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Abstract
The neutral ionisation model proposed by Groebner et al (2002 Phys. Plasmas 9 2134) to
determine the plasma density profile in the H-mode pedestal, is extended to include charge
exchange processes in the pedestal stimulated by the ideas of Mahdavi et al (2003 Phys.
Plasmas 10 3984). The model is then tested against JET H-mode pedestal data, both in a
‘standalone’ version using experimental temperature profiles and also by incorporating it in the
Europed version of EPED. The model is able to predict the density pedestal over a wide range
of conditions with good accuracy. It is also able to predict the experimentally observed isotope
effect on the density pedestal that eludes simpler neutral ionization models.

Keywords: pedestal, density, prediction, JET

(Some figures may appear in colour only in the online journal)

1. Introduction

Core energy confinement in tokamaks operating in H-mode is
sensitive to the properties of the associated edge pedestal. Spe-
cifically, the limiting core temperature profile is believed to be
‘stiff’, i.e. determined by marginal stability to ion temperat-
ure gradient modes [1]. Consequently, it is largely controlled
by the boundary condition on the temperature at the top of the
H-mode temperature pedestal. Thus, a reliable model for this

a See Mailloux et al 2022 (https://doi.org/10.1088/1741-4326/ac47b4) for
JET Contributors.
∗

Author to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

pedestal is a key requirement for predicting the performance of
burning plasma designs, such as ITER or the proposed spher-
ical tokamak STEP.

The EPEDmodel [2] based on the requirement that the ped-
estal plasma pressure profile is stable to both kinetic balloon-
ing modes (KBMs) and peeling-ballooning modes [3] is often
invoked for this purpose. The former is used to set the pres-
sure gradient and the latter to provide the width of the pedes-
tal, together yielding the pressure at the pedestal top. However,
one really needs individual models for the profiles of the ped-
estal ion and electron temperatures, Ti and Te, respectively,
and the plasma density profiles, ne. There is support from JET
for a model for the electron temperature profile in the ped-
estal based on transport due to electron temperature gradient
(ETG) turbulence [4] but this depends strongly on the pro-
file of the parameter ηe = d(lnTe)/d(lnne): hence one also
needs a prescription for the electron density profile to complete
this model. This has usually been taken as an experimental
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input, but some success has been obtained with a theoretically
based transport model invoking the source provided by ion-
isation of neutral particles incident from the scrape-off layer
(SOL), together with a pedestal diffusion coefficient, Dped [5,
6]. This could be related to the same ETG turbulence [7] and/or
to KBMs and the neoclassical (NC) transport [8].

The neutral ionisation model described in [5], which con-
siders the ionisation of the incident low energy, Franck–
Condon neutrals produced by recycling and gas-puffing incid-
ent at the separatrix, has been tested against experimental
data from DIII-D [5], MAST [9] and JET [10]. The enhanced
version presented in [6] includes the effects of the incident
higher energy, charge-exchange population generated in the
SOL which penetrate further into the plasma column. In this
work we use similar ideas to provide a simple model for the
effect of charge-exchange processes in the pedestal region.

The ionisation model is described in section 2, while in
section 3 we describe two implementations of the model for
testing against the JET data. First it is used with experimental
temperature profiles, which we refer to as the ‘standalone’ ver-
sion. Then the ionisation model is introduced into the EPED
model in the Europed code where both the density and tem-
perature pedestals are predicted self-consistently. In section 4
we investigate the sensitivity of the model to its parameters.
Section 5 investigates the predictions of the model regarding
the isotope effect. Section 6 provides a summary and discus-
sion with some conclusions.

2. The ionisation model for the density profile

2.1. Transport equations

In the spirit of [6], which develops the model in [5] further, we
obtain the radial profile of the electron density, ne (r) , in the H-
mode pedestal region by balancing radial diffusion, with coef-
ficientDped (r) , against ionisation by both low energy Franck–
Condon and more energetic charge exchange neutrals, with
densities nFC (r) and nCX (r), respectively, themselves being
modelled by balancing inward convection against ionisation
and charge exchange sources and sinks.

We use straight field line coordinates: r,θ,φ , with Jacobian
J= rR2/R0, where R is the major radius, its value on the mag-
netic axis being R0, the ‘minor radius’ co-ordinate r is a flux
surface label and θ and φ are poloidal and toroidal angles,
respectively. In the narrow pedestal region, we introduce the
radial co-ordinate, x = r− rsep, where rsep is the radius of the
separatrix flux surface, and r∼= rsep.

The ionisation model described above is represented by the
three equations:

∇.(Dped∇ne) =−ne (nFC + nCX)Si (1)

∇.(VFCnFC) =−ne (nFCSi + nFCSCX) (2)

∇.((VCXnCX)) =−ne
(
nCXSi −

1
2
nFCSCX

)
. (3)

Introducing the straight field line co-ordinates and aver-
aging over the poloidal angle θ,

d
dx

(
Dped

˛
R2|∇r|2dθdne

dx

)
=−ne

˛
R2dθ (nFC + nCX)Si

(4)

d
dx

˛
R2|∇r|2dθVFC,rnFC =−ne

˛
R2dθ (nFCSi + nFCSCX)

(5)

d
dx

(˛
R2|∇r|2dθVCX,rnCX

)
=−ne

˛
R2dθ

(
nCXSi −

1
2
nFCSCX

)
,

(6)

where Siand SCX are the ionisation and charge exchange rates,
respectively, while VFC,r and VCX,r are the corresponding radial
velocities of the two species, each considered to be mono-
energetic. Thus, Si = σiVth,e, SCX = σCXVth,i, where σi, CX, are
the corresponding cross-sections, which will vary with elec-
tron and ion temperatures, and Vth,e and Vth,i are the electron
and ion thermal speeds respectively. For the radial velocities
of the neutrals, we follow [6], setting |VFC,r|=

√
8EFC/π 2Mi,

with EFC ∼ 3 eV, and |VCX,r|=
√

2Ti/πMi (we drop the suf-
fix r, below). The factor 1/2 in equation (3) represents the
fact that the outward flux of fast charge exchange neutrals
is taken to be lost. The diffusion coefficient Dped may have
a profile dependence arising from dependencies on Te, i and
ne. In the modelling described later, we suppose it arises
from a combination of ETG and KBM turbulence and NC
transport.

A similar set of equations were proposed in the SOL in [6],
while those in [5] follow on neglecting nCX.

It is convenient to introduce a flux surface average over
poloidal angle: ⟨A⟩=

¸
R2Adθ/

¸
R2dθ. To make the system

of equations (4)–(6) readily tractable we introduce two form
factors:

fFC = ⟨|∇r|2nFC⟩/⟨nFC|∇r|2⟩,

fCX = ⟨|∇r|2nCX⟩/⟨nCX⟩⟨|∇r|2⟩. (7)

If the source of the Franck Condon neutrals is localised,
say at some angle θ0, then fFC ∼= R2 (θ0) |∇r|2 (θ0)/⟨|∇r|2⟩,
whereas the charge exchange scattering may produce a more
isotropic distribution of charge exchange neutrals with fCX
tending to unity. In general, one needs a numerical sim-
ulation of the neutral processes to evaluate these quantit-
ies precisely; alternatively, they could be treated as fitting
parameters.

2.2. Solution procedure

Using the expressions (7), equation (5) implies

neSi⟨nFC⟩=
|VFC| fFC

(1+ SCX/Si)
d
dx

⟨nFC⟩, (8)
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while combining this result with equation (6) yields

neSi⟨nCX⟩= |VCX| fCX
d
dx

⟨nCX⟩+
|VFC| fFCSCX
2(Si + SCX)

d
dx

⟨nFC⟩. (9)

Inserting these two results into equation (4) and integrating
once, we obtain

⟨|∇r|2⟩Dped
dne
dx

=−

(
1+ SCX

2Si

)
(
1+ SCX

Si

) |VFC| fFC⟨nFC⟩

− |VCX| fCX⟨nCX⟩+C. (10)

Here C= ⟨|∇r|2⟩Dped
dne
dx |x=−∞ is a constant of integration

that is determined by the condition that deep into the plasma,
both neutral densities should vanish. It is to be remarked that
in [5], C was arbitrarily set to zero, whereas we now allow the
more realistic finite density gradient inboard of the pedestal.

Equations (4) and (10) provide an expression for nFC (x) in
terms of ne (x):

⟨nFC⟩

[
1− |VFC| fFC

|VCX| fCX

(
Si +

SCX
2

)
(Si + SCX)

]

=− 1
neSi

d
dx

(
⟨|∇r|2⟩Dped

dne
dx

)
+

1
|VCX| fCX

Dped
dne
dx

− C

|VCX| fCX⟨|∇r|2⟩
(11)

and then nCX (x) follows from equation (9). The electron dens-
ity profile is then given by the third order equation

d
dx

(L2 (ne)) =
neSi
|VFC|

(
1+

SCX
Si

)
L2 (ne) , (12)

where the non-linear, second order operator L2 (ne) is defined
by: [

1− |VFC| fFC
|VCX| fCX

(
Si+

SCX
2

)
(Si + SCX)

]
L2 (ne)

=− C
|VCX| fCX

+
1

|VCX| fCX
Dped

dne
dx

− 1
neSi

d
dx

(
⟨|∇r|2⟩Dped

dne
dx

)
. (13)

It may be more convenient to replace this third order
equation by an iterative solution based on a second order
equation. Using equation (10) to replace nCX (x) and introdu-
cing the solution of equation (8) for nFC (x) yielding

⟨nFC⟩= ⟨nFC (0)⟩exp
(ˆ x

0
dx
ne (Si+ SCX)
fFC ⌈VFC⌉

)
. (14)

Equation (4) becomes

d
dx

(⟨
|∇r|2

⟩
Dped

dne
dx

)

=−neSi

−Dped

(
dne
dx

− dne
dx

|x=−∞

)

+

(
1− |VFC|fFC

|VCX| fCX

(
Si +

SCX
2

)
(Si + SCX)

)

× ⟨nFC (0)⟩exp

 xˆ

0

dx ′
ne (x ′)(Si + SCX)

fFC ⌈VFC⌉

 . (15)

The integral in the last term can be iterated in ne (x)until
one has a self-consistent solution of equation (15) for ne (x) .
A convenient starting point is the solution of equation (4) in
the absence of nCX. In this limit, equation (4) reduces to

d
dx

(⟨
|∇r|2

⟩
Dped

dne
dx

)
= neDped

(Si + SCX)
⌈VFC⌉

×
(
dne
dx

− dne
dx

|x=−∞

)
. (16)

The presence of dne
dx |x=−∞ prevents obtaining the analytic

solution obtained in [5], so this equation must be solved
numerically before inserting its solution in equation (15) to
begin the iterative process.

However, the form of equation (15) obscures how it reduces
to the equation derived in [5] when charge exchange neutrals
are omitted from the model. This limit is evident if one derives
the second order equation for ne involving nCX, rather than nFC
as in equation (15):

d
dx

(⟨
|∇r|2

⟩
Dped

dne
dx

)

= neSi

 (Si + SCX)
(Si + SCX/2)

⟨
|∇r|2

⟩
Dped

|VFC| fFC
dne
dx

− (Si + SCX)(
Si +

SCX
2

) C
|VFC|fFC

+

(
(Si + SCX)

(Si + SCX/2)
|VCX|fCX
|VFC|fFC

− 1

)
⟨nCX⟩

 . (17)

Here the charge exchange neutral density, ⟨nCX⟩, is given
in terms of ⟨nFC⟩ by the solution of equation (9):

⟨nCX⟩= ⟨nCX (0)⟩exp
(ˆ x

0
dx ′

ne (x ′)Si
⌈VCX⌉ fCX

)
+

|VFC|fFCSCX ⟨nFC (0)⟩

2⌈VCX⌉ fCX
(
Si + SCX − |VFC|fFC

⌈VCX⌉fCX Si
)

×
[
exp

(ˆ x

0
dx ′

ne (x ′)Si
⌈VCX⌉ fCX

)
−exp

(ˆ x

0
dx ′ne (x

′)
(Si + SCX)
|VFC| fFC

)]
. (18)
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2.3. Boundary conditions

The original set of equations (1)–(3) form a fourth order sys-
tem requiring four boundary-conditions. Correspondingly, the
third-order equation (12) naturally requires three boundary-
conditions, to be added to that following from the constant
of integration, C, i.e., dne

dx |x=−∞. Thus, the separatrix values
of the electron density, ne (0), its radial gradient,

dne
dx |x=0 and

the Franck–Condon neutrals, nFC (0) , would suffice. Altern-
atively, one could use equation (11) to replace nFC (0) by
d2ne
dx2 |x=0, so that all boundary conditions could be expressed
in terms of ne. However, it is more appropriate to remain with
the specification of nFC (0) or, equivalently, the incident flux
at the separatrix of such neutrals: ΓFC = nFC (0)VFC . It is of
interest that the charge exchange density, and hence nCX (0)
specifically, follows directly from equation (10).

Mahdavi et al [6] proposed a simple model for the
neutral interactions in the SOL to provide the ratio w=
nCX (0)/nFC (0), rather than considering this as an input to the
boundary conditions. Furthermore, by considering the SOL
region one can also determine dne

dx |x=0. Thus, the source-free
solution for the electron density, where radial diffusion with a
diffusion coefficient DSOLis balanced by streaming along the
open magnetic field lines on a timescale τ||, follows from the
equation

DSOL
d2ne
dx2

=− ne
τ||

(19)

namely ne = ne (0)exp

(
− x√

DSOLτ||

)
. Thus

dne
dx

|x=0 =− ne (0)√
DSOLτ||

. (20)

3. Model results for the JET pedestal database

The JET database [11] withmore than 1000 fitted pedestal pro-
files of JET plasmas is used to test the model. For the model,
we can obtain the boundary conditions ne,sep and dne

dx |x=−∞
from the experimental data. τ∥ is assumed to be known as well
for a given device. We set ⟨nFC (0)⟩ to a value of 1015 m−3 and
τ|| = 0.001 s but note that the results are to some extent sens-
itive to these values. Since we have no good reduced model
for the poloidal distribution of the neutrals, we set both fFC
and fCX to 1, that assumes equal distribution with the poloidal
angle. Thus, Dped is the only free parameter to be modelled.
In this work we have implemented the model described in
[7], whereDped is constructed from three components, the first
driven by ETG turbulence is proportional to the electron heat
transport, the second from NC transport and the third driven
by KBMs is proportional to the extent to which the normalized
pressure gradient (α) exceeds the threshold value for KBMs.
The ETG part can be calculated from the known heat flux
through pedestal and the temperature profile using the normal
heat conduction equation:

χ e =
qe

ne∇T
, (21)

where qe is the heat flux at the pedestal as calculated from the
input heating power and the plasma geometry, qe = Ptot,e/S,
where Ptot,e is the total heating power to electrons (assumed for
simplicity to be half of the total power throughout the model-
ling) and S is the surface area of the plasma. The particle trans-
port from ETG is set to be this multiplied by a constant factor
(De/χ e)ETG and so

DETG =

(
De

χ e

)
ETG

Ptot,e

Sne∇T
. (22)

We keep the value of (De/χ e)ETG open at this point and
recognize that even if we label it as ‘ETG’ it covers all the
mechanisms that are responsible of the heat transport through
the pedestal region (including other turbulent transport and
ELMs), i.e. it only excludes NC and KBM transport.

Following [7], the NC part of Dped is taken for simplicity
to be

De,NC =
χ e,NC

2
= 0.05

(
ρ2scs
a

)
. (23)

Finally, again following [7], the KBM part of diffusion
coefficient Dped is assumed to be zero below the KBM stabil-
ity limit and then increase proportionally to (α−αcrit), where
α is the normalised pressure gradient in the pedestal defined
[12] as

α=
2∂ψ V

(2π )2

(
V

2π 2R0

)1/2

µ0p
′. (24)

Here V is the volume enclosed by the flux surface, R0 is the
major radius, p is the pressure and the derivative, represen-
ted by ′, is taken with respect to the poloidal flux ψ and αcrit

is the stability limit of the KBMs. Since KBMs have a wide
radial extent [8], we assume that the particle transport from
them is not local but covers the entire pedestal region. There-
fore, instead of a local value of α, we use the average value in
the pedestal region. The total Dped from KBM is given by the
formula:

DKBM =

{
CKBM (α−αcrit) ·

(
ρ2s cs
a

)
, α > αcrit

0, α < αcrit

. (25)

The combined particle diffusion coefficient is then

Dped = DKBM +DETG +DNEO (26)

with αcrit,CKBM and
(
De
χ e

)
ETG

as adjustable parameters. We

also assume that the radial particle diffusion outside the sep-
aratrix matches that with the particle diffusion inside the sep-
aratrix, i.e. we assume that DSOL in equation (20) is the same
as the value of Dped at the separatrix.

4
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Figure 1. The testing of the standalone pedestal density modelling
against the experimental pedestal density using the ionization model
ignoring the KBM transport for two values of (De/χ e)ETG = 0.5
(red, RMSE = 20%) and 0.1 (blue, RMSE = 60%). The blue line
represents the perfect prediction.

3.1. Standalone model using the experimental temperature
profiles

With the assumptions above, we simulated the entire JET-ILW
database using the experimental temperature profile to cal-
culate the ionisation and charge exchange cross-sections, σi
and σCX [13], ∇T, needed in equation (22), and α, needed
in equation (25) (α is calculating by scaling the value in a
known equilibrium by α= αknown(p ′/p ′

known)(Ip,known/Ip)
2).

Since the major and minor radius changes very little in JET
experiments, we used the geometric factors (in ∇r) from the
known equilibrium as well. We call this model ‘standalone’,
as it uses the known temperature to distinguish it from the
full Europed modelling where the temperature profile is also
predicted.

We test the model with and without the KBM contribution
to Dped and vary (De/χ e)ETG. Figure 1 shows the predicted
density against the experimental density when CKBM = 0. It
can be seen that, if the KBM transport is ignored, the ETG
particle transport has to be increased to a level ((De/χ e)ETG =
0.5) that is significantly higher than is expected for ETG
modes [7]. It must be noted that even in this case the exper-
imental trend is reproduced.

The ideal MHD n=∞ ballooning mode limit in JET geo-
metry is at about α= 3. Taking into account that the KBM
limit is generally lower than that of the ideal MHD limit and
that we are using the average value in the pedestal, we use
αcrit = 2 in the DKBM model, expression (25). Based on the
considerations in [7], we choose CKBM = 0.3 but recognize
that the model is not very sensitive to this value, provided it is
sufficiently large that the main effect of the KBM transport is
to force the pedestal pressure gradient to be close to the KBM
limit.

Figure 2. The testing of the standalone pedestal density modelling
against the experimental pedestal density using the ionization
model with KBM transport (CKBM = 0.3 and αcrit = 2) for two
values of (De/χ e)ETG = 0.5 (red, RMSE = 17%) and 0.1 (blue,
RMSE = 15%). The blue line represents the perfect prediction.

Figure 2 shows the model results for two values of ETG
particle transport, (De/χ e)ETG = 0.5 and 0.1. When compared
to figure 1, we can see that the (De/χ e)ETG = 0.5 case is hardly
affected, meaning that most of those cases were below the
KBM limit already. The (De/χ e)ETG = 0.1 case is strongly
affected, matching much better with the experimental values.
We obtain very good agreement between the model and exper-
iment for both cases (the RMSE= 17% for (De/χ e)ETG = 0.1
and the RMSE = 15% for (De/χ e)ETG = 0.5). Increasing
CKBM further to 1.0 changes the result very little from figure 2,
indicating that at sufficiently high CKBM the pedestal α is
limited close to the KBM limit. The contribution of dif-
ferent components to Dped naturally vary as the parameters
are changed with the KBM part contributing 10%–20% with
CKBM = 0.1, (De/χ e)ETG = 0.5 and 30%–60% with CKBM =
0.3,(De/χ e)ETG = 0.1 with most of the rest covered by the
ETG. The NC contribution is always the smallest. Within one
set of parameters, the KBM contribution decreases with the
height of the density pedestal.

3.2. Europed modelling

Europed is an implementation of the EPED model [2] that
includes several extensions outlined in [15]. The EPED model
predicts the pedestal plasma profiles given a set of input para-
meters (plasma shape, toroidal field, plasma current, global β,
pedestal and separatrix densities). Most of them can be known
in advance of the experiment. However, β, pedestal and sep-
aratrix density are not necessarily known. The Europed exten-
sions in [15] tried to predict these values by using inputs such
as heating power and fuelling rate. While the results were
encouraging, the model for the density pedestal prediction was

5
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very specific for JET and most likely does not generalize to
other tokamaks. Further, it produced the opposite dependence
on the isotope mass from what was seen in the experiment.

Therefore, in this work it is replaced with the model out-
lined above. In the full model, the density prediction is com-
bined with the EPED constraint∆= c

√
βp,ped, where∆ is the

width of the pedestal in normalized poloidal flux, c is a con-
stant (c = 0.076 in the EPED1 model) and βp,ped is the pol-
oidal β at the top of the pedestal. This constraint is used to
calculate the temperature pedestal for given∆ and the corres-
ponding density pedestal calculated by the ionisation model
described above. In practice this is implemented by iterating
between the calculation of density profile using a known tem-
perature profile as in section 3 and calculating the temperature
pedestal profile using the EPED constraint. The above proced-
ure is done for a range of different values of ∆ to produce a
set of pedestal profiles and equilibria that are consistent with
the EPED constraint and density pedestal model. Finally, the
peeling-ballooning stability calculation is used to select the
pedestal that is marginally stable as the final prediction. In
the density pedestal model of Europed, we use the same para-
meters as in the standalone model. We also test the sensitivity
of the model results to the input parameters. The modelling
is done in a similar manner to [15], except that we use the
new bootstrap current model by Redl introduced in [14] that
is shown to work better than the Sauter model used in [15] at
high collisionality, but it was not available when the modelling
of [15] was done.

We first test the model without the KBM particle transport
(i.e. CKBM = 0). Using the value of (De/χ e)ETG = 0.5, we
obtain the result shown in figure 3 with RMSE = 20%. The
scatter of the data is slightly worse than with the standalone
model that uses the experimental temperature profile.

Next, we include the KBM transport and decrease the ETG
particle transport, which was found to improve the fit in the
standalone model. We use the following parameters αcrit =
2, CKBM = 0.1,(De/χ e)ETG = 0.2. Unlike in the standalone
model, with the full Europed model we get a worse match
with the experiment, as shown in figure 4. In particular, the
low experimental values of ne,ped are under predicted This is
the case, despite the Europed modelling being performed with
a relatively modest KBM transport assumption, compared to
what was used with the standalone model.

The optimal result is achieved with a very small KBM
component of the particle transport (CKBM = 0.05), combined
with a relatively large ETG component ( (De/χ e)ETG = 0.5),
although the improvement over the modelling without any
KBM transport is small (RMSE = 19%).

We compare this final model to the model predictions in
[15] that used a simple neutral penetration model:

ne,ped =
2Vn

σiVth,eE∆e,ped
, (27)

where Vnis the velocity of the neutrals, E is the flux expan-
sion ratio between the fuelling location and the midplane and
∆e,ped is the pedestal width, while other quantities are as above.
Although in [15] E was found to depend on triangularity, this

Figure 3. The comparison of the prediction of the pedestal density
against the experimental pedestal density using the ionization model
ignoring the KBM transport and assuming (De/χ e)ETG = 0.5 for
the full Europed modelling (magenta, RMSE = 20%) and
standalone model with experimental temperature (blue,
RMSE = 28%). The blue line represents the perfect prediction.

has little physics basis and was only included as it improved
the fit with the experiment. Nevertheless, we compare the new
model results with the old model run with E= 2.41ϕ−0.2δ0.53

(where ϕ is the gas fuelling rate in units of 1022 electrons/s
and δ is the triangularity).

As can be seen in figure 5, the model performs similarly
at medium densities to the model used in [15] which has an
RMSE= 25%, but is in better agreement with the experiment,
both at high and low density.

The significant difference between the full Europed pre-
diction compared to that of the standalone model is that the
fit of the predicted to experimental data is significantly worse
when the KBM transport is included than when it is not. Of
course, it must be noted here that the model with the fixed αcrit

value, regardless of, for instance, the role of magnetic shear
in the pedestal that has been found to affect KBM stability
may be too crude for this model, and a better result could be
obtained by using the idealMHD, n=∞ ballooningmode sta-
bility limit as a proxy for KBM stability limit, but that is left
for future work.

One explanation for this behaviour of the pedestal density
prediction is that the KBM constraint is already included in the
EPEDmodel used in Europed. This leads to a feedback loop in
the iteration, where the model increasesDped when a particular
pedestal exceeds αcrit. This leads to a lower density pedestal,
which is then compensated in the model by increasing Te,ped
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Figure 4. The comparison of the prediction of the pedestal density
against the experimental pedestal density using the ionization model
including the KBM transport with the parameters αcrit = 2,
CKBM = 0.1, (De/χ e)ETG = 0.2 using full Europed (magenta,
RMSE = 26). For comparison the standalone predictions with the
same parameters are shown (blue, RMSE = 20%). The blue line
represents the perfect prediction.

(to keep βp,ped fixed for the given temperature pedestal width),
which then returns the value of the pedestal α to above αcrit,
and the density is then reduced even further. This could be
avoided in the future development of the model if the EPED
criteria for the pedestal pressure is replaced by a criterion for
the temperature profile (e.g.∇T/T = constant as used in [17])
that is independent of the pedestal pressure. Another option
is to use a stiff ETG turbulence-based model where χETG ∝
(1− ηe)∇T/T [7, 16], where ηe = (∇T/T)/(∇ne/ne). How-
ever, this model may suffer the same kind of internal instabil-
ity as the EPED model as the temperature profile depends on
the density profile, which in turn depends on the temperature
profile. Furthermore, it uniquely defines both profiles, which
makes the peeling-ballooning constraint irrelevant. A possible
way to include it would be to make ne,sep the free parameter
(similarly to ∆ in the EPED model) and choose the pedestal
profile associated with the value of ne,sep that corresponds to
marginal stability.

4. Sensitivity of the model

While the model is able predict the experimental behaviour
remarkably well when using experimental parameters, it still
has some sensitivity to the input parameters that are not known
before the experiment; in particular, the separatrix density

Figure 5. The comparison of the prediction of the pedestal density
against the experimental pedestal density using the ionization model
including the KBM transport with the parameters αcrit = 2,
CKBM = 0.05, (De/χ e)ETG = 0.5 using full Europed (magenta stars,
RMSE = 19%) and the standalone (blue crosses, RMSE = 18%).
For comparison the predictions using the simple neutral penetration
model in [15] are shown (black dots, RMSE = 25%). The blue line
represents the perfect prediction.

used for the boundary condition for the prediction model
can strongly affect the pedestal density prediction. Figure 6
shows the dependence of the pedestal density prediction on the
separatrix density for a sample case where the experimental
pedestal density was predicted accurately. Since the pedestal
density prediction is so sensitive to the separatrix density, the
predictions using this model should be integrated with a full
SOL model or at least with a simple separatrix density model
such as that used in [17], where the separatrix density is con-
nected to the neutral pressure at the divertor, which in turn can
be calculated from the known gas fuelling rate, heating power
and divertor pumping speed. However, this method may not
work for a device for which we have no prior data (such as
ITER), in which case the only option is the full SOL model-
ling. It must be noted that since the gas fuelling rate can be
adjusted during the experiment, ne,sep may not have to be fully
predicted but can be adjusted to a desired value with a feed-
back system to a gas fuelling system.

The other parameter in the model that we need to make
assumptions about, is the Franck–Condon neutral density at
the separatrix, ⟨nFC (0)⟩. Figure 7 shows that the model is rel-
atively insensitive to this parameter and an order of magnitude
change from 1015 m−3 to 1016 m−3 in ⟨nFC (0)⟩ changes the
ne,pedprediction only by about 20% in the full Europed simula-
tion. We can also see that the dependence of ne,ped on ⟨nFC (0)⟩
is linear in both the standalone and Europed models.

The poloidal distribution of the Franck–Condon neutrals
that is modelled using the parameter fFC could be lower than
1 if most of the neutrals enter through X-point where the
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Figure 6. The pedestal density prediction as a function of assumed
separatrix density using the standalone model with the experimental
Te profile (blue) and the full Europed model (red). The star
represents the experimental case.

Figure 7. The pedestal density prediction as a function of assumed
Franck–Condon neutral density at the separatrix ⟨nFC (0)⟩.

flux surfaces are further apart than on average on the separat-
rix. The effect of lowering fFC is similar to that of changing
⟨nFC (0)⟩.

5. Isotope effect

In the JET experiments it has been found that with a similar
gas rate and heating power, the plasmas with hydrogen have
lower pedestal density than those with deuterium [18]. In the
model presented in this paper, the isotope mass enters expli-
citly only through the velocity of the neutral particles (VFC and
VCX). As both are∝ 1/

√
mi, they are higher for hydrogen than

for deuterium. The ion mass effect can be investigated by run-
ning Europed with the density prediction model and changing
only themain ionmass in the simulation for a hydrogen plasma

Figure 8. Europed predicted density profiles for JET-ILW hydrogen
discharge 91554 assuming ne,sep from the experiment and hydrogen
plasma (dotted red), ne,sep from the experiment and deuterium
plasma (magenta), ne,sep from the equivalent deuterium discharge,
84796 and deuterium plasma (blue solid) and the profile from the
experiment (91554, dotted dashed, 796 black solid).

(JET-ILW discharge #91554). This result is shown in figure 8.
As expected, the change of the isotope from hydrogen to deu-
terium while keeping everything else fixed decreases the ped-
estal density prediction. However, the change of the isotope
mass is not the only thing that changes in the JET experiment.
In addition, the separatrix density is lower in the hydrogen than
in the deuterium experiment [18]. As shown in figure 8 when
we use the ne,sep from the deuterium case that was performed
with the same power (84796), the predicted ne,ped increases by
more than what the pure isotope effect causes. Both the deu-
terium and hydrogen cases are well predicted when the exper-
imental ne,sep is used. This is because the model is sensitive to
ne,sep, with the prediction of ne,ped decreasing with decreasing
ne,sep.

Furthermore, to reach the same value of global β, more
heating power is required in the hydrogen plasma [18]. This
means that with the same global β the hydrogen plasma will
have a larger value of χETG in the model, and even with a
fixed value of the (De/χ e)ETG ratio, the particle transport in the
model increases with increased heating power, which in turn
leads to a lower predicted ne,ped in hydrogen. If the (De/χ e)
ratio also increases as suggested by the EDGE2D-EIRENE
modelling [18] and non-linear gyrokinetic simulations [19] of
the isotope experiments, this further lowers the predictions in
hydrogen.

We ignore the possible increase of the (De/χ e)ETG ratio
but use the experimental ne,sep and heating power in the mod-
elling of the hydrogen plasmas. With these assumptions, the
hydrogen cases are only slightly over-predicted compared to
the deuterium ones. This is shown in figure 9 for both the
standalone and full Europed models. As can be seen, both the
experimental and predicted ne,ped are lower for the hydrogen
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Figure 9. The predicted pedestal densities using the standalone
model with experimental temperature profiles (a) and the full
Europed model (b) for deuterium (red, RMSE(standalone) 18%,
RMSE(Europed) = 19%) and hydrogen (blue,
RMSE(standalone) = 33%, RMSE(Europed) = 38%). The model
parameters for both isotopes were αcrit = 2, CKBM = 0.05,
(De/χ e)ETG = 0.5. The hydrogen case is also predicted using
(De/χ e)ETG = 1 (black, RMSE(standalone) = 18%,
RMSE(Europed) = 27%).

plasmas than in the deuterium plasmas. The RMSE is 32% for
the standalone and 38% for the Europed predictions for the
hydrogen plasmas. Finally, on doubling (De/χ e)ETG (black
points in figure 9) the models predict the hydrogen cases with
RMSE = 19% (standalone) and 27% (Europed).

6. Conclusions

Wehave extended the ionisationmodel for the density pedestal
presented in [5] in two ways:

(i) We permit a core density gradient, a more realistic situ-
ation, which unfortunately prevents a simple analytic solu-
tion of the resulting second order differential equation as
presented in [5], so that a numerical solution is required.

(ii) Stimulated by techniques in [6] we include a self-
consistent population of charge exchange neutrals. This
results in a fourth order system of differential equations,
thus requiring four boundary conditions, which can be
taken to be the influx of neutrals, the core electron radial
density gradient and the separatrix electron density and
its gradient. An analytic integration reduces this to a non-
linear third order differential equation, but an alternat-
ive formulation, an iterative solution to a second order
equation, is described. In addition to the boundary con-
ditions, the solution requires only a model for the particle
diffusion in the pedestal.

We have incorporated the density prediction model both as
a standalone model using experimental temperature profiles
and in the Europed approach that predicts both the density and
temperature pedestals. Both models use the required particle
diffusion coefficient arising from ETG and KBM turbulence
together with a small NC contribution. In testing it against the
JET-ILW pedestal database, we find:

(i) The full pedestal modelling with the Europed model for
the pedestal pressure, reasonable assumptions for the SOL
neutrals and assuming that the particle transport coeffi-
cient is tied to the heat transport in the pedestal, can pre-
dict the pedestal density for JET-ILW to high accuracy
throughout the pedestal database. Including a strong KBM
component with the transport increasing rapidly after the
stability limit is crossed, gives good predictions with the
standalone model, but leads to too much transport in the
full Europed model due to the underlying pedestal pres-
sure model that keeps the pedestal pressure gradient fixed
for a given pedestal width.

(ii) The density pedestal prediction is sensitive to the bound-
ary condition ne,sep, which is not an engineering parameter.
This means that for a full pedestal profile prediction, the
model needs to be integrated with a SOL model that can
predict the value of ne,sep.

(iii) The full model can predict the experimentally observed
isotope effect in the pedestal density, even though the iso-
tope effect on the neutral penetration alone is opposite to
the observed trend. This is due to the sensitivity of the
model to ne,sep as well as the decreasing particle transport
in the pedestal with isotope mass.

To further improve the predictive capability of the model
presented here requires coupling it with a SOL model that
could predict ne,sep using only engineering parameters such
as the divertor configuration and gas fuelling rate. The model
should also be tested against experimental data from other
devices to determine the robustness of the parameters used
in it. An alternative to the EPED modelling of the temperat-
ure profiles would be to use a physics-based thermal trans-
port model involving, say, ETG and KBMs, together with ion
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NC transport, thus providing a complete model for predicting
pedestal characteristics. A simpler alternative would be to use
stiff transport models for ETG and KBMs for the temperature
profiles.
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