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Abstract
The novel technique of dynamical mode decomposition (DMD) is applied to the outputs of a
numerical simulation of Kelvin–Helmholtz turbulence in a cylindical plasma, so as to capture
and quantify the time evolution of the dominant nonlinear structures. Empirically, these
structures comprise rotationally symmetric deformations together with spiral patterns, and
they are found to be identified as the main modes of the DMD. A new method to calculate the
time evolution of DMD mode amplitudes is proposed, based on convolution-type correlation
integrals, and then applied to the simulation outputs in a limit cycle regime. The resulting
time traces capture the essential physics far better than Fourier techniques applied to the
same data.

Keywords: dynamical mode decomposition, turbulence imaging, Kelvin–Helmholtz instability,
limit cycle oscillation

(Some figures may appear in colour only in the online journal)

1. Introduction

Strongly nonlinear phenomena are ubiquitous in plasma
physics, both in experimental measurements and in the out-
puts from numerical simulations. The nonlinear phenomen-
ology may be temporally transient [1, 2] or sustained [3],
spatially localised [4] or global [5]. Identifying the dominant
dynamical features and their interactions, and quantifying
their time evolution, is therefore a central task. Fourier
decomposition has major limitations in this context, because
the empirically identified key structures are localised with a

finite extent, and therefore require a very large number of
Fourier modes to represent them.

Here we consider the application of dynamical mode
decomposition (DMD) [6–8] to this problem. DMD is
attractive, in that it: assumes no functional form for the
structures; is entirely data-driven, see equation (1) below; and
is mathematically linear—mode identification and growth
rates reduce to an eigenvector-eigenvalue procedure. When
the time evolution of the mode amplitude is modulated, as in
most cases of turbulence, the single DMD derived growth rate
is insufficient to capture the dynamics. Here we therefore
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propose and develop a method to extract the modulation
dynamics from the outputs of the DMD technique, as applied
to a simulation of turbulence in a cylindrical plasma.

2. Extraction of nonlinear dynamics

The turbulence dataset is obtained from a direct numerical
simulation, based on an extension of the Hasega-Wakatani
reduced fluid model which includes ion-neutral collisions and
electron parallel velocity evolution [9, 10]. Turbulent and
nonlinear phenomena can be simulated, such as those arising
from resistive drift waves and the Kelvin–Helmholtz (KH)
instability in linear devices [11, 12]. The turbulence addressed
here originates from the KH instability for the plasma para-
meters in MISTRAL [12]. Its phenomenology includes a limit
cycle oscillation between the background plasma and turbu-
lent fluctuations; for more detail, see [13]. The time evolution
of the energy of each Fourier mode in a saturated state, and
the two-dimensional patterns of the density at t=3050, 3150
and 3200, are shown in figure 1, where time t is normalized
by the ion gyrofrequency. The energies (squared amplitudes)
of the background and the turbulence are modulated in time:
the period of the limit cycle, TLCO∼100, which is much
longer than the timescale of turbulent oscillation,
Tturb=O(10). The computational time-step is much smaller,
δt=2×10−2. The spatial pattern in figure 1 changes on the
timescale TLCO. Let us now apply the DMD to the underlying
dataset, and then propose and develop a novel method to
extract the modulation dynamics.

We represent the system at time t by an array (state
vector) = t tX X r r, , , ,1 2 1 2( ∣ )  , which is a matrix recording
the value of the set of simulation outputs X (for example,
density) at each point rj and at each time tj. The system
transits to the state ¢ = + D + Dt t t tX X r r, , , ,1 2 1 2( ∣ )  ,
where δt is the unit of time resolution chosen for DMD
analysis. Here δt=5, which is large enough to reduce the
computational cost, while remaining sufficient to resolve the
turbulence evolution. In the DMD approach, we focus on the
properties of the matrix A which generates the mapping

¢ = AX X, 1( )

whereas X and X′ comprise datasets, A is taken to embody the
physical dynamics of, in the present case, Kelvin–Helmoltz
plasma turbulence. The challenge is, first, to reduce the rank
of A to manageable level using singular value decomposition
(SVD) [14], and then to identify the dominant eigenvalues
and eigenvectors of A. The eigenvectors Ψ are the DMD
modes: they correspond to the dominant nonlinear spatial
structures, and represent their action in the time evolution of
the data. The details of the DMD approach are summarized in
the appendix. In outline, mathematically

xY = ¢ S-VX . 2r r
1 ( )

Here, the matrices V and Σ are obtained from the SVD of X,
and satisfy X=UΣ V*; U and V are unitary matrices, and Σ

is the diagonal matrix consisting of the singular values of X .
The subscript r indicates the matrix is truncated to the rank r.
x is the eigenvector ofU AUr r* , which is the projection of A on
U. In this way, the key structures, together with their

Figure 1. Top: Time evolution of the energy (logarithmic scale) in each cylindrical Fourier mode (m, n) of the simulation in its saturated
phase, for integer 0<m<9 and n=0. Here m and n denote axial and azimuthal mode numbers. The background corresponds to the mode
(0, 0). Quasiperiodic energy flows are evident, and the flow into higher m-numbers indicates the formation of sharper spatial gradients
associated with nonlinear structures at those times. Bottom: Full two-dimensional spatial patterns of the density from the direct numerical
simulation at t=3050, 3150 and 3200.
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frequency and growth rate, are simultaneously obtained by
DMD. This approach is model-independent and does not
draw on knowledge of the underlying physical processes. The
DMD eigenmodes are typically strongly nonlinear spatial
structures, which would require numerous Fourier modes to
represent them, see appendix B. Hence, the DMD approach
greatly reduces the number of effective degrees of freedom,
compared to a Fourier-based approach.

Figure 2 illustrates the leading DMD modes obtained for
the density fluctuation qn r t, ,˜( ) in the turbulence simulation.
The singular value for each of the DMD modes, which
represents the importance of the DMD mode for the dynamics
of the system, is calculated from the diagonal component of
the matrix Σ. These values are shown in figure 3, which
motivates our truncation of the rank r of A at r=9, for which

the singular value is a factor five below that of Mode1. These
DMD modes show the characteristic spatial structures:
Mode1 and Mode2 correspond to the deformation of the
background; Mode3 is the dominant fluctuation pattern; and
Mode4 and Mode5 are the spiral structures, which transiently
appear and disappear on the timescale of the limit cycle
oscillation [13]. All the physical structures rotate in the azi-
muthal direction, so that each eigenvector has a counterpart
complex conjugate pattern. Together, they represent each
rotating mode, and each mode in the pair has the same
eigenvalue as its complex conjugate. The real and imaginary
parts of the DMD eigenvalue define the frequency and growth
rate, respectively, of the corresponding DMD mode. How-
ever, when the turbulence is modulated, as in the case of the
limit cycle oscillation here, a single growth rate cannot
express the temporal dynamics. Thus, we must now develop a
method to extract how the amplitude of each DMD mode
changes with time.

We first propose a method to define the magnitude of
each DMD mode. By calculating the instantaneous correla-
tion coefficient between each DMD mode and the full tur-
bulence dataset, the dynamical change of the amplitudes of a
DMD mode can be deduced. This correlation can be esti-
mated from the convolution integral

ò
ò

q
q q q q

q q
=

- ¢ - ¢ Y ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢
F r t

n r r t r r dr d

n r t r dr d
, ,

, , ,

, ,
. 3j

j
( )

˜( ) ˆ ( )

˜( )
( )

Here Yj
ˆ is the jth DMD mode, normalized such that the two-

dimensional spatial integral is unity. Recalling that the spatial
pattern of the turbulence propagates in the azimuthal

Figure 2. The five dominant eigenvectors, in the form of two-dimensional spatial patterns, derived from DMD analysis of the simulation
outputs. These are the dominant nonlinear structures, Mode1 to Mode5, discussed in the main text.

Figure 3. Singular values for each of the DMD modes, calculated
from the diagonal component of the matrix Σ.
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direction, the correlation can be defined as

q=C t F r tmax , , . 4j j( ) [ ( )] ( )

Cj defines an effective amplitude for each DMD mode. The
calculated time evolution of Cj is plotted in figure 4 for
Mode1 to Mode5. This captures the changing contribution of
each structure to the overall turbulence. The limit cycle
between the deformation of the background and the dominant
turbulence, with the appearance and disappearance of the
spiral structure [13], is immediately evident. Mode1 and
Mode2, which correspond to the deformation of the back-
ground, show similar time evolution. The time evolution of
Mode3 and Mode4, which correspond to the dominant tur-
bulent fluctuation (KH instability) and spiral structure,
respectively, precedes that of Mode1 and Mode2 by an
interval δt≈10; this can be inferred from comparison of the
upper and middle panels of figure 4. This implies a causal
connection, which arises from how the turbulent fluctuation
changes the background, which is discussed later in more
detail. In order to see the relationship between the fluctuation
patterns, the closed cycle Lissajous figures in the (C3, C4)
plane are shown in the lower panel of figure 4, which clearly
captures the causal relation between the KH instability and
the spiral structure. They increase together, and then at a
critical amplitude of the KH instability, the spiral structure
becomes suddenly stronger, which leads to the suppression of
the KH instability. Both amplitudes then decline to their

starting point. Thus, the growth in the amplitude of the KH
instability is constrained, and eventually reversed, by the
excitation of the spiral structure, which itself finally decays.
The next circulation on this limit cycle then commences. The
approach presented here, of combining the DMD method and
the correlation integral, equation (3), enables one to create an
approximation to the attractor for this strongly nonlinear and
turbulent plasma system. We note that the correlation integral
approach introduced here could also be used in the same way
for the SVD [14–16] and proper orthogonal decomposition
[17] methods. It is also potentially relevant to experimental
imaging techniques such as those exploiting gas puffing
[18–20], beam emission spectroscopy [21, 22], and visible
light tomography [23, 24].

Finally, we turn to the physics of the system dynamics as
inferred from the behaviour of the DMD modes. Mode3
corresponds to the KH instability, which is driven by the
spatial gradient of the vorticity, ¶ á ñqVr

2 , where á ñqV is the
background azimuthal flow. The spiral structure (Mode4) has
been identified as the instability which arises from the com-
bination of the cylindrical effect and the flow inhomogeneity
[13], which is different from the KH instability. Thus, two
types of instability coexist in this system. The system
dynamics can be understood by considering the time evol-
ution of the fluctuations (Mode3 and Mode4) and of the
background (Mode1) as follows. Figure 5 displays the evol-
ution of; (a) these three normalized DMD modes; (b) the

Figure 4. Top: Time evolution of the correlation coefficient Cj (see equations (3) and (4)), tracing the changing relative amplitude of the five
DMD eigenvectors depicted in figure 2 in the simulation outputs. Middle: Time evolution of C3 and 5×C4, re-plotted on the same scale to
assist comparison. Bottom: Time evolution of the system plotted in the (C3, C4) plane, for three successive cycles identified from the upper
panel. These closed Lissajous figures demonstrate the limit cycle dynamics that govern C3 (KH instability) and C4 (spiral structure) in
combination.
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fluctuation-induced momentum flux P qr, (for the definition,
see equation (12) of [13]); and (c) the background flow. Here,
each DMD mode amplitude is normalized by its maximum
value attained between t=3000 and t=3500, to assist
identifying time lags and causality. Figure 5 (top panel)
shows that the peak level of the fluctuations (Mode3 and
Mode4) precedes that of the background (Mode1) by an
interval δt≈10. All three panels of figure 5 show that Mode3
induces a negative momentum flux which suppresses the
vorticity gradient (driving source of KH), and that Mode4
induces a positive momentum flux which increases the vor-
ticity gradient. Because the momentum flux P qr, sensitively
depends on the radial wavenumber, a structure with large kr,
such as the spiral structure, can drive the momentum flux
effectively. Thus, although the amplitude of the spiral struc-
ture is not so large (as seen in the top panel of figure 4), the
momentum flux driven by the spiral structure can be com-
parable to that driven by the KH instability. In this way, the
KH instability and the spiral structure couple with each other
through the background flow, and perform their different
roles. The balance between the transport due to the each
structure determines the dynamics of the limit cycle oscilla-
tion. Following the time evolution of the DMD modes clearly
captures the contributions of the key structures to the
dynamics of the system.

3. Conclusions

We have shown that the DMD technique, augmented by the
correlation integral approach introduced in equations (3) and
(4), has great potential for the quantitative characterization of
turbulent and strongly nonlinear phenomenology in plasmas.
Using this method, we have systematically extracted the time

evolution of the magnitude of each of the dominant, spatially
coherent, global nonlinear structures (figure 4, upper), toge-
ther with their coupled cyclic behaviour (figure 4, lower).
This would not be extremely difficult using Fourier mode
decomposition. The method introduced here remains valid,
even when the amplitude of the structure changes drastically
on a timescale much longer than the typical fluctuation per-
iod; whereas the conventional DMD method applies on
shorter timescales, comparable to the turbulence period.
Hence, by combining conventional DMD with the present
method, turbulence phenomenology that is multi-timescale
(from the turbulence timescale to the transport timescale) can
be systematically addressed and quantified.
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Appendix A. A brief summary of DMD

In the DMD method [6–8], the dynamical system is expressed
as t tX r r, , , ,1 2 1 2( ∣ )  , where rj and tj are the measurement
location and time, respectively. So, if one observes the system
with grids that span space with N elements and time with M
elements, the size of the matrix A is N×M. The DMD method
assumes that the system can be described by the linear com-
bination of nonlinear dynamical states, as in equation (1), where
the operator A governs the system evolution. The operator A is
determined entirely from the observable data, as

= ¢A X X . A.1( )†

The size of X is usually so large that a reduction of the dataset is
necessary. To achieve this, we use the SVD technique [14].
Formally, we write

= S
» S

X U V

U V

,

, A.2r r r

*
* ( )

where the subscript r denotes the r-rank truncation. Here, a
general matrix is decomposed into two unitary matrices, U and
V, which are combined with the diagonal matrix Σ, containing
the singular values of the original matrix; S ¹ 0ii , Σij=0

Figure 5. Time evolution of three DMD mode amplitudes, normal-
ized to their peak values during 3000<t<3500. Middle: Radial
profiles of the fluctuation-induced momentum flux P qr, . Bottom:
Radial profiles of background deformation, ¶ á ñqVr

2 .
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( ¹i j) [14]. It is necessary to construct the matrix Ã, which is
the projection of A onto Ur:

=

= ¢ S-

A U AU

U X V . A.3
r r

r r r
1

*

*

˜

( )

The eigenvalue problem for A is then recast as

x x= LA . A.4˜ ( )

The eigenvalues Λ and eigenvectors x of Ã are next obtained
from equation (A.4). Because the eigenvalues of A and Ã are
the same, the eigenvector of A, Ψ, is given as

x xY = ¢ = ¢ S-U X V . A.5r r r
1 ( )

The eigenvector Ψ is called the DMD mode. Finally, the time
evolution of the system x t( ) is expressed by using DMD modes
as

= Y YWx t e x 0 , A.6t( ) ( ) ( )†

where x 0( ) is the initial condition. We emphasize that this
expression can be used only for the short timescale evolution,
comparable to the fluctuation period, and given monotonic
growth or damping. This is because the mode amplitudeY x 0( )†

in equation (A.6) is constant in time. Quantifying the time
evolution of the modulated turbulence, where the amplitude
changes dynamically, is therefore difficult using DMD alone;
hence the present paper.

Appendix B. Fourier decomposition of DMD
eigenvectors

Figure B1 plots the amplitudes (on a logarithmic scale) of the
leading azimuthal Fourier components of the five DMD
eigenvectors displayed in figure 2. Here the Fourier expansion
is with respect to basis eigenfunctions qimexp( ), where θ is
azimuthal angle and, in figure B1, m takes integer values in
the range 0�m�7. In order to show the spectrum simply,
we have not attempted to calculate Fourier amplitudes for
m>7. Figure B1 shows that all DMD eigenvectors except
Mode1 and Mode2 incorporate multiple Fourier components
that contribute to form steep wavefronts in the azimuthal
direction. In contrast, the DMD method can directly extract
the key nonlinear structures, which simplifies the system
dynamics.
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