
F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

The Paramak, automated parametric geometry construc-
tion for fusion reactor designs.

Jonathan Shimwell1, John Billingsley1, Rémi Delaporte-Mathurin2,3,
Declan Morbey4, Matthew Bluteau1, Patrick Shriwise5, and Andrew
Davis1

1Culham Centre for Fusion Energy (CCFE), Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK
2CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
3Université Sorbonne Paris Nord, Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, UPR
3407, F-93430, Villetaneuse, France
4Department of Physics, Vivian Tower, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
5Argonne National Laboratory, 9700 S. Cass Ave., IL 60439, USA

Abstract
During the conceptual design process of fusion reactors it is useful to rapidly pro-
totype different design concepts and assess their suitability against a range of high
level requirements. Rapid prototyping allows the ‘fail early‘ mantra of other fields to
be applied to engineering design. Furthermore, the rapid generation of low fidelity
analysis allows fast exploration of design space, which enables better decisions to
be made during concept selection and the detailed design phase. The Paramak
is an open-source tool that aims to provide automated parameter driven 3D CAD
models for fusion reactor components and magnetic fusion reactors. The geometry
produced is compatible with several analysis workflows and this allows iterative au-
tomated model building and analysis to help steer the design concept optimisation
process. The Paramak uses CadQuery 2 to create the 3D CAD model. The Para-
mak framework is used to create a few example reactor configurations including: a
spherical reactor, a regular large radius tokamak and a compact submersion tank
reactor. Input parameters for the various reactors that the Paramak can generate
generally fall into three categories: continuous ranges such as blanket thickness, in-
teger ranges such as number of toroidal field coils and categorical parameters such
as type of divertor. The Paramak facilitates parameter studies where users can in-
vestigate the impact of input design parameters on the reactor performance. The
use of modern software practices allows the geometry to be continuously tested in
analysis workflows to ensure it is fit for purpose. The generation of output metrics
from input parameters lends itself to the use of data science and machine learning
approaches in order to steer the design. The Paramak provides rapid construction
of analysis ready CAD in a manner that allows the designer to save time when
exploring the design space for design studies and facilitate automated generative
design.

Keywords
parametric, design, automated, fusion, energy, CAD

Page 1 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

Introduction
When assessing the suitability of a fusion reactor design, one of the stages is the construction of a 3D model. This tends
to be a digital 3D CAD model which is then adapted for use in different analysis disciplines, for example, engineering
and neutronics. Following the conclusion of analysis, feedback can be provided and the design cycle can be iterated to
refine and optimise the design. Automating the analysis can help to rapidly develop a design as shown in [1]. While
some automated analysis remains a challenge in certain disciplines, progress is being made on the automation of a
number of domains used in the analysis of fusion reactors. In domains such as aerospace [2], the automatic generation
of simplified representative CAD geometries has given great benefit to the concept design process. Fusion reactor design
processes involve analysis being carried out and fed back into the creation of the next CAD model; this process is usually
a manual GUI based operation. The interpretation of results from analysis and geometric modifications are necessarily
decoupled in this mode of operation, which slows the speed of iteration. The situation can occur where the models are
updated several times as different analysis streams feedback into the design. In the case where different analysis tasks
take different amounts of time, there may be situations where the analysis streams therefore get different versions of
geometry, before it is further modified for their respective analysis. The scripts that users create to generate the CAD
model are compatible with version control and therefore the method of creating the CAD can be version controlled and
traced across a design process. Having this automated model creation for simple space reserving could be considered
the first stage in creating a more efficient, automated, rapid and reproducible design cycle. Automated model creation
can reduce the risk of geometry creation becoming a bottleneck in the design cycle. While complex model construction
might be difficult to automate with the current software, there is utility in automating simpler models and allowing the
analysis of specific geometry details to be filled in at a later stage. Additionally, there is also some utility in the use of
automated CAD in conjunction with automated analysis at early stages in the design, where simple models are more
appropriate.
A key advantage of creating a 3D reactor geometry from parameters is that the produced model then becomes easy to
quantify in terms of a small set of values. Being able to describe a 3D model with a series of parameters allows direct
linking between an optimiser, input parameters and output metrics. The designer’s input is still required to make the
parameterisation rules that allow components to be varied in ways that impact their performance. A designer’s skill is
required to ensure the layout of components interface correctly and do not overlap. A benefit of the parametric model
construction process is that when one parametric model is made this results in many perturbations that can be generated
by scripts, while a static model remains a single static model. A disadvantage is that creating a parameterised model
layout is more complex than a single model.

Approach
The efficient use of CAD in the design process requires a well thought out and coherent approach to utilise all the
potential benefits. While there are many possible approaches to the challenge the Paramak focuses on an automated,
parameter driven, permissive and open-source approach. This section aims to justify that decision.

CadQuery
CadQuery 2 [3] offers a potential solution for the creation of automated parametric CAD. CadQuery 2 is an open-source
Python library that binds to OpenCascade (OCCT 7.5 release) [4] and has some unique features among the possible
open-source candidates. One such capability is the ability to search, filter and then operate on the CAD solids during
construction. This allows components to be linked and built from each other without the user having to be concerned
with redefining related solids when a linked solid is modified. This is already possible with proprietary CAD software
but these capabilities are now emerging into the open-source area. CadQuery development is ongoing and the specific
version used for this publication is [5].

Integration in workflows
When using a complete CAD and analysis solution that includes a parametric CAD modelling package, the transfer of
parametric models from the CAD engine to the analysis software can be achieved. Within the ecosystem of commercial
PLM (Product Lifecycle Management) systems it is entirely possible to generate parametric CAD and use it within
parametric analysis workflows. When wishing to utilise the CAD geometry in external analysis workflows that are not
included within the ecosystem of proprietary software solutions, the use of parametric CAD becomes more challenging.
The provision of CAD models via open formats such as STP format AP214 [6] do not support the encoding of parametric
components within the CAD file. This lack of parametric support in the file formats that are used for transferring the
model results in non parametric CAD being received at the analysis level for certain types of analysis. There are several
possible solutions for this such as incorporating more analysis into the PLM software or developing new open CAD
formats that support parametric components such as STP AP242 [7]. The approach taken by the Paramak is to provide
a parametric creation of non parametric STP files with a permissive licensing model. The combination of permissive
licensing and parametric studies allows automated geometry creation and analysis to be carried out on potentially tens of

Page 2 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

thousands of designs in parallel. Cloud bursting together with Cloud computing can provide the computing resources for
such a study. Traditional licensing models where the costs scale with number of parallel sessions can result in significant
costs implications for such a spike in compute capacity. Depending on the number of parallel sessions required these
licensing costs can become significant. Permissively licensed open-source software offers a solution to such a scenario.
Since the Paramak is distributed with a permissive usage MIT open-source licence, it is therefore compatible with cases
where parallel sessions are desired without incurring any licensing costs. As cloud computing grows both in popularity
and market penetration, the licensing of software becomes an important factor in the software’s utility. This is reflected
by the growing popularity of permissive open-source licensing [8].

Software practices employed
The source-code is under version control and openly available via Github [9] under a permissive MIT licence. The
Paramak Python package is distributed via PyPi [10] and there are plans to incorporate a Conda distribution in the
future. A containerised build environment is distributed via Dockerhub [11] containing a pre-built environment with
all the required dependencies. The code is documented with diagrams and examples on ReadTheDocs [12] which
makes use of extensive Docstrings within the code. The code has been internally reviewed by a Research Software
Engineer internal to UKAEA and also undergoing a professionally reviewed by an external company PullRequest [13].
Continuous integration has been implemented using CircleCI [14] to run a broad range of unit tests and integration
tests. The test suite also covers use of the parametrically generated CAD in neutronics simulations using DAGMC [15]
and OpenMC [16]. This helps ensure the geometry made is suitable for use in neutronics analysis. Github Actions
have been utilised from an early stage for automating several aspects of the code distribution, packaging and static
code analysis. Github Actions have been used for employing code style guides (PEP8), updating the PyPi package
distribution and automatically building and uploading new Dockerhub images with each new version of the code. The
decision to open-source the Paramak code was a key enabler that allowed use of the previously mentioned platforms
and in turn allowed the code to grow and improve rapidly. Additionally, the open-source nature of the project has
facilitated contributions from outside the organisation, as demonstrated by the wide author list and contributors on to
the Github repository.

Code Structure & Examples
The Paramak consists of three main groups of classes: Shapes, Components and Reactors (see Figure 1).

Parametric Shapes
The Parametric Shapes provide profiles from a combination of straight edges, circular edges and Bezier spline edges.
These shapes can represent a wide range of basic shapes and are made from a series of 2D coordinates. Shapes can
be operated on to create 3D volumes using extrude, revolve, sweep and rotate operations (see Figure 2). Boolean
operations such as cut, intersect and union are also available to Shapes. To build Shapes the class must be provided
with coordinates or points and edge connection types to connect each coordinate.

Parametric Components
The Parametric Components inherit from Shape and build upon these basic families of shapes to create volumes that
more closely resemble components found in fusion reactors. Parametric Components generally have particular methods
of finding the coordinates that make up the shape and are thus able to provide the coordinates needed to make a Shape
class. The methods of finding points differ from component to component and are encoded within the component’s
class.
For the simplest Parametric Components such as CenterColumnCylinder() the points coordinates are found based
on a hollow cylinder. This requires just four points and uses straight lines to connect the points followed by a rotation
around the Z axis. This is then abstracted for the user so that only the height, inner radius and outer radius are
required. The Component class then finds the points from the internal rules and applies any CAD operations or Boolean
operations. More complicated shapes such as the BlanketFP() (see Figure 6) finds points on the front surfaces using
a variable offset from the plasma. A variable thickness between the interior and exterior surface is then used to find the
rear surface points. The front and rear surface points are connected with a series of splines with straight connections
between the two surfaces. The variable offsets and thicknesses can be provided as a function of poloidal angle and the
component is therefore able to construct more complex 3D objects. Some components (e.g. InnerFirstwallFCCS())
are constructed entirely from other components, in this case finding their coordinates is not necessary as a surface offset
and Boolean cut is sufficient to find the 3D volume.
There are currently over 34 Parametric Components available (see Figure 3) and many additional shapes are planned.
When these components are combined then the variety of 3D volumes available is sufficient to start constructing simple
fusion reactors as shown in Figure 4.

Page 3 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

High
abstraction

Low
abstraction

Parametric
shapes

Parametric
components

Parametric
reactors

Figure 1. Representation of the Paramak structure showing examples of Parametric Shapes, Parametric Compo-
nents and Parametric Reactors.

Parametric Reactors
Parametric Reactors allow users to create a 3D reactor model by combining Parametric Components and Shapes with
linkage that describes how they fit together. The models are not exact reproductions of any particular design but
reflective of different reactor configurations that are available. There are currently six Parametric Reactors available in
the Paramak (see Figure 4).
Two examples models created entirely from parameters are presented (see Figures 7 and 8). In the case of the
SegmentedBallReactor() the model has no inboard breeder zone and has divertors in the upper and lower po-
sitions. There are also single-null varieties of the BallReactor(). The main user inputs required are the radial
thicknesses of components. The reactors require less user inputs than the individual components that make up the
reactor would require. This is due to the radial build process that helps component inputs be derived from other com-
ponents. The reactor design has the order of components encoded and therefore from this user information it is possible
to know where each component starts and ends in the radial direction.
The vertical build for the SegmentedBallReactor() is largely based on the radial build which greatly minimises the
number of user inputs required for a 3D model. The user inputs for the plasma elongation and triangularity, combined
with the radial build parameters for the plasma, allow the coordinates of the top of the plasma to be calculated. The
vertical offset from the firstwall to the plasma defaults to the same value as the outboard plasma gap radial thickness but
can be specified independently using the plasma gap vertical thickness parameter. The blanket thickness is constant all
around the reactor both in radial and vertical directions. The Parametric Component for the blanket accepts a variable
thickness as a function of angle (see Figure 6) however this particular reactor design has been programmed to have con-
stant thickness blankets throughout. This means the users will not be asked for a vertical blanket thickness but have less
control over the reactor. The blanket is also segmented by another Parametric Component (BlanketStarCutter())
to create banana segments. CadQuery’s inbuilt filter methods are then used to select the front edges of the firstwall and
breeder zone so that they can be filleted. A Boolean cut between the firstwall block and the breeder zone results in a
wrap around design. Positioning of poloidal field coils is a user controllable argument, however if (R,Z) coordinates are
not specified then they are equispaced vertically behind the blanket. Four types of toroidal field coils exist as Parametric
Components: rectangle, coat hanger, Princeton-D and triple arc. However, simple rectangular toroidal field coils are
used for the current BallReactor() design. The SegmentedBallReactor() inherits from the BallReactor() so
it also uses rectangular magnets by default. When inheriting from a base design it is possible to overwrite any of the
components. Due to this system the number of variations on the base design can rapidly increase. The BallReactor()

Page 4 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

RotateStraightShape() RotateSplineShape() RotateMixedShape() RotateCircleShape()

ExtrudeStraightShape() ExtrudeSplineShape() ExtrudeMixedShape() ExtrudeCircleShape()

SweepStraightShape() SweepSplineShape() SweepMixedShape() SweepCircleShape()

Figure 2. Primitive Shape Classes which require the user to specify input points.

design has inbuilt assumptions regarding the connections and shapes of components, this has disadvantages in terms
of the flexibility but also the advantage of having reduced inputs for the user to specify.
The SubmersionTokamak() requires a few more inputs from the users and offers more flexibility when creating the
models. Additional inputs are required for the radial thickness of the supports and the radial thickness of the inner
blanket. The computational time to generate the 3D volumes and export CAD files in STP format once the input
dimensions have been specified varies from around 20 seconds for a simple BallReactor() to around 40 seconds
for a SegmentedBallReactor() on a desktop computer (i5 Intel processor). In this case the time difference is due
to segmenting the blanket and filleting the edges of the blanket. Currently the entire construction process is a serial
operation so there is scope to speed up the construction by parallelising parts of the construction process.
The CenterColumnStudy() reactor is designed for a specific use case. When study the impact of geometric parameters
on the center column it is possible to simplify the design to only include components that significantly impact the
simulation result. For example, the outboard TF and PF coils have little impact on the simulation results in this case.
This reduces the time needed for model creation and reduces model initialisation in analysis use cases.
While the existing Parametric Reactors are not a full representation of magnetic fusion reactors, the framework estab-
lished can be used to create more detailed components with more complex relationships between components.
All the various reactor classes allow operations such as exporting the volume(s) to CAD files (STP and STL format) and
2D images (SVG) of the geometry as used in the documentation [12]. Other properties of the geometry can easily be
obtained such as the volume of each shape or component in the reactor. This can be useful for cost estimates in systems
codes or mass calculations in remote maintenance strategies. The utility of CAD models goes beyond visualisation and
basic properties in assessing a design’s suitability and can be used as part of an automated parameter study. The Paramak
knows the extent of the x, y, z dimensions for the geometry and therefore can automatically create thin shell bounding
boxes (referred to as Graveyard volumes) for use in CAD based neutronics with DAGMC [16]. While this paper aims to
focus on the geometry creation within the Paramak there are future papers planned where utilisation within neutronics
and engineering workflows will be demonstrated.

Page 5 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

Figure 3. The current selection of Parametric Components available. Note that because these shapes are all
customisable with parameters they can appear differently to their default view pictured in the diagram. These
inherit from the Shape class and have encoded methods of calculating the points required.

Conclusion
The Paramak code has been introduced and the motivation for facilitating a data science approach to geometry con-
struction has been discussed. Several benefits of the open-source approach have been realised during the project. The
number of Parametric Components has grown to the level where simplified reactor models can be constructed. Reac-
tor models can be encoded to encapsulate design decisions which allow the required user inputs to be limited. This
is demonstrated by the three example models presented in the paper and reinforced by additional Parametric Reactor
models contained in the documentation [12]. There are currently six different Parametric Reactors for users to create.
Due to the structure of the code, it is straightforward to inherit existing reactors and modify specific parts of their design
to extend the reactor family to accommodate additional features or parameters of Parametric Reactors.
The current parametric models provided in the Paramak are relatively simple but it is also possible to make more
complex models when provided with a design.
The Paramak has been used within UKAEA to create models of several spherical tokamak configurations and has also
been used to reproduce a SPARC like design based on the diagrams in [17]. The outputs of the Paramak are CAD models
which are useful in fusion analysis disciplines such as Finite Element Analysis, neutronics, visualisation and even cost
models which often require CAD files as an input.
Due to the use of modern software practices (continuous integration and containerisation), the software is able to test the
CAD generated in neutronics analysis and demonstrate the compatibility of the geometry in use. The software employs
modern software practices such as automatic documentation generation (ReadTheDocs) [12], package distribution
services (PyPi) [10] and can be containerised [11]. Consequently, the learning time, installation time and time to first
results are minimal.
The use of these models in automated workflows has yet to be demonstrated in a publication but this would be the
next logical stage in the process and the authors plan to publish a range of use cases for the parametric geometry in
the future. Future work will, amongst other improvements, incorporate detailed parametric blanket models which have
previously been created [1].

Acknowledgments
The authors would like to acknowledge the financial support of EPSRC. This work has also been part-funded by the
RCUK Energy Programme [grant number EP/I501045/1]. The authors would also like to thank Dr Lidija Pasuljevic
Shimwell, Helen Gale, Stephanie Ellis, Colin Billingsley and Linda Billingsley for their support. The authors would like
to thank Simon McIntosh for the provision of examples when calculating the coordinates of the TF coils. The authors
would like to thank Lyal Avery and the rest of the team at PullRequest for initiating the software review. The authors
would also like to thank all the CadQuery developers and in particular Adam Urbańczyk, Jeremy Wright and Dave

Page 6 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

Figure 4. The current selection of reactors available. Note that because these reactors are all customisable with
parameters they can appear differently to their default view pictured in the diagram. From left to right and up to
down the reactor class names are BallReactor(), SingleNullBallReactor(), SegmentedBallReactor(),
SingleNullSubmersionTokamak(), SubmersionTokamak() and CenterColumnStudyReactor().

Cowden.

References
[1] J. Shimwell, R. Delaporte-Mathurin, J.-C. Jaboulay, J. Aubert, C. Richardson, C. Bowman, A. Davis, A. Lahiff,

J. Bernardi, S. Yasin, et al., Multiphysics analysis with cad-based parametric breeding blanket creation for rapid
design iteration, Nuclear Fusion 59 (2019) 046019.

[2] B. Mukundakrishnan, N. Rajmohan, D. G. Rajnarayan, S. Fugal, A Script-Based CAD System for Aerodynamic
Design.

[3] A. Urbańczyk, J. Wright, D. Cowden, I. T. Solutions, H. Y. ÖZDERYA, B. Agostini, M. Greminger, J. Buchanan,
huskier, M. Boyd, M. S. de León Peque, P. Boin, B. Weissinger, C. Osterwood, moeb, nopria, A. Kono, HLevering,
W. Turner, W. Saville, A. Grunichev, Bernhard, D. Anderson, G. Ebner, I. Krasin, M. Ulianko, P. Thelen, bsilvereagle,
jwhevans, xix xeaon, Cadquery/cadquery 2.0.1, 2020.

[4] Open CASCADE Technology 7.5.0 released, 2020 (accessed November 30, 2020). https://www.opencascade.
com/open-cascade-technology-7-5-0-released/.

[5] D. C. Adam urbanczyk, Jeremy Wright, CADQuery, A python parametric CAD scripting framework based on OCCT,
2020 (accessed November 30, 2020), Git SHA cf275b0. https://github.com/CadQuery/cadquery.

[6] ISO 10303-214:2010 Industrial automation systems and integration — Product data representation and exchange
— Part 214: Application protocol: Core data for automotive mechanical design processes, 2020 (accessed Novem-
ber 30, 2020). https://www.iso.org/standard/43669.html.

[7] ISO 10303-242:2014 Industrial automation systems and integration — Product data representation and exchange
— Part 242: Application protocol: Managed model-based 3D engineering, 2020 (accessed November 30, 2020).
https://www.iso.org/standard/57620.html.

Page 7 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

XX

YY

ZZ
distance

thickness

R1

h

radii[0]

ra
dii
[1]

coverages[1]
cov

era
ges

[0]

import paramak

magnet = paramak.ToroidalFieldCoilTripleArc(
R1=80,
h=200,
radii=(70, 100),
coverages=(60, 60),
thickness=30,
distance=30,
number_of_coils=1,
with_inner_leg=True,

)

Figure 5. Example Parametric Component ToroidalFieldCoilTripleArc() with parameters labelled.

XX

YY

ZZ

rotation_angle

offset_from_plasma

thickness

plasma

+ve

+ve

stop_angle

start_angle

0°

import paramak

plasma = paramak.Plasma(
elongation=2,
major_radius=450,
minor_radius=150,
triangularity=0.55,
rotation_angle=180,

)

blanket = paramak.BlanketFP(
plasma=plasma,
stop_angle=250,
start_angle=-70,
offset_from_plasma=[30, 60, 30],
thickness=[150, 70, 70],
rotation_angle=180,

)

Figure 6. Example Parametric Component BlanketFP() build using a parametric Plasma as one of the inputs.
Additionally the blanket has a variable thickness and variable offset from the plasma.

Page 8 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

XX

YY

ZZ

rotation_angle
tf_coil_poloidal_thickness

pf_coil_case_thickness

inner_bore_radial_thickness

inboard_tf_leg_radial_thickness

center_column_shield_radial_thickness

inboard_blanket_radial_thickness

firstwall_radial_thickness

inner_plasma_gap_radial_thickness

plasma_radial_thickness

outer_plasma_gap_radial_thickness

firstwall_radial_thickness

outboard_blanket_radial_thickness

blanket_rear_wall_radial_thickness

tf_coil_to_rear_blanket_radial_gap

outboard_blanket_radial_thickness

pf_coil_to_tf_coil_radial_gap

pf_coil_radial_thicknesses

import paramak

my_reactor = paramak.SubmersionTokamak(
inner_bore_radial_thickness=30,
inboard_tf_leg_radial_thickness=30,
center_column_shield_radial_thickness=30,
divertor_radial_thickness=80,
inner_plasma_gap_radial_thickness=50,
plasma_radial_thickness=200,
outer_plasma_gap_radial_thickness=50,
firstwall_radial_thickness=30,
blanket_rear_wall_radial_thickness=30,
number_of_tf_coils=16,
rotation_angle=180,
support_radial_thickness=50,
inboard_blanket_radial_thickness=30,
outboard_blanket_radial_thickness=30,
plasma_high_point=(200, 150),
pf_coil_radial_thicknesses=[30, 30, 30, 30],
pf_coil_vertical_thicknesses=[30, 30, 30, 30],
pf_coil_to_tf_coil_radial_gap=50,
outboard_tf_coil_radial_thickness=30,
outboard_tf_coil_poloidal_thickness=30,
tf_coil_to_rear_blanket_radial_gap=20,

)

my_reactor.export_stp()
my_reactor.export_svg()

Figure 7. Example Python script showing the input parameters used for the creation of a SubmersionTokamak()
model. The example also exports the SVG image used in this Figure and CAD files (STP) used when making Figure
4.

Page 9 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

XX

YY

ZZ

rotation_angle
tf_coil_poloidal_thickness

divertor_radial_thickness

plasma_gap_vertical_thickness

pf_coil_case_thickness

gap_between_blankets

inner_bore_radial_thickness

inboard_tf_leg_radial_thickness

plasma_radial_thickness

outer_plasma_gap_radial_thickness

firstwall_radial_thickness

blanket_radial_thickness

inner_plasma_gap_radial_thickness

blanket_rear_wall_radial_thickness

pf_coil_to_rear_blanket_radial_gap

pf_coil_radial_thicknesses

pf_coil_to_tf_coil_radial_gap

tf_coil_radial_thickness

center_column_shield_radial_thickness

import paramak

my_reactor = paramak.SegmentedBlanketBallReactor(
inner_bore_radial_thickness=5,
inboard_tf_leg_radial_thickness=25,
center_column_shield_radial_thickness=45,
divertor_radial_thickness=150,
inner_plasma_gap_radial_thickness=50,
plasma_radial_thickness=300,
outer_plasma_gap_radial_thickness=50,
firstwall_radial_thickness=15,
blanket_radial_thickness=50,
blanket_rear_wall_radial_thickness=30,
elongation=2,
triangularity=0.55,
number_of_tf_coils=16,
rotation_angle=180,
pf_coil_radial_thicknesses=[50, 50, 50, 50],
pf_coil_vertical_thicknesses=[50, 50, 50, 50],
pf_coil_to_rear_blanket_radial_gap=50,
pf_coil_to_tf_coil_radial_gap=50,
outboard_tf_coil_radial_thickness=100,
outboard_tf_coil_poloidal_thickness=50,
gap_between_blankets=30,
number_of_blanket_segments=15,
blanket_fillet_radius=15,

)

my_reactor.export_stp()
my_reactor.export_svg()

Figure 8. Example Python script showing the input parameters used for the creation of a
SegmentedBallReactor() model. The example also exports the SVG image used in this Figure and CAD
files (STP) used when making Figure 4.

[8] The Complete Guide to Open Source Licenses 2020, 2020 (accessed Novem-
ber 30, 2020). https://resources.whitesourcesoftware.com/white-papers/
the-complete-guide-for-open-source-licenses-2020.

[9] J. Shimwell, J. Billingsley, R Delaporte-Mathurin et al, Paramak source code Github repository, v0.2.0, Git commit
c41dc4c2e68183869556544ee7a72deb1d16a8dc, 2020 (accessed January 4, 2021). https://github.com/
ukaea/paramak.

[10] PyPi - The Python Package Index, Paramak v0.2.0 PyPi distribution, 2020 (accessed January 4, 2021). https:
//pypi.org/project/paramak.

[11] Dockerhub, containerized distribution via Dockerhub of the Paramak, 2020 (accessed November 30, 2020).
https://hub.docker.com/r/ukaea/paramak.

[12] ReadTheDocs, Paramak API documentation and example usage, 2020 (accessed November 30, 2020). https:
//paramak.readthedocs.io/en/main/.

[13] PullRequest, Code Review as a Service, 2020 (accessed November 30, 2020). https://www.pullrequest.
com/.

[14] Circle CI, CI pipeline for the Paramak, DOI https://zenodo.org/record/4384269, 2020 (accessed November 30,
2020). https://app.circleci.com/pipelines/github/ukaea/paramak?branch=main.

[15] Romano, Paul K., Horelik, Nicholas E., Herman, Bryan R., Nelson, Adam G., Forget, Benoit, Smith, Kord, Openmc:
A state-of-the-art monte carlo code for research and development, 2014.

[16] P. P. Wilson, T. J. Tautges, J. A. Kraftcheck, B. M. Smith, D. L. Henderson, Acceleration techniques for the direct
use of cad-based geometry in fusion neutronics analysis, Fusion Engineering and Design 85 (2010) 1759 – 1765.
Proceedings of the Ninth International Symposium on Fusion Nuclear Technology.

Page 10 of 11



F1000Research 2020 - DRAFT ARTICLE (PRE-SUBMISSION). Final article available at https://f1000research.com/articles/10-27

[17] A. J. Creely, M. J. Greenwald, S. B. Ballinger, D. Brunner, J. Canik, J. Doody, T. Fülöp, D. T. Garnier, R. Granetz,
T. K. Gray, et al., Overview of the sparc tokamak, Journal of Plasma Physics 86 (2020) 865860502.

Page 11 of 11


