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Abstract
The findings of an investigation into the properties of the three dimensional (3D) saturated
fluctuation intensity of the electric potential in gyrokinetic turbulence simulations is presented.
Scans in flux surface elongation and Shafranov shift are used to isolate the tokamak geometric
dependencies. The potential intensity required in order to compute exact fluxes by a quasilinear
method is determined using linear eigenmodes computed with the gyrokinetic code. A model of
this non-linear intensity is constructed using the linear eigenmode properties and the geometry
shape functions obtained from the 3D intensity spectrum. The model computes the poloidal
wavenumber spectrum of the electron and ion energy fluxes with unprecedented accuracy. New
insights are gained into the way zonal flow mixing saturates ion-scale turbulence by controlling
the radial wavenumber width of the turbulence spectrum.

Keywords: tokamak transport, quasi-linear model, gyrokinetic turbulence

1. Introduction

Gaining an empirical understanding of turbulence by
examining the properties of the spectra is not as daunting a
task as it might seem. The goal is not to understand everything
about the temporal and spatial behaviour of the turbulence.
The goal of this study is just to model the electric potential
(time dependent electrostatic potential) intensity required to
compute the fluxes using the quasi-linear approximation (QL
intensity) [1]. To be specific, the intensity of each poloidal
wavenumber (ky) required is the non-linear contribution to
that wavenumber (Qky) divided by the quasilinear weight of
the most unstable linear eigenmode (W QL

ky
) and the wavenum-

ber spacing ∆ky

I QLky
=

Qaky

∆kyW
QL
aky

. (1)

The quasi-linear weight is the formula for the non-linear flux
(equation (2)) evaluated with just the most unstable linear
eigenmode wavefunction (times a delta-function in kx and ky)
and divided by the square amplitude (intensity) of the elec-
tric potential of that linear mode. The poloidal wavenumber

grid interval∆ky is needed in equation (1) to make the intens-
ity independent of the ky grid. It should not matter which
plasma species (subscript label ‘a’) is used to compute this
intensity, since the species dependence is accounted for in
the quasi-linear weight. This is illustrated in figure 1 with an
example from one of the simulations discussed later. All of the
cases were found to give good agreement between the elec-
tron and ion calculations of the QL intensity. Using the same
code to compute the linear eigenmodes, and the non-linear tur-
bulence driven fluxes, eliminates the error due to approxim-
ated linear eigenmodes used in quasi-linear transport models
like TGLF [2]. The saturation models used in TGLF prior to
this paper were constructed based on the flux surface average
potential intensity at kx = 0, not the QL intensity as defined
in equation (1). The gyro-Bohm normalized turbulent energy
flux in the gyrokinetic simulation is computed for each species
by the formula:

Qa =
∑
kx

∑
ky

3
2
⟨Re[iky

aeϕ̃∗kx, ky
ρsTe

ap̃a, kx, ky
ρsneTe

]⟩t,θ =
∑
ky

Qaky .

(2)
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Here the gyro-Bohm normalizations of the CGYRO code
were used [3]: cs =

√
Te/mD, a= minor radius at separatrix,

ρs = cs/Ωs, Ωs = eBunit/(mDc), Bunit =
qdψ
rdr [4] for poloidal

magnetic flux ψ, and mD = deuterium mass. The gyro-Bohm
normalization for energy flux in these units is neTecs(ρs/a)2.
The energy flux is produced by a radial E×B drift driven by
electric potential fluctuations ϕ̃kx,ky that is averaged with the
fluctuations of the pressure moment of the species distribution
function (p̃a,kx,ky). The angle bracket represents a time average
(t) and a flux surface average over a poloidal angle (θ). There is
also a sum over the normalized radial wavenumber (kx) which
is equivalent to a radial average over the flux tube box. In
this paper, we will be examining how the radial wavenumber
and poloidal dependence of the time average electric potential
intensity influence the QL intensity. Insights into the geometry
dependence and the way in which the zonal (ky= 0) poten-
tial fluctuations control the radial wavenumber width of the
whole spectrum will be gained. A model for the QL intensity
of unprecedented accuracy is constructed using these new res-
ults. This newmodel (SAT2) improves the ion-scale part of the
model (SAT1) [5] that was developed to fit coupled electron-
ion multi-scale gyrokinetic simulation spectra [6].

In section 2 the geometric metrics that make the wavevector
coordinate independent and how these could impact the geo-
metry dependence of the intensity will be discussed. In
section 3 the intensity spectrum at the outboard midplane will
be used to study the radial wavenumber width and its rela-
tion to the zonal potential fluctuations. In section 4 the pol-
oidal dependence of the 3D spectrum will be studied. It will
be shown that the wavenumber metrics can account for the
poloidal dependence of the peak of the spectrum at kx= 0. In
section 5 a model for the QL intensity will be fit incorporating
the radial wavenumber spectral width and flux surface average
of the poloidally varying factors. The final section summarizes
the paper and discusses the potential impact of this new SAT2
model on transport modeling of tokamaks and spherical tori.

2. Wavevector metrics in axisymmetric geometry

The geometric metrics that enter the gyrokinetic equation for
general, axisymmetric, closed flux surface geometry will be
shown in this paper to provide the functions that fit the poloidal
dependence of the saturated potential intensity. The gyrokin-
etic equation is an approximation to the Vlasov–Fokker–
Planck equation based on an expansion in the ratio of the
magnetic gyroradius (Lamour radius) to the local equilib-
rium gradient length. This is a very small parameter in toka-
maks and spherical tori with magnetic fields greater than one
Tesla typical of todays fusion energy experiments. Because the
gyroradius sets the scale for the plasma turbulence described
by gyrokinetics, the wavelength perpendicular to the magnetic
field is much shorter than the wavelength parallel to the mag-
netic field. This property makes it convenient to introduce an
eikonal approximation for the perpendicular wavevector. The
gradient of the eikonal (S) is perpendicular to the magnetic
field vector B: B ·∇S= 0. There are two independent func-
tions that satisfy this constraint. An arbitrary function of the

Figure 1. The QL intensity computed from the ion (black) and
electron (gray) energy flux for the GA-STD case.

poloidal flux S= Sx(ψ) and S= n
[
φ+ Sy

]
where n is a tor-

oidal Fourier mode index and,

Sy =−
ˆ θ

0
dθ ′

BT
RBp ·∇θ ′

. (3)

Here a cylindrical coordinate system (R,φ,Z) is assumed and
the magnetic field has toroidal BT = IT(ψ)∇φ and poloidal
Bp =∇φ×∇ψ components. The Miller geometry coordin-
ates [7], minor radius and poloidal angle (r, θ), have been
used for Sy. The eikonal function Sy is quasi-periodic with
Sy(θ= 2π)= 2πq where q is the safety factor of the flux sur-
face. An average over the fast motion about the magnetic
field is taken in the gyrokinetic approximation. This results

in Bessel functions with an argument
∣∣∣∇S∣∣∣v⊥mac/(ZaeB).

This motivates defining a poloidally varying ion wavevector
given by:

K2
i⊥ = ρ2

iB

∣∣∣∇S∣∣∣2 = [
K2
iy+

(
ŝKiyΘ+Kix

)2]
, (4)

where ρiB =
√

2Ti/mi/ΩB, ΩB =
ZieB
mic

are a gyro-radius and
gyro-frequency using the ion temperature, mass and charge
(T i, mi, Zi) and using the total magnetic field magnitude
B(θ). The magnetic shear is ŝ= (r/q)dq/dr. The generalized
angle Θ in equation (4) is defined to be zero at the outboard
midplane and has a quasi-periodic property derived from Sy.
The poloidal Kiy and radial Kix wavenumber components in
equation (4) are defined by:

Kiy(θ) =
nρiBp
R

=
kyαi
|∇r|

, (5)

Kix(θ) = |∇r|krρiB =
kxαi
Gq

Bnorm

Bunit
, (6)

where the factorαi = Znorm
√
mi2Ti/(Zi

√
mnormTnorm) converts

from the arbitrary external normalizations used in kx, ky
(Znorm,mnorm,Tnorm) to the ion values. The flux surface shape

2
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Figure 2. The zonal flow velocity computed from the potential spectrum equation (14) (black, box) and from the zonal flow mixing rule
equation (13) (gray, circle) for elongation (κ) (left) and Shafranov shift (∆) (right) scans. note: gradr0 = |∇r|0 = 1/(1+∆).

factorGq has been introduced to make the distinction between
the arbitrary normalizing magnetic field Bnorm and Bunit, which
appears in the metric coefficients, clear.

Gq =
rB
qRBp

=
B

Bunit|∇r|
. (7)

This shape factor reduces to 1 for a large aspect ratio cir-
cular flux surface. It is the same for GENE [8] or CGYRO
since it does not involve the choice of normalizing magnetic
field. The poloidal wavenumber Kiy (equation (5)) is the tor-
idal wavenumber n/R normalized by the ion gyroradius with
respect to the poloidal magnetic field ρiBp = ρiBB/Bp. The
radial ion wavenumber Kix (equation (6)) is the gradient nor-
mal to flux surfaces (|∇r|kr = |∇Sx|) normalized to the the
total magnetic field ion gyro-radius. The relation of these geo-
metric wavenumbers to the externally normalized wavevectors
ky, and kx = krρBnorm is also given in equations (5) and (6). The
CGYRO code uses the normalizing magnetic field Bnorm =
Bunit. The GENE code [8] uses the same poloidal wavenumber
ky as CGYRO, but the normalizing magnetic field is Bnorm =
Bref [9] (the toroidal magnetic field at the magnetic axis).
There can also be differences in the reference temperature and
mass. In the gyrokinetc turbulence simulations of this paper
it was assumed that for both codes: Tnorm = Te = Ti,mnorm =
mi,Znorm = Zi = 1.0 . Hence αi =

√
2. The two sources for the

poloidal angular dependence of the wavevector are the mag-
netic field strength (B) and the gradient of the minor radius
|∇r| (equivalent to |∇ψ|= RBp).

We seek to build a model, using the linear CGYRO eigen-
mode spectrum, for the normalized amplitude of the 3D poten-
tial fluctuations:

Φ(ky,kx,θ) =
e|ϕ̃|

Te
√
dkydkx

a
ρBnorm

. (8)

The factor
√
dkydkx in equation (8) is needed in order

to make the intensity independent of the spacing between
the wavenumbers dky and dkx. For the zonal potential (ky= 0)
the dky is set to 1 in equation (8). The model for the peak of

the potential amplitude is chosen to have the mode-coupling
saturation form [5].

Φmodel
ky =

γeffky
kRMS
x ky

. (9)

The primary goal of this paper is to determine the geometric
factors required to generalize this model to be θ dependent.
The model is exact if the effective growthrate γeffky and the root
mean squared (RMS) width of the radial wavenumber spec-
trum kRMS

x are computed from the non-linear spectrum.

kRMS
x =

√∑
kx
k2xΦ2(kx,ky,θ)∑
kx
Φ2(kx,ky,θ)

, (10)

γeffky = kRMS
x kyΦ(kx = 0,ky,θ). (11)

The model for the QL intensity is the flux surface average of
the square of the peak amplitude:

Imodel
ky =

〈(
Φmodel
ky

)2〉
θ
. (12)

The factor kRMS
x in equation (9) and the use of the the kx= 0

peak in the definition for γeffky (equation (11)) makes the model
equation (9) independent of kx. This model form has been
found [5] to give a better fit to the way the fluxes fall off with
ky than other ways of modeling the impact of the kx average of
the flux calculation (equation (2)).

3. The role of the radial wavenumber spectrum
width in turbulence saturation

In order to investigate the geometry dependence of the sat-
urated potential intensity a set of gyrokinetic turbulence sim-
ulations were performed. A scan of the elongation of the
flux surface (κ) changes the factor B/Bunit [4]. At the out-
board midplane (θ= 0) this factor scales like 1/κ. The
gradient of the minor radius at the outboard midplane is

3
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Figure 3. The normalized potential amplitude (equation (8)) kx-spectrum (black) and Lorentzian fit (gray) for (left) the zonal ky= 0 and
(right) finite ky= 0.603 fits at the outboard midplane for the GA-STD case.

Figure 4. The kx-width computed from the potential intensity at the outboard midplane (black) and the model (gray) (equation (16)) for
(left) GA-STD (center) κ= 2.0 and (right) ∆ = −0.5.

gradr0 = |∇r|θ=0 = 1/(1+∆) where ∆= dR0/dr is the
Shafranov shift of the major radius of the flux surface center
(R0). Starting with the GA-STD parameters (a/Ln = 1, a/LT
= 3.0, q = 2.0, Ti/Te = 1, ŝ = 1.0, κ = 1.0, ∆ = 0.0, r/a =
0.5, R/a = 3.0), scans in κ = (1.0, 1.25, 1.5, 1.75, 2.0) and
∆ = (0.0, −0.1,−0.2,−0.4,−0.5) were run with CGYRO. A
pure deuterium plasma, with a very low electron pressure
(BETAE_UNIT = 0.0005), is assumed. For 7 of the cases the
collision frequency of NU_EE = νeea/cs = 0.05 was used.
These cases had 24 positive poloidal wavenumbers with spa-
cing dky = 0.067 and 144 positive radial wavenumbers with
spacing dkx = 2πŝdky/Nbox where Nbox = 6 is the BOX_SIZE
setting for CGYRO and ŝ= 1 is the magnetic shear. Another
three cases were run with collision frequency NU_EE = 0.1
and ∆ = 0, −0.5, κ = 2.0 (16 k ′ys with dky = 0.067, 129
k ′xs, Nbox = 13). These three cases were also run with GENE
(20 k ′ys with dky= 0.05, 159 k ′xs, Nbox = 12). One case was re-
run with twice the value of dkx in order to verify the scaling
of the intensity with the radial wavenumber spacing. The 10
CGYRO cases were sufficient to deduce the dependence of the
radial wavenumber width on the outboard midplane |∇r|0 and
B(0)/Bunit as discussed in this section. The GENE runs were
used to verify the dependence on the reference magnetic field.
The other normalizations were the same for both gyrokinetic
codes.

The physical picture of the saturation of the gyrokinetic
turbulence by zonal flow mixing [5] is that the ky= 0 zonal
fluctuations (non-static part) couple the fastest growing kx= 0
modes at each ky to slower growing, or damped, modes at
larger kx. This coupling is through non-linear advection by

the time dependent zonal fluctuations (not zonal flow shear). It
was shown in [5] that this mechanism was able to contribute to
the saturation of even electron gyroradius scale modes, since
the zonal flowmixing rate γZF = VZFky is able to compete with
the linear growthrate γky at all ky scales. The zonal ExB fluctu-
ation saturates when the zonal flow mixing rate is balanced by
the linear growthrate of the mode being advected. This gives
an approximate relation for the RMS zonal ExB velocity that
can be computed from the linear eigenmode spectrum:

VZF =max[γky/ky]. (13)

The growthrate is for the most unstable mode at each ky. The
RMS zonal flow velocity can be computed directly from the
non-linear saturated spectrum:

VZF = 0.5
√∑

kx

k2xΦ2(kx,ky = 0,θ). (14)

The first test of the geometry dependence is to check the zonal
flow (ZF) mixing rule (equation (13)). The zonal flow velo-
city (equation (14)) at θ= 0 and the right hand side of the ZF
mixing rule (equation (13)) are plotted for the 10 cases in the
κ and ∆ scans in figure 2. The approximate ZF mixing rule
equation (13) tracks the κ and∆ dependence pretty well. The
factor of 0.5 is not optimal in equation (14) and becomes a
fitting parameter in the saturation model. The important prop-
erty is that the zonal flow mixing rule (equation (13)) cap-
tures the trend of the saturated zonal flow RMS velocity. The
variation in the zonal velocity is much smaller than the factor

4
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Figure 5. The zonal potential spectrum width kRMS
x computed from the potential intensity at the outboard midplane (black, box) for (left)

κ and (right) ∆ scans also shown are the values of kymax (gray, circles) and b0kymax/|∇r|0 (open gray circles).

of two variation in B(0)/Bunit or |∇r|0 and does not require
any geometric correction. Note that the zonal flow velocity
(equation (14)) is independent of the reference magnetic field
since the gyroradius normalization of kx and Φ cancel. The
definition for VZF in equation (14) was changed from the ori-
ginal definition [5] to make this property obvious. It will be
shown in the next section that the zonal potential is almost
independent of the poloidal angle, so the ZF mixing rule holds
approximately at all θ.

The RMS width of the kx spectrum can be computed from
equation (10) but this is not very accurate. The amplitude
is well approximated by a Lorentzian function for moderate
kx/ky but has a low amplitude tail at high kx/ky that makes
using the formula equation (10) dependent on the range of
kx/ky. To improve the calculation, a Lorentzian model was fit
to the potential amplitude at the outboard midplane.

Φfit =
Φ0

(1+( kx
kx−width

)2)
. (15)

The two parameters Φ0 and kx−width are determined by a least
squares fit to a set of kx points sampled from the potential.
The shift in the peak of the potential due to equilibrium E×B
velocity shear can be easily added to this model [10]. Evalu-
ating kRMS

x (equation (10)) with this Lorentzian model finds
kRMS
x = kx−width. As shown in figure 3, the fit is very good
for higher ky but not as good for the zonal potential (ky= 0
). Note that the zonal potential at kx= 0 is set to zero by the
CGYRO code. The fit finder does not use this central point
and it does not contribute to VZF. The whole ky spectrum of
the kRMS

x for the GA-STD case is shown in figure 4 (left). It
has a pronounced flatness at low-ky and is basically linear in
ky for higher values. A fit to this spectrum is shown in figure 4
given by the formula

kmodel
x =

Bunit

Bnorm
kycut/|∇r|0 for ky < kycut

=
Bunit

Bnorm

(
kycut/|∇r|0 + b1(ky− kycut)Gq(0)

)
for ky ≥ kycut

. (16)

The cutoff is modeled by kycut = b0kymax where kymax is the
value of ky where γky/ky is maximum. The two fitting coef-
ficients used in figure 4 are b0 = 0.83, b1 = 1.31. These were
fit to the GA-STD case (left panel of figure 4). The geomet-
ric coefficients in equation (16) were determined by the κ and
∆ scans. The two ends of these scans κ= 2.0 (center panel)
and∆= 0.5 (right panel) are shown in figure 4. The change in
slope and the nearly constant value of the width at ky = 0 are
well fit by this model with the same coefficients. The oscilla-
tions at low-ky suggest that there are slowly evolving contri-
butions to the potential spectrum that have not been time aver-
aged sufficiently. The GENE simulations are well fit by the
same model (equation (16)) verifying the overall Bnorm factor.

The width of the zonal potential fluctuation amplitude
tracks with b0kymax/|∇r|0 as shown in figure 5. The best
fit between the width of the zonal potential spectrum and
b0kymax/|∇r|0 is b0 = 0.75 for the κ scan and b0 = 0.9 for the
∆ scan. There is a lot of variation in the quality of the Lorent-
zian fit to the zonal potential so these differences are probably
not significant. The best fit to the GA-STD case of b0 = 0.83
used in figure 4 is within this range.

This model for kRMS
x (equation (16)) is an improvement at

low-ky over the original model (SAT1) in reference [5] that had
kmodel
x = ky in the ion range of ky < 1. If the denominator of the
model for the potential (equation (9)) was chosen to be K2

i⊥
instead of kRMS

x ky, the width of the kx spectrum at θ= 0 would
be kmodel

x = kyGq(0)/|∇r|0). This is similar to equation (16)
for ky > kycut except for the extra factor of |∇r|0. The ∆ scan
in figure 4 rules this factor out. Using K2

i⊥ in the model for the
potential would also not reproduce the observed flattening of
kRMS
x at low ky.
The effective non-linear growthrate γeff can be computed

from the non-linear potential spectrum using the kRMS
x determ-

ined by the spectrum in equation (11). As has been observed
for many spectra, the effective growthrate is quite flat and
independent of ky above kymax, where the maximum in γky/ky
occurs, as shown in figure 6. The non-linear effective grow-
thrate is well fit by the linear growthrate γky for ky < kymax. For
the GA-STD case, the effective growthrate is well modeled by

5
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Figure 6. The γeff
ky spectrum computed from the potential at the outboard midplane (black) equation (11) and G(0)γmodel

ky (gray) for the
GA-STD case (left) the case κ= 2.0 (middle) and the case ∆=−0.5 (right).

γmodel
ky = b2γky for ky < kymax

= b2γmax for ky ≥ kymax.
(17)

Here γmax is the value of the linear growthrate at kymax. The
best fit for the outboard midplane is b2 = 7.5. This model
(equation (17)) is simpler than the original SAT1 model [5]
since it does not have the subtraction of the zonal flow mixing
term that was included in the original model for ky ≤ kymax.
The new model (equation (17)) is a better fit to γeffky (figure 6
(left)) in this range of ky .

The slope of γeff with ky changes with both κ and ∆ away
from the GA-STD case. Using information from the next sec-
tion on the poloidal dependence of the spectrum, a form factor
G(0) is proposed here to modify the model for γeff at the out-
board midplane.

G(0) = 1.0 for ky < kycut

=
√
(kycut + b3(ky− kycut)/G2

q (0))/ky for ky ≥ kycut.

(18)

The γeffky computed from the potential spectrum (black) and the

model G(0)γmodel
ky (grey) are shown in figure 6 for b3 = 0.7.

The left panel of figure 6 is the GASTD case. Without G(0) all
of the cases would be flat for ky > kymax. The geometric factor
G(0) changes the slope of the model with ky. This change in
slope is most clear in the highest range of κ = 2.0 (center
panel) and∆=−0.5 (right panel) of figure 6. These two cases
were run with a different collision frequency than the others
and a smaller range of ky and kx. The GENE runs of these same
cases show the same increase in slope. The need for the geo-
metry factor G(0) is better motivated by the poloidal depend-
ence of the intensity as will be discussed in the next section.

4. Poloidal angular dependence of the 3D potential
fluctuation intensity

In order to make a clear distinction in the poloidal angle
dependence between the two geometric factors (B and |∇r|),
CGYRO runs were done at κ = 1.5 and ∆ = −0.25 and
RMIN= 0.8, NU_EE = 0.05 with the same poloidal and radial
wavenumber resolutions as the 7 other CGYRO runs at this
collision frequency. These choices make the magnetic field a
broad function of θ and the factor |∇r| a narrow function of

θ that changes slope at θ=π. Two cases with different mag-
netic shear ŝ= 1.0,0.5 were run. The 2D intensity of poten-
tial fluctuations was saved at eight points: θ =−π,−3π/4−
π/2,−π/4,0,π/4,π/2,3π/4. Where θ is the Miller geometry
angle [7]. The ratio θx = kx/(ŝky) is a useful coordinate for
plotting since it is involved in the ballooning space extension
of θ. The θx-spectrum of the normalized potential amplitude
Φ for ky = 0.25, ŝ= 1.0 is plotted for the negative θ values in
figure 7 (left). The positive θ spectra are essentially the mirror
image of the negative ones about the kx= 0 axis. From figure 7
it is clear that there is a peak at kx= 0 and there is a skew
towards the +θ direction. The case θ=−π on the right panel
of figure 7 shows that there is an approximate reflection sym-
metry about the line θx=π with a second peak at θx= 2π with
the same amplitude as the peak at θx= 0. The value at θx=π
is lower than the two peaks for ky < kymax and is the dominant
peak for ky > kymax for θ=−π. The symmetry of the spectrum
at θ=−π can be understood from the quasi-periodicity of the
eikonal [3].

ϕ̃(ky,kx,θ) = ϕ̃(ky,kx− 2πŝky,θ+ 2π). (19)

Due to this quasi-periodicity property, the peak of the poten-
tial at θ=−π and θx= 2π in the right panel of figure 7 is the
image of a peak at θx= 0, θ=π. The spectrum at θ=π is the
reflection of the plot in figure 7 (right) about the line θx= 0.
There are no peaks at larger values of |θx|> 2π so really there
is only the peak at θx= 0 and its images at θx=±2π within
the range of θ.

The 3D spectrum in the space ky, kx, θ is like a house
of mirrors with internal reflections due to the dual nature
of kx both as a Fourier wavenumber for the radial coordin-
ate and as the enforcer of the quasi-periodicity property. The
potential spectrum can be mapped onto an extended balloon-
ing angle coordinate θb. This coordinate extends the range of
−π≤ θ≤π by adding a translation in θx by 2π at the boundary
of each circuit of θ This continues for each θ circuit until the
limit of the range of θx is reached. The independent balloon-
ing modes can be labeled by kx0 = ℓdkx = ℓŝdky2π/Nbox with
the integer ℓ having the range −(Nbox − 1)≤ ℓ≤ (Nbox − 1).
For the case ŝ= 1.0 there are 11 kx0’s (Nbox = 6). The quasi-
periodicity property equation (19) can be used to map the
potential onto the ballooning mode space for each independ-
ent ballooning mode. The result is shown in figure 8 for ky =
0.25, ŝ= 1. The highest peak is for ℓ= 0, the next highest pair
ℓ=±1 etc down to the lowest amplitude pair ℓ=±5. Most
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Figure 7. The θx = kx/(̂sky) spectrum of the normalized potential amplitude Φ for ky= 0.25 and ŝ= 1.0 for (left) θ = 0 (highest solid
black), −π/4 (solid gray), −π/2 (dashed black), −3π/4 (dashed gray), −π (lowest solid black) and (right) just θ = −π.

of the amplitude of all of the ballooning modes is within the
original range (±π) of θ. The width of all of the ballooning
modes is mostly contained in the envelope of the ℓ= 0 mode.

The θ dependence of the potential at kx= 0 is the same in
the original theta space and in ballooning space within the first
panel. The theta dependence of the intensity at kx= 0 for all of
the ky’s is shown in figure 9. The intensity has been normal-
ized to the intensity at θ= 0. The left panel shows the range
0≤ ky≤0.55. For this case kymax = 0.246 so it is within this
range. The zonal intensity ky= 0 (highest curve in left panel)
is the peak of the fitted Lorentzian shown in figure 3. It is
almost independent of θ. This is representative of the whole
zonal kx-spectrum that is remarkably independent of poloidal
angle. The shape becomes progressively narrower (left panel)
for increasing ky until it saturates. The right plot in figure 9 has
all of the other values 0.6≤ ky≤1.15. The shape of the intens-
ity is the same for all these values. It is not hard to imagine
that this result could be due to the non-linear convolution of
the zonal potential with the finite ky potential causing a broad-
ening of the θ dependence at low ky along with the broadening
of the kRMS

x width. However, the shapes for ky= 0.05, 0.1, 0.15
are nearly the same rather than broadening towards ky = 0.

Two geometric shape functions have been found that fit the
two ends of the ky spectrum.

G1 =
(B(0)
B(θ)

)4
(20)

G2 =
(B(0)
B(θ)

)4( |∇r|
|∇r|0)

)4
=
(Gq(0)
Gq(θ)

)4
. (21)

These two shape functions are shown in figure 10. The mag-
netic field shape function (G1) (gray) is broader and fits the
low ky= 0.1 intensity shape (black) very well as shown in
the left plot. The shape function G2 has the factor Gq that
appears in the model for the kRMS

x (equation (16)) but raised
to the fourth power. These shape factors are normalized to
the outboard miplane value like the intensities in figure 10.
The second shape factor (gray dashed) is a very good fit to
the higher ky spectrum (black) shown in the right panel of
figure 10. These two shape functions will be used in the next

Figure 8. The ballooning angle θb dependence of the amplitude of
the potential Φb for the 11 independent ballooning modes of the
CGYRO spectrum for ky = 0.25.

section to build a model that interpolates between them to
cover all ky. A CGYRO simulation was run for the same case
but with magnetic shear of ŝ= 0.5. This was run to see if the
shape changes with magnetic shear. The two shape functions
G1 and G2 do not depend upon shear but the perpendicular
wave vector K2

i⊥ evaluated at kx= 0 does. It was found that
the shape at ŝ= 0.5, at low and high ky, was the same as for
ŝ= 1.0. The perpendicular wave vector would give a shape
function that was independent of ky and broader for ŝ= 0.5,
so it cannot reproduce the observed non-linear intensity spec-
trum. Once again, this rules out the use of K2

i⊥ as the denom-
inator of the model of the potential spectrum.

Similarly, the lack of magnetic shear dependence also rules
out the following extension of the Lorentzian model to fit the
θ= 0 spectrum:

1/
(
1+

( ŝkyθ
kRMS
x

)2)2
. (22)

This shape function comes from assuming that kx in
equation (15) is replaced by kx+ ŝkyθ in general and then tak-
ing kx= 0 to get equation (22). The difference between θ and

7
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Figure 9. The intensity for kx= 0 normalized to θ= 0 for (left) 0 ≤ ky ≤ 0.55 and (right) 0.6 ≤ ky ≤ 1.15.

Θ in equation (4) is not important for this argument. The prob-
lemwith the shape function equation (22) is that the kRMS

x com-
puted by fitting the spectrum at θ= 0 does not depend on mag-
netic shear ŝ and neither does the shape in θ of the non-linear
potential spectrum figure 9.

The shape function G1 could be replaced by the Gaussian
envelope of the linear eigenmodes. This is appealing, and can
give a good fit to the low ky spectrum. However, as we will
see in the next section, when you include the peak amplitude
of the potential in the fit to the QL intensity, the θ depend-
ence of G1 is un-modified but G2 is replaced by (Gq(θ)

−4 for
the best fit. Hence, G1 is not a common factor of these two
shape functions in the final analysis and it cannot be replaced
by a Gaussian envelope in both shape functions as would be
the case if it were from the wavefunction envelope.

Note that the flux surface average of the fluxes employed
in the gyrokinetic codes covers only the range of θ. It is the
sum over kx that includes the extended ballooning angle. The
potential intensity is very small for |θx| ≥ 2π so the balloon-
ing mode extensions do not contribute much to the flux. The
simplest interpretation, that the shape in θ of the potential
intensity spectrum at kx= 0 comes from the geometric factors
in equations (20) and (21), holds up to this analysis of altern-
atives. It does not prove it is unique and should be tested on
more cases.

5. A model of the intensity required for a
quasi-linear flux calculation

Until now, the 3D intensity of potential fluctuations has been
examined in various ways to reveal the shape dependence.
Now the ultimate goal of modeling the QL intensity required
to compute the fluxes will be addressed. The QL intensity
involves a flux surface average and a sum over kx of the intens-
ity weighted by the QL weight (cross-phases) of all of the
modes in the non-linear spectrum. Only the QL weight of
the most unstable mode was used to compute the QL intens-
ity (equation (1)). Each of the independent ballooning modes
with different values of kx0 contribute to the flux in some way.
Therefore, it is expected that the QL intensity is not just the
flux surface average of the 3D intensity evaluated at kx= 0 or
summed over kx without the QL weights of the non-zero kx0
ballooning modes. This is easily shown by comparing the QL

weight computed from the spectrumwith these two proxy can-
didates. This is a distraction from the goal of building a model
of the QL intensity directly from the linear CGYRO eigen-
value spectrum so it will not be presented here. Models for
kmodel
x (equation (16) and γmodel

ky (equation (17)) have already
been found and can provide a useful template for the final con-
struction. The model template is:

Qmodel
aky =

αidky
|∇r|0

Imodel
ky W QL

aky
. (23)

Here the poloidal wavenumber interval has been chosen to
be ∆ky = dKiy computed from equation (5). This interval is
needed because the ion Bessel function makes the intens-
ity and quasi-linear weight a function of the ion poloidal
wavenumber Kiy so the integral of the flux per mode should
have the measure dKiy. As shown in figure 5 kymax tracks
with the outboard midplane value of |∇r|0 so this is used in
the measure in equation (24).

The model for the quasi-linear intensity is taken to have the
form:

Imodel
ky =

〈
G2(θ)

〉
θ

( γmodel
ky

kmodel
x ky

)2
. (24)

For simplicity, all of the θ dependence is absorbed into G(θ)

G2(θ) = d1G1(θ) for ky < kycut

=
(
d1G1(θ)kycut + b3d2G2(θ)(ky− kycut)

)
/ky for ky ≥ kycut

(25)

where the best fit for the coefficients d1,d2 is found to be

d1 =
( BT0
B(0)

)4
(26)

d2 = 1/Gq(0)
2. (27)

The model kmodel
x was fit to the outboard midplane kRMS

x . This
leaves it ambiguous if the geometric factors become functions
of θ in general. The best fit coefficient d1 (equation (26)) can-
cels the dependence of G1 on minor radius r contained in B(0)
by replacing it with the toroidal magnetic field at the flux sur-
face center B(0)|r=0 = BT0 . This was required in order for the
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Figure 10. The intensity for kx= 0 normalized to θ= 0 (black) for ky= 0.1 (left) and ky= 0.65 (right) and two shape functions G1 (grey)
and G2 (gray dashed).

Figure 11. The flux surface averages Ĝ1 (top) and Ĝ2 (bottom) for the κ (left) and gradr0 = 1/(1+∆) (right) scans.

model to fit the two cases that were run at larger r/a= 0.8
to explore the poloidal angular dependence of the intensity.
This has been verified with a scan in r/a that will be repor-
ted in a separate paper on a large CGYRO database verific-
ation of the model to follow. It is important for G2 to have
the same kycut as kmodel

x . For ky ≥ kycut, the factor Gq(0)) in
kmodel
x does get promoted to its θ dependent form. This con-
tributes two powers to G2. The other two powers are needed
to fit γeffky (equation (18)). The best fit for the coefficient d2
(equation (27)), changes d2G2/(kmodel

x ky)2 to the shape factor
(Gq(θ)ky)−4 for ky >> kymax. Since G2(θ) is linear in G1 and
G2 the flux surface average of these terms can be computed
separately and then used in the formula for the intensity model
equation (24).

To see how these weight the model for the QL intensity,

the flux surface averages Ĝ1 =
〈
G1

〉
θ
and Ĝ2 =

〈
G−4
q

〉
θ
are

plotted in figure 11 for the κ and ∆ scans. The flux surface

average Ĝ1 (top plots) is weakly varying. It has an influence
on the slope of the very low ky < kymax part of the spectrum and
the peak value of the QL intensity model plotted in figure 12.
The flux surface average Ĝ2 (bottom plots of figure 11) has a
strong variation with both κ and ∆ (gradr0). This is primar-
ily due to the variation of G−4

q (0). The Ĝ2 factor impacts the
way the intensity falls off with ky for ky >> kymax. The effect
can be clearly seen in figure 12. The QL intensity spectrum,

computed from the CGYRO Qe, (black) is much broader for
the κ = 2.0 (center) and gradr0 = 2.0 (i.e. ∆ = −0.5) (right)
than the GASTD case (left). All of these cases are with the
same collision frequency (0.1). The broadening for the∆ scan
is partly due to the higher ky of the peak due to kymax as seen in

figure 5. The value of the geometry factor Ĝ2 is largest for

κ = 2.0 and its effect on the spectrum is important for the
accuracy of the fluxes and the overall scaling of the fluxes with
κ and gradr0.

9
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Figure 12. The QL intensity (black) and the optimum fit model (gray) equation (24) for GASTD (left), κ = 2.0 (middle) and ∆ = −0.5
(right) all with collision frequency 0.1.

Figure 13. The total electron (top) and ion (bottom) energy fluxes for a κ scan (left) and a gradr0 = 1/(1+∆) scan (right) for CGYRO
(black), optimum model (large gray) and the original SAT1 model (small gray).

There are four fitting coefficients in the model template
(equation (24)) b0, b1, b2, b3. The coefficient b2 from γmodel

ky
(equation (17)) acts as an overall multiplier. It will be determ-
ined by setting the net offset of the model fluxes and the
CGYRO fluxes for the ten cases (scans in κ and ∆) to zero.
The other three coefficients will be adjusted to find the min-
imum RMS error between the model and CGYRO for the per
ky flux contributions. There are 10 CGYRO runs and 14 ky’s
included in the RMS error for both electron and ion fluxes for
a total of 280 data points being fit. The optimum coefficients
were found to be b0 = 0.72 for kycut, b1 = 1.22 for the slope
of kmodel

x , b3 = 2.40 for the slope of G2 and b2 = 2.82 for the
zero offset condition. Note that b2 was decreased and b3 was
increased because d1 = 1.826 for the GASTD case rather than
1.0. These values give an RMS error average of 0.52 GB units
for each ky flux contribution. The error for the total fluxes for
the whole set of 10 cases are 4.1% forQe and 6.9% forQi. The
total fluxes for each scan are shown in figure 13. The overall
trend of the fluxes with κ and gradr0 is very well matched.
Recall that the κ = 2.0, gradr0 = 1.0, 2.0 CGYRO runs were
done with a higher collision frequency (0.1) than the others

(0.05) which lowers the fluxes for these points. The overall
scaling trend is approximatelyQ∝ 1/Gq(0). This optimum fit
is a fairly broad minimum of the coefficients.

The result of computing the SAT1 model fluxes [5] using
the CGYRO linear eigenmode spectrum is also shown in
figure 13 as small gray dots. The trend of the fluxes is flat or
downward for both scans. The SAT1 model does not have any
explicit geometric terms. It is effectively assuming that Bunit is
the natural magnetic field that sets the local turbulence gyro-
radius and eddy size. This model was calibrated to a set of 83
GYRO [11] simulations that included κ scans but not∆ scans.
The simulation database was assembled 15 years ago in order
to calibrate the original (SAT0) TGLF transport model [12].
Low poloidal and radial grid resolutions were used in order
to speed up the simulations. GYRO uses a grid in the minor
radius so that it can run both periodic and non-periodic (global)
gyrokinetic simulations. It can compute gyro-averages with
spectral accuracy (like CGYRO) using an exact Bessel func-
tion expansion, but this is expensive andwas not done for these
runs. The trend with κ for these low-resolution GYRO runs
agrees with the SAT1model fluxes in figure 13. This is a lesson
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learned. A model is no more accurate than the simulations it
fits. It also is a caution to present day attempts to run reduced
physics fidelity global simulations in order to capture long
range wave-like effects. The reduced simulation models may
not capture important local physics effects, like the geometric
effects in this paper, that require accurate gyro-averaging (i.e.
Bessel functions).

6. Summary

This paper presented the most accurate model of the flux spec-
trum ever developed for quasi-linear modeling. It is as accurate
as the agreement between different gyrokinetic codes. It will
not be as accurate on a larger set of gyrokinetic runs as it is for
the 10 runs it was calibrated to. It will be shown in a separate
paper that the fitting coefficients for the poloidal wavenumber
(ky) dependent geometry factor (equation (25)) and the models
for the radial wavenumber spectral width (equation (16)), and
the effective growth rate (equation (17)) (other than the over-
all norm) presented in this paper do not need to be changed
in order to give a good fit to a much wider ranging database.
The spectral shift model for E×B shear [10] and the electron
scale turbulence [5] will also be re-calibrated in the separate
paper.

Previous experience with quasi-linear models leads to the
expectation that the new model will have sufficient accuracy
for modeling the core transport of tokamaks under normal con-
ditions. The improvements in the flux surface shape fidelity
of SAT2 will be validated for near edge L-mode conditions
where an under-prediction of the transport has been foundwith
TGLF [13]. A similar under-prediction of transport by TGLF
during the current ramp-up phase has also been reported [14]
and will be revisited with this new model. The recent experi-
mental observation of improved energy confinement with neg-
ative triangularity [15] will also make a good validation test of
the shape factors in the new model. High bootstrap fraction
tokamak discharges, with a strong Shafranov shift reducing
transport in the core, have been difficult to predict [16]. Per-
haps the SAT2 model will improve the plasma profile predic-
tions. This regime looks to be very attractive for steady state
tokamak reactors experimentally [17] with enhanced energy
confinement. The prediction of transport in low aspect ratio
spherical tori, which have strongly varying shape factors and
a large Shafranov shift, will also be used to validated the SAT2
model.

This paper lays out new methodologies, like fitting to the
QL intensity and 3D potential intensity. By computing the lin-
ear spectrum, and quasi-linear weights, with the same gyrokin-
etic code as the simulations, the process of modeling the QL
intensity can be separated from the process of developing a
fast reduced linear eigensolver by this approach.

The role of zonal flow mixing on setting the width of the
kx-spectrum for the finite ky modes was explored in this paper.
It was shown for the first time that the width of the zonal
potential spectrum provides an irreducible minimum width.
It was also shown that this width is coupled to the value of
kymax that also plays a role in setting the saturated RMS velo-
city of the zonal fluctuations through balancing the zonal flow

mixing rate with the linear growthrate γmax (equation (13)).
This saturation rule for the zonal flow velocity was found to be
independent of geometry. The width of the kx-spectrum has a
dependence on geometry (equation (16)). For large kx, this is
consistent with the Bessel functions depending on Kix (equa-
tion (6)). The argument of the Bessel function has the phys-
ical total magnetic field gyro-radius normalizing the radial
wavenumber. Hence, the radial correlation length at the out-
board midplane scales with the local total magnetic field. At
low kx the influence of the zonal flowmixing takes over and the
poloidal wavenumber argument of the Bessel function (equa-
tion (5)) sets the geometry dependence. The form of equa-
tion (5) shows that the toroidal correlation length scales with
the poloidal magnetic field gyroradius. The new model for
kRMS
x (equation (16)) is an improvement over the SAT1 model.
The model for the effective non-linear growthrate γeffky at

low-ky was also improved in this paper (equation (17)). It was
found that there was no need for the zonal flow mixing sub-
traction used in the SAT1 model below the peak at kymax. This
is because the flattening of kRMS

x at low ky, due to the zonal
potential setting a minimum width, suppresses the transport at
low ky enough. No additional suppression is required in the
model. This change to the model improves the fit to the QL
intensity at low ky significantly. An overall geometric factor
was found to be needed in order to match the change in slope
of γeffky at high ky with flux surface shape. This shape factor is
consistent with the findings of the poloidal dependence of the
peak intensity at kx= 0.

Perhaps themost controversial part of the analysis of the 3D
spectrum in this paper is the finding that the poloidal depend-
ence of the peak of the intensity spectrum at kx= 0 can be
fit with purely geometric factors. This conclusion is based on
only two cases (̂s = 1.0, 0.05) so it will need further verifica-
tion. Clearly, the geometric factors fit the spectra in figure 10
for the cases tested, but it was expected that some dependence
on the shape of the most unstable linear eigenmode wavefunc-
tionwould be found. It is interesting that the linear eigenmodes
foundwith TGLF have a Gaussian envelope that is not far from
the shape of (B(0)/B)2 at low-ky. The wavefunction envelope
becomes narrower at higher ky. It may be that this is caused
by the same geometric factors entering the linear TGLF equa-
tions (velocity moments of the gyrokinetic equations). The
non-linear turbulence spectrum includes all modes, not just the
most unstable one, so the wavefunction shape may become
washed out in the non-linear simulation but the quasi-linear
weight, that depends on the eigenmode frequency, is still pre-
served by the turbulence. Further study is required to follow
up on these questions.
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