, the frequency and wavenumber
dependence of the saturated amplitudes of the MCI-excited
fields determine the simulated ICE spectra, which are then
compared to the observed ICE spectra. Our PIC computa-
tional approach, using the hybrid-PIC code [29], is the same
as used in reference [18], to which we refer for further detail.
The foregoing approach was recently applied to observations
of ICE from hydrogen plasmas in LHD, driven by NBI pro-
tons injected perpendicular to the confining magnetic field
[18]. A focus of reference [18] is the dependence of observed
ICE properties on whether the NBI protons are super-Alfvénic
or sub-Alfvénic in the emitting region of the plasma; that is,
whether vNBI/VA is larger or smaller than unity, where vNBI is
the speed of the NBI ions and VA the local Alfvén speed. The
present computational study addresses measurements of ICE
from significantly sub-Alfvénic populations of energetic NBI
ions, under conditions where the local density differs signifi-
cantly between LHD plasmas. At fixed NBI energy and local
field strength, the value of VA is governed by the value of the
density. In recent PIC studies of ICE from the KSTAR toka-
mak, ICE chirping on sub-microsecond timescales during the
ELM crash was interpreted [3] in terms of fast density depen-
dence arising from filament motion. Understanding the den-
sity dependence of ICE phenomenology is thus topical, both
experimentally and in relation to theory and interpretation. In
particular, it will assist the exploitation of ICE measurements
to infer the key features of the velocity-space distribution of
energetic ion populations in MCF plasmas.

2. Sub-Alfvénic ICE

Ring-beam distributions in velocity-space, as adopted in the
present paper, are appropriate for representing freshly ionised
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Figure 3. Observed ICE power spectra for three LHD deuterium plasmas at times indicated by the blue vertical dashed lines in figure 2
during operations of NBI #1-3, 5 for LHD plasmas 138 439, 138 458 and 138 433 which differ primarily in their edge plasma densities. The
peak-to-peak frequency separation Δ f is 12.05 MHz in all three cases. Identifying Δ f with the local deuteron cyclotron frequency ΩD
implies a magnetic field strength B = 1.581 T, which corresponds to an outer midplane plasma edge location in LHD.

populations of NBI ions, and were used in initial studies of the
excitation of electrostatic modes to interpret probe measure-
ments of ICE in TFTR plasmas with deuterium and tritium
NBI in reference [27]. This electrostatic instability (as dis-
tinct from the fully electromagnetic treatment now prevalent,
including in the present paper) did not rely on the fast Alfvén
wave, and could be driven by significantly sub-Alfvénic fast
ions, given a very narrow distribution of speeds parallel to
the magnetic field. Computed growth rates for tritium (T) har-
monics degenerate with background D were relatively lower,
providing a link with the observed reduced intensity of ICE
spectral peaks at the third and sixth T harmonics in some
TFTR experiments, see figure 2 of reference [27]. Subse-
quently in TFTR, ICE was observed at cyclotron harmon-
ics of the fusion products (3He in DD supershots, and both

4He and 3He in T and in DT supershots) and of the sub-
Alfvénic NBI-injected D and T. As with ICE in JET, the
emission originated from the outer midplane edge plasma,
but there were significant differences with respect to JET,
particularly in the time evolution of the TFTR ICE signals.
Typically, during the first 50 to 200 ms following the NBI
trigger, cyclotron frequencies of the fusion products domi-
nated the measured ICE spectrum, but then died out. They
were replaced by ICE spectral peaks at multiple cyclotron
harmonics of the injected D and T, until the NBI injectors
were turned off. In subsequent TFTR experiments, Helium
was puffed [35], forcing the plasmas to transit from typical
supershots to pure L-modes. This changed the electron criti-
cal density and hence the local value of the ratio vα/VA ≶ 1,
where vα is the alpha-particle birth velocity and VA is the
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Figure 4. Measured radial profiles of the LHD plasmas. (Top)
electron density, and (middle) electron temperature, obtained by
Thomson scattering at the time of the ICE spectra displayed in
figure 2; (bottom) ion temperature obtained by charge exchange
spectroscopy during heating by NBI #4.

local Alfvén speed in the ICE-emitting region at the plasma
edge. The transient nature of ICE in TFTR supershots could
be explained by the fact that the alpha-particle fusion products
were sub-Alfvénic in the edge plasma. A plasma shifting from
supershot to L-mode leads to early alpha-particle-driven ICE
generation lasting for ≈200 ms which then soon extinguishes,
typical of the supershot phase, see figure 7 of reference [35].
The linear MCI treatment [7, 27, 32] distinguishing the sub-
Alfvénic behaviour of TFTR from super-Alfvénic regimes typ-
ical of JET lead to higher growth rates for the former compared
to the latter. This phenomenology follows from orbits and
velocity-space considerations. In the observations from DIII-
D (reference [10]) and ASDEX-Upgrade (references [11–13])
the NBI ions are also sub-Alfvénic, but the observational focus
is on core ICE. For core ICE, the MCI physics is more complex
and less certain: partly because fusion-born ions may addi-
tionally contribute to the drive; and partly because there are
no core ICE counterparts to the very high-resolution measure-
ments of plasma conditions for edge ICE, as shown for LHD
in e.g. figure 4 of the present paper. The distinctive ICE mea-
surements from NSTX and NSTX-U [22] appear to be driven,
near transport barriers, by ions that are locally mildly super-
Alfvénic. ICE from the core plasma in the small (major radius
0.557 m, minor radius 0.256 m) TUMAN-3M tokamak was
observed in association with sub-Alfvénic NBI using a mix-
ture of hydrogen and deuterium using magnetic probes [14].
The density-dependence of ICE spectra driven by substantially

Figure 5. Identifying the approximate location of the region where
ICE is generated during perpendicular deuterium NBI in LHD. We
match the approximate frequency spacing between observed
neighbouring ICE peaks, �12 MHz, to the spacing between
successive local deuteron cyclotron harmonics. This is possible only
at R � 4.65 m.

sub-Alfvénic NBI ions has not previously been explored, and
especially not in otherwise similar plasmas, as here. Reference
[18] addresses two cases of ICE, on either side of the bound-
ary between sub-Alfvénic and super-Alfvénic in LHD. Refer-
ences [3, 8] for KSTAR include density-dependence, but this
is continuously and rapidly varying on microsecond timescales
in the ELM crash, which is a very different context from the
quasi-stationary conditions in the present paper. Furthermore
the driving ions (3 MeV fusion-born protons) in references
[3, 8] are strongly super-Alfvénic with v⊥ close to VA. The
NBI deuterons driving the ICE in KSTAR, reference [9],
are mildly sub-Alfvénic. As noted in the caption to figure 5
there, the action of the MCI is concentrated in (ω, k) space in
the fairly narrow wedge between vNBI and VA. Among other
things, this motivates the drive to ‘open the wedge’ in the
present paper; as noted in the main text and captions, we go
down to vNBI/VA = 0.36 in LHD plasma 138 439.

3. ICE from LHD deuterium plasmas: diagnostic
context

In the LHD heliotron–stellarator, the ICE driven by perpen-
dicular NBI deuterium, and the distinctive ICE driven by
tangential NBI, have previously been observed using loop
antennas [1]. Moreover, radiofrequency emission has been
observed in the lower hybrid range, with frequency dependent
on plasma density. Here we address recent measurements of
radio-frequency emission at multiple deuteron cyclotron har-
monics from deuterium plasmas in LHD, which show substan-
tial variation in spectral character, between otherwise similar
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Table 1. Edge plasma parameters and NBI deuteron energies, with corresponding values for
vNBI/VA which are significantly sub-Alfvénic.

LHD plasma Te (eV) ne(1019 m−3) NBI #5b (keV) vNBI (106 ms−1) VA(106 ms−1) vNBI/VA

138 439 70 1.2 66.7 2.53 7.04 0.36
138 458 80 1.8 66.7 2.53 5.75 0.44
138 433 50 3.4 68.7 2.57 4.18 0.61

Table 2. Table giving the different NBI energies, either H or D. The simulations use the deuterium energies of NBI #5b. Note from figure 1
that NBI #1, #2 and #3 are all directed parallel, whereas NBI #4 and #5 are perpendicular to the magnetic field.

LHD plasma NBI#1 NBI#2 NBI#3 NBI#4a NBI#4b NBI#5a NBI#5b
(keV),D (keV),H (keV),D (keV),D (keV),D (keV),D (keV),D

138 439 172 — 174 30.5 45.2 — 66.7
138 458 172 138 — 30.5 46.2 — 66.7
138 433 172 163 174 35.4 51.1 — 68.7

plasmas that have different local density in the emitting region.
These measurements are obtained with the dipole antenna
described below. We show that this ICE is driven by per-
pendicular NBI deuterons, freshly ionised near their injec-
tion point in the outer midplane edge of LHD. These NBI
deuterons undergo collective sub-Alfvénic relaxation, which
we follow deep into the nonlinear phase of the MCI. The
variation with density of the spectral character of the sim-
ulated ICE corresponds well with that of the observed ICE
from LHD. These results from heliotron–stellarator plasmas
complement recent studies of density-dependent ICE from
tokamak plasmas in KSTAR [2, 3], where the spectra vary
on sub-microsecond timescales after an ELM crash. Taken
together, these results confirm the strongly spatially localised
character of ICE physics, and reinforce the potential of ICE as
a diagnostic of energetic ion populations and of the ambient
plasma.

On LHD, the acquisition system of the ICE measured at a
dipole antenna located in the 10-O port inside the vacuum ves-
sel was developed in partnership with KSTAR [37–40]. A fast
digitizer performs direct sampling of the radiofrequency mea-
surements at a frequency of 1.25 GSa/s. The time evolution of
the RF spectral intensity is determined from this signal using a
14-channel filter bank spectrometer in the range of 70 MHz to
2800 MHz, with intermediate spectral resolution and with μs
time resolution; for a duration spanning the whole plasma dis-
charge [39]. This dipole antenna measuring the ICE is located
close to NBI #5 and toroidally opposite to NBI #4, see figure 1.

4. Observed density dependence of NBI-driven
ICE from LHD deuterium plasmas

During perpendicular deuterium NBI experiments in LHD, it
was observed that the spectral character of the ICE changes
significantly between plasmas whose parameters in the emit-
ting edge region differ only in their electron density. The left
panel of figure 2 shows that ICE at frequencies 30 MHz and
60 MHz was observed only when NBI #5 was operated with-
out NBI #4 in LHD plasmas 138 439 and 138 458. Conversely,
in these plasmas, ICE was not observed when only NBI #4

was operated without NBI #5. Moreover, as shown in the
right panel of figure 2, ICE was continuously observed during
continuous operation of NBI #5 in LHD plasma 138 433.
These results support the interpretation below that ICE
measured at the dipole antenna is driven locally by
perpendicular-NB injected deuterons from NBI #5. Figure 3
shows the ICE power spectra observed at the time indicated by
the vertical blue dashed line in figure 2 for LHD plasmas 138
439, 138 458 and 138 433 which differ primarily in their edge
plasma densities. The profiles of the electron density, electron
temperature, and ion temperature are shown in figure 4. These
were taken at instants which are very close to the times at
which the ICE spectra, shown in figure 3, were observed.
Figure 3 shows that, as the electron density increases, the
amplitudes of the ICE spectral peaks typically increase, in the
frequency range of interest to us below 120 MHz; the number
of harmonics increases; and the width of spectral peaks
increases. If we identify the 12.05 MHz spacing between
the ICE spectral peaks in figure 3 with the local deuterium
cyclotron frequency, this suggests that the local background
magnetic field value is 1.581 T and hence the emission
location is at R = 4.651 m, as illustrated in figure 5. Table 1
summarises the plasma parameters at the inferred emission
location where the deuteron cyclotron frequency matches
12.05 MHz, with reference to figure 4, together with values
for the velocity of freshly injected ions vNBI, and the local
Alfvén speed VA. We note for future analysis that, since the
Alfvén speed is given by

VA =
B0√

μ0nemD
, (1)

with ne and mD the electron density and the deuteron mass
respectively, the key dimensionless ratio of the NBI deuteron
speed to the Alfvén speed, vNBI/VA, also increases as ne

increases. We observe that in all three plasmas, the NBI
deuterons are in the sub-Alfvénic regime. This regime was pre-
viously investigated in earlier ICE experiments carried out in
TFTR, involving gas puffing [35, 41]. This changed the edge
plasma density, transitioning the fusion-born alpha-particles
from a sub-Alfvénic to a super-Alfvénic regime in that region.
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Figure 6. Experimental and simulated power spectra.

The consequences for the TFTR ICE spectrum are discussed
in figures 7–9 of reference [35]. We note that the Alfvén speed
definition equation (1) includes D only: the ratio D/(D + H)
remains constant and very close to unity during the plasmas
studied. Our simulations incorporate the effect of both the
thermal deuterons and the energetic deuterons NBI population
as explained in the next section.

5. First principles simulations of ICE spectra and
their density dependence

5.1. Basis of the computational approach

Our hybrid-PIC simulations, reported below, use the deuterium
injection energies of NBI #5b given in table 2 to define the ini-
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Figure 7. Red, green and blue circles: measured ICE power spectra from LHD plasmas 138 439, 138 458 at t = 4.92 s and 138 433 at
t = 5.25 s. Dark traces: corresponding simulated power spectra of the z-component of the perturbed magnetic field, averaged between
t = τD and t = 9τD. The power spectra are vertically offset in comparison to figure 6 such that the cyclotron harmonic with largest
amplitude, respectively 2, 2 and 4 for LHD plasmas 138 439, 138 458 and 138 433, has zero ordinate.

tial perpendicular velocity of the energetic minority deuteron
population. These deuterons are represented in velocity space
as a gyro-resolved ring-beam distribution ∼δ (v⊥ − vNBI), as
discussed further in section 5.2, which coexists with a much
more numerous gyro-resolved thermal deuteron population
together with a charge-neutralising electron fluid. With this
1D3V code, the wavenumbers of spatial variations can only
be oriented along the single axis (1D) of the spatial domain,
the x-direction. It is nevertheless possible to fully represent ion
gyrations, because the code is 3V. This is done by integrating(
vx , vy

)
over time. Once initialised, this system subsequently

relaxes under first principles self-consistent Maxwell–Lorentz
dynamics. The majority thermal deuterons have Ti = 280 eV,
which is inferred from the LHD ion temperature profile shown
in figure 4 in combination with the result of figure 5; we
use the associated thermal velocity vTi = 1.64 × 105 ms−1 to
characterise their initially Maxwellian distribution. It follows
that vNBI/vTi = 15.43, which is also the ratio of ion Larmor
radii rL,NBI/rTi. We use 32 798 particles per cell for the ther-
mal background deuterons and 8192 particles per cell for the
NBI deuterons. The 1.581 T background magnetic field is per-
pendicular to the 1D spatial domain of our simulation, which
consists of 4096 cells. The 1D spatial domain of the sim-
ulations is taken to correspond to the radial direction, such
that the perpendicular background magnetic field is oriented
in the toroidal direction. The wavevector k of spatial fluctua-
tions propagates radially outwards if positive. The cell sizes are
0.0028 m, 0.0022 m and 0.0014 m for LHD plasma 138 439,

138 458 and 138 433 respectively, which correspond respec-
tively to multiples of 1.31, 1.00 and 0.65 of the character-
istic gyroradius rTi of the thermal deuterons. The different
plasma densities give rise to different electron skin depths λe:
0.0015 m, 0.0013 m and 0.0009 m, respectively. These need
to be smaller than the cell sizes to be consistent with PIC-
hybrid model assumptions [42, 43]. Chosen as above, the cell
sizes keep the ratio of Δx/λe constant at about 1.70 in all
three cases. This approach thus captures cyclotron resonant
phenomenology directly, at the level of particle–field interac-
tions for individual ions moving on their resolved gyro-orbits.
The hybrid-PIC model used here relies on collisionless ions
and Coulomb collisions are not taken into account over the
time scales studied (the deuteron gyroperiod τD = 0.1 μs).
In the appropriate limit, the code recovers the cold magne-
tised plasma dispersion relation. To enable systematic com-
parison of computational outputs, we use the same relative
beam density ξ ≡ nNBI/ne for all our simulations; as distinct
from, say, a constant absolute beam density. Specifically, we
set ξ = 0.0005 in all simulations. The extent to which the value
of ξ may have varied between the three LHD plasmas was
explored using the FIT3D code [44, 45]. This makes it pos-
sible to estimate—subject to several unavoidable uncertain-
ties—the time-evolving number density of the NBI deuterons
which originate from injector #5 in LHD, summing over all
NBI ion energies from zero to 67 keV. The FIT3D calcu-
lations necessarily relate to a radial location just inside the
last closed flux surface (LCFS), whereas the ICE measure-
ments in this paper appear to originate just outside the LCFS.
The estimated values of ξ do not vary greatly. We find that

8



Nucl. Fusion 61 (2021) 066023 B.C.G. Reman et al

Figure 8. Spatiotemporal Fourier transform of the fluctuating part
of the z-component of the magnetic field, calculated over the entire
simulation and plotted on a log10 scale for the three cases. The
concentration of excited wave amplitude in (ω, k) space lies on
horizontal bands at successive cyclotron harmonics, and each of
these bands is approximately centered on a line which satisfies
ω/k = vNBI. This is represented by the dark line in each panel,
characterised by

(
ω/k

)
/VA = vNBI/VA = 0.36, 0.44 and 0.60 from

top to bottom. The steepest yellow–red feature corresponds to the
linear fast Alfvén dispersion relation ω = kVA and incorporates
significant noise energy.

the highest value of ξ among the three plasmas is estimated
to occur for LHD plasma #138 439, which has the weakest
observed ICE spectrum, see the top panel of figure 3. It is
known that linear MCI drive is often a slowly monotonically
increasing function of ξ [18, 31], other variables being equal.
The reversal of this trend in the present case, where however
density varies greatly between the three plasmas, suggests that
the background density dependence effect we consider, which
determines ICE spectral character in addition to ICE inten-
sity, is dominant over any consequences of any variation in
nNBI/ne.

The ratios of the NBI deuteron speed vNBI to the local
Alfvén speed VA are 0.36, 0.44 and 0.60 for LHD plasmas 138
439, 138 458 and 138 433 respectively, see table 1. The NBI
deuterons are thus in a significantly sub-Alfvénic (and accord-
ingly computationally resource-intensive) regime for all three
plasmas; they have an even lower value of vNBI/VA than the
sub-Alfvénic NBI protons in LHD hydrogen plasmas whose
ICE was addressed in reference [18].

5.2. Simulated ICE spectra compared to observations

In our PIC-hybrid simulations, the energetic minority
deuteron population is initialised with a ring-beam dis-
tribution in velocity space, of the form f NBI

(
v⊥, v‖

)
=

1/ (2πvNBI) δ
(
v‖

)
δ (v⊥ − vNBI), where vNBI is the injection

speed resulting from the NBI #5b beam energies given in
table 1. These NBI deuterons are initially distributed randomly
and uniformly in gyroangle while the thermal deuterons are
loaded by mean of a quiet start [46, 47], in both positions
and velocities. The relaxation of this energetic ion population
under the Maxwell–Lorentz system of equations gives rise
to self-consistently excited electric and magnetic fields; see
references [3, 28, 29] for details of this approach. Fourier
transformation of the excited fields yields spectral information
that is compared to the LHD observations. We focus on the
lower cyclotron harmonics, for which the distribution of
energy between the ICE spectral peaks shown in figure 3
displays significant changes between the three LHD plasmas.
Figure 6 shows the simulated power spectra, alongside the
measured spectra extracted from figure 3. The red, green and
blue traces correspond to LHD plasmas 138 439, 138 458
and 138 433 respectively. In the middle and bottom panels of
figure 6, these traces are obtained by taking the spatiotemporal
fast Fourier transform of the values of δBz output from the
PIC-hybrid computations in the time interval between t = τD

and t = 9τD (where τD = 2π/ΩD is the deuteron gyroperiod),
which is summed over wavenumbers up to k = 40ΩD/VA.
The agreement between observed and simulated ICE spectra
appears good quantitatively. In both the top (experimental
ICE) and middle (simulated spectra) panels in figure 6, the
number of cyclotron harmonic spectral peaks increases as
vNBI/VA increases, as does their amplitude. These trends can
be examined in greater detail for the three plasmas separately
in figure 7. Here our simulated power spectra are shown as
dark traces, together with the measured ICE spectra which are
plotted as coloured traces for comparison: red, LHD plasma
138 439; green, LHD plasma 138 458; blue, LHD plasma

9



Nucl. Fusion 61 (2021) 066023 B.C.G. Reman et al

138 433. The spectra are vertically offset in comparison
with figure 6 such that the ordinate of the peak with largest
amplitude is zero in each panel. In the left panel of figure 7,
for which vNBI/VA = 0.36, the strongest spectral peaks
in the simulation are at relatively low deuteron cyclotron
harmonics, second to fourth. In the middle panel, for which
vNBI/VA = 0.44, the middle order harmonics (fourth and
fifth) become more pronounced. In the right panel of figure 7,
for which vNBI/VA = 0.60, the amplitudes of the spectral
peaks are substantially larger, and the simulation captures
the experimental spectrum in extending strongly across the
middle order harmonics (fifth to seven). In all three plasmas
of figure 7, the strongest harmonic peaks in the experiment
and in the simulations are the same: from left, second, second
and fourth. The fundamental computational noise level in our
simulations is addressed in appendix A, where it is found
to lie at about −145 dB. The instrumental noise level in the
ICE detection system on LHD imposes the noise floor that is
visible in the top panel of figure 6. The question of where the
instrumental noise floor should lie in our simulated spectra
cannot be answered a priori. However the bottom panel of
figure 6 shows that the agreement between the observed and
simulated ICE spectra is greatest if we conjecturally assign
a value of −133 dB to the instrumental noise floor when
considering our simulated spectra. One possible source of
difference with regard to the width of the measured and
simulated power spectra is the time during which the time
series is acquired. In the calculation, it corresponds to the
duration of the simulation which is 10τD.

The spatiotemporal fast Fourier transforms of δBz are plot-
ted in figure 8. These show that the concentration of excited
wave amplitude in (ω, k) space lies on horizontal bands at suc-
cessive cyclotron harmonics, and that each of these bands is
approximately centered on a line which satisfies ω/k = vNBI.
This is represented by the dark line in each panel of figure 8,
for which

(
ω/k

)
/VA = vNBI/VA = 0.36, 0.44 and 0.60 from

top to bottom. The nearly horizontal structures are electromag-
netic cyclotron harmonic waves supported by both the thermal
deuterons (as a positive-energy wave) and the NBI deuterons
(as a negative-energy wave). This is apparent from the lin-
ear analytical theory of the MCI: restricting attention to the
strictly perpendicular case for mathematical clarity, let us con-
sider for example the final three terms on the right-hand side
of equation (67) of reference [24]. Importantly, the signs of
the coefficients β4 and β5 in this equation, which are defined
at equations (51) and (52), depend on the specific distribu-
tion of the energetic ions in velocity-space. This leads on to
the negative-energy character of the energetic ion support to
the corresponding cyclotron harmonic waves, as anticipated
by Belikov and Kolesnichenko [23]. The electromagnetic
generalisation of the foregoing, for finite k‖, is at equation
(20) of reference [26]. The dark line overplotted on the spa-
tiotemporal Fourier transforms in figure 8, which delineates
ΩD/k = vNBI, can be recast as k⊥vNBI/ΩD � 1. At ω = ΩD,
this represents the Bessel function argument which we men-
tioned earlier in the introduction; excitation is concentrated at
values of the argument close to 1. The steepest yellow–red fea-
ture in figure 8 corresponds to the linear fast Alfvén dispersion

Figure 9. Time evolution of the change in the energy density of the
different field and particle species: red, background deuterons; blue,
NBI deuterons; green, z-component of the fluctuating part of the
magnetic field; black, x-component of the electric field.

relation ω = kVA and incorporates significant noise energy.
Figure 9 plots the time evolution of the change in the differ-
ent components of particle and field energy density. It shows
that, in these simulations, the NBI beam deuterons relax and
saturate faster, releasing more energy to the excited fields and
the bulk plasma, as the value of vNBI/VA increases towards
unity.
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6. Conclusions

The computational approach adopted in this paper has involved
solving the Maxwell–Lorentz equations for tens of millions
of macroparticle ions with fully gyro-resolved orbits, together
with fluid electrons, self-consistently with the electric and
magnetic fields. This is carried out with the PIC code [36] used
in references [29, 31], using a local (slab geometry) descrip-
tion, with one spatial and three velocity-space coordinates
(1D3V), and retaining all three vector components of E and
B. It transpires here that the self-consistent particle dynam-
ics and field evolution, when summed over, correspond to the
theory of the MCI [3, 8, 9, 20, 23–31], where appropriate. The
Fourier transforms of the excited fields, in the saturated regime
of the instability, constitute our simulated ICE spectra, pre-
sented in section 5. This approach has previously been success-
fully applied to interpret ICE observations from MCF plasmas,
notably JET [20, 28–31], KSTAR [3, 8, 9] and NBI-heated
hydrogen plasmas in LHD [18].

We note that our first-principles Maxwell–Lorentz 1D3V
PIC approach necessarily omits a very large number (tens,
perhaps hundreds) of physical effects that may contribute to
the observed ICE spectra. These potentially include: toroidal
magnetic field effects; background gradients, for example of
magnetic field strength and density; dissipation effects, other
than the cyclotron (and Landau) resonant effects that are cap-
tured by the PIC approach; wave propagation effects, other
than (ω, k) dispersion which is an emergent property at the
Maxwell–Lorentz PIC level of description, together with slab
geometry growth or damping which is also emergent; antenna
characteristics; and signal processing effects.

Discrepancies between Maxwell–Lorentz PIC outputs and
the observed ICE spectra are therefore to be expected, and will
be due to physical effects, and combinations thereof, under
the headings outlined in the preceding paragraph. The degree
of agreement between our PIC outputs and the observed ICE
spectra, reported here in section 5, suggests that it is possible
that none of the additional physical effects play a major role
in determining the overall ICE spectrum. The cost-benefit of
trying to isolate which (perhaps several together) of these addi-
tional effects is primarily responsible for the relatively minor
differences between PIC outputs and the observed ICE spectra
may, or may not, be attractive for future studies. At present we
are able to conclude that the plasma physics emission mech-
anism for this ICE is well understood, aided by the fact that
ICE is evidently a highly spatially localised phenomenon. The
results presented here further reinforce the scope for exploiting
ICE for diagnostic purposes.

Specifically, we are able to explain the physical origin of,
and difference between, the ICE spectra obtained from three
deuterium plasmas in LHD that differ primarily in their edge
density. The collective instability of deuterons at about 67 keV
originating from NBI #5, and relaxing under the non lin-
ear MCI in the outer midplane edge region is shown to be
responsible for the ICE. An important consequence of the

different edge densities across the three plasmas is that the
ratio of vNBI/VA for freshly ionised NBI deuterons near their
injection point changes while vNBI is kept constant. The NBI
deuterons are significantly sub-Alfvénic: vNBI/VA = 0.36,
0.44 and 0.60. Our PIC-hybrid computations of the collective
relaxation of these NBI deuterons, evolving self-consistently
with the thermal plasma and the excited electric and mag-
netic fields under the Maxwell–Lorentz equations, show sim-
ilar trends with the LHD ICE observations. In particular, as
the value of vNBI/VA increases, the number of cyclotron har-
monic peaks in the simulated ICE spectra increases, along with
their amplitude. These results are consistent with our recent
comparison of ICE from super-Alfvénic and sub-Alfvénic NBI
proton populations in LHD [18]. They also appear broadly
consistent with the results of earlier ICE experiments carried
out in TFTR, involving gas puffing [35, 41].
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Appendix A

We have checked the noise level of our simulation results by
running PIC-hybrid calculations without any energetic minor-
ity population, retaining only the deuterium thermal back-
ground plasma, and with all other parameters kept equal, for
each of three plasmas. The noise in the simulation is not com-
pared to the noise of the experimental detection system. We
simply aim to establish the significance of the spectral peaks in
the PIC-based simulations that include NBI ions, with respect
to the spectral peaks that are generated by thermal noise in
the code. Figure 10 displays: the power spectra for computa-
tions that include both the NBI and thermal deuterons, shown
by continuous lines; and the spectra obtained from the simula-
tions that retain only the thermal deuterium plasma, shown by
the dashed curves. The spectral peaks in the latter case result
from the concentration of noise energy at normal modes—in
this case, cyclotron harmonic waves supported by the thermal
plasma—in line with the fluctuation dissipation theorem [48].
The dashed lines in figure 10 indicate that the fundamental
computational noise level is similar in all our simulations, at
−145 dB, although slightly higher for the simulation of LHD
plasma 138 433.
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Figure 10. Quantifying the effect of noise on spectral characteristics
in our PIC-hybrid simulations. Power spectra from simulations that
contain both NBI and thermal deuterons are shown as solid traces.
Dashed lines are the spectral peaks in the absence of NBI deuterons.
The blue, green and red traces respectively correspond to LHD
plasma parameters at the ICE location for plasmas 138 433
(vNBI/VA = 0.60), 138 458 (vNBI/VA = 0.44) and 138 439
(vNBI/VA = 0.36).
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